Properties

Label 882.6.a.bk
Level $882$
Weight $6$
Character orbit 882.a
Self dual yes
Analytic conductor $141.459$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,6,Mod(1,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 882.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.458529075\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 7 \)
Twist minimal: no (minimal twist has level 294)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 7\sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 4 q^{2} + 16 q^{4} + (5 \beta - 54) q^{5} + 64 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + 4 q^{2} + 16 q^{4} + (5 \beta - 54) q^{5} + 64 q^{8} + (20 \beta - 216) q^{10} + (18 \beta - 62) q^{11} + ( - 45 \beta + 360) q^{13} + 256 q^{16} + ( - 67 \beta + 630) q^{17} + (46 \beta + 180) q^{19} + (80 \beta - 864) q^{20} + (72 \beta - 248) q^{22} + (54 \beta - 3262) q^{23} + ( - 540 \beta + 2241) q^{25} + ( - 180 \beta + 1440) q^{26} + ( - 234 \beta - 3544) q^{29} + ( - 270 \beta + 2952) q^{31} + 1024 q^{32} + ( - 268 \beta + 2520) q^{34} + (612 \beta - 3020) q^{37} + (184 \beta + 720) q^{38} + (320 \beta - 3456) q^{40} + ( - 961 \beta + 8694) q^{41} + (1152 \beta - 304) q^{43} + (288 \beta - 992) q^{44} + (216 \beta - 13048) q^{46} + ( - 790 \beta + 15228) q^{47} + ( - 2160 \beta + 8964) q^{50} + ( - 720 \beta + 5760) q^{52} + (1584 \beta - 1982) q^{53} + ( - 1282 \beta + 12168) q^{55} + ( - 936 \beta - 14176) q^{58} + ( - 202 \beta - 20376) q^{59} + ( - 1213 \beta - 684) q^{61} + ( - 1080 \beta + 11808) q^{62} + 4096 q^{64} + (4230 \beta - 41490) q^{65} + ( - 4464 \beta - 8112) q^{67} + ( - 1072 \beta + 10080) q^{68} + ( - 6246 \beta + 1602) q^{71} + (6563 \beta + 11988) q^{73} + (2448 \beta - 12080) q^{74} + (736 \beta + 2880) q^{76} + (756 \beta - 41080) q^{79} + (1280 \beta - 13824) q^{80} + ( - 3844 \beta + 34776) q^{82} + (2656 \beta - 86868) q^{83} + (6768 \beta - 66850) q^{85} + (4608 \beta - 1216) q^{86} + (1152 \beta - 3968) q^{88} + (817 \beta - 100278) q^{89} + (864 \beta - 52192) q^{92} + ( - 3160 \beta + 60912) q^{94} + ( - 1584 \beta + 12820) q^{95} + (2659 \beta + 125964) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{2} + 32 q^{4} - 108 q^{5} + 128 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 8 q^{2} + 32 q^{4} - 108 q^{5} + 128 q^{8} - 432 q^{10} - 124 q^{11} + 720 q^{13} + 512 q^{16} + 1260 q^{17} + 360 q^{19} - 1728 q^{20} - 496 q^{22} - 6524 q^{23} + 4482 q^{25} + 2880 q^{26} - 7088 q^{29} + 5904 q^{31} + 2048 q^{32} + 5040 q^{34} - 6040 q^{37} + 1440 q^{38} - 6912 q^{40} + 17388 q^{41} - 608 q^{43} - 1984 q^{44} - 26096 q^{46} + 30456 q^{47} + 17928 q^{50} + 11520 q^{52} - 3964 q^{53} + 24336 q^{55} - 28352 q^{58} - 40752 q^{59} - 1368 q^{61} + 23616 q^{62} + 8192 q^{64} - 82980 q^{65} - 16224 q^{67} + 20160 q^{68} + 3204 q^{71} + 23976 q^{73} - 24160 q^{74} + 5760 q^{76} - 82160 q^{79} - 27648 q^{80} + 69552 q^{82} - 173736 q^{83} - 133700 q^{85} - 2432 q^{86} - 7936 q^{88} - 200556 q^{89} - 104384 q^{92} + 121824 q^{94} + 25640 q^{95} + 251928 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
4.00000 0 16.0000 −103.497 0 0 64.0000 0 −413.990
1.2 4.00000 0 16.0000 −4.50253 0 0 64.0000 0 −18.0101
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 882.6.a.bk 2
3.b odd 2 1 294.6.a.q yes 2
7.b odd 2 1 882.6.a.bu 2
21.c even 2 1 294.6.a.n 2
21.g even 6 2 294.6.e.z 4
21.h odd 6 2 294.6.e.x 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
294.6.a.n 2 21.c even 2 1
294.6.a.q yes 2 3.b odd 2 1
294.6.e.x 4 21.h odd 6 2
294.6.e.z 4 21.g even 6 2
882.6.a.bk 2 1.a even 1 1 trivial
882.6.a.bu 2 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(882))\):

\( T_{5}^{2} + 108T_{5} + 466 \) Copy content Toggle raw display
\( T_{11}^{2} + 124T_{11} - 27908 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 4)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 108T + 466 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 124T - 27908 \) Copy content Toggle raw display
$13$ \( T^{2} - 720T - 68850 \) Copy content Toggle raw display
$17$ \( T^{2} - 1260T - 43022 \) Copy content Toggle raw display
$19$ \( T^{2} - 360T - 174968 \) Copy content Toggle raw display
$23$ \( T^{2} + 6524 T + 10354876 \) Copy content Toggle raw display
$29$ \( T^{2} + 7088 T + 7193848 \) Copy content Toggle raw display
$31$ \( T^{2} - 5904 T + 1570104 \) Copy content Toggle raw display
$37$ \( T^{2} + 6040 T - 27584912 \) Copy content Toggle raw display
$41$ \( T^{2} - 17388 T - 14919422 \) Copy content Toggle raw display
$43$ \( T^{2} + 608 T - 129963776 \) Copy content Toggle raw display
$47$ \( T^{2} - 30456 T + 170730184 \) Copy content Toggle raw display
$53$ \( T^{2} + 3964 T - 241959164 \) Copy content Toggle raw display
$59$ \( T^{2} + 40752 T + 411182584 \) Copy content Toggle raw display
$61$ \( T^{2} + 1368 T - 143726306 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 1887070464 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 3820660164 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 4077438818 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 1631555872 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 6854724496 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 9990263362 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 15174041758 \) Copy content Toggle raw display
show more
show less