Properties

Label 882.6.a.bc.1.2
Level $882$
Weight $6$
Character 882.1
Self dual yes
Analytic conductor $141.459$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,6,Mod(1,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 882.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.458529075\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{4705}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1176 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 294)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-33.7965\) of defining polynomial
Character \(\chi\) \(=\) 882.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} +16.0000 q^{4} +59.5930 q^{5} -64.0000 q^{8} +O(q^{10})\) \(q-4.00000 q^{2} +16.0000 q^{4} +59.5930 q^{5} -64.0000 q^{8} -238.372 q^{10} +616.337 q^{11} +418.372 q^{13} +256.000 q^{16} -1793.90 q^{17} +1279.93 q^{19} +953.488 q^{20} -2465.35 q^{22} -4781.69 q^{23} +426.326 q^{25} -1673.49 q^{26} -1716.02 q^{29} +642.722 q^{31} -1024.00 q^{32} +7175.58 q^{34} -2360.02 q^{37} -5119.72 q^{38} -3813.95 q^{40} -15639.9 q^{41} -1638.61 q^{43} +9861.39 q^{44} +19126.7 q^{46} -20735.5 q^{47} -1705.30 q^{50} +6693.95 q^{52} +5347.93 q^{53} +36729.4 q^{55} +6864.09 q^{58} -16824.9 q^{59} -13527.2 q^{61} -2570.89 q^{62} +4096.00 q^{64} +24932.0 q^{65} -46483.5 q^{67} -28702.3 q^{68} +3273.91 q^{71} -76758.4 q^{73} +9440.09 q^{74} +20478.9 q^{76} -17731.4 q^{79} +15255.8 q^{80} +62559.5 q^{82} -78846.7 q^{83} -106904. q^{85} +6554.43 q^{86} -39445.6 q^{88} -74160.4 q^{89} -76507.0 q^{92} +82942.1 q^{94} +76274.9 q^{95} +24360.2 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{2} + 32 q^{4} - 18 q^{5} - 128 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 8 q^{2} + 32 q^{4} - 18 q^{5} - 128 q^{8} + 72 q^{10} - 2 q^{11} + 288 q^{13} + 512 q^{16} - 1530 q^{17} + 1188 q^{19} - 288 q^{20} + 8 q^{22} - 3390 q^{23} + 3322 q^{25} - 1152 q^{26} + 3976 q^{29} + 7596 q^{31} - 2048 q^{32} + 6120 q^{34} + 2688 q^{37} - 4752 q^{38} + 1152 q^{40} - 36630 q^{41} - 23032 q^{43} - 32 q^{44} + 13560 q^{46} - 864 q^{47} - 13288 q^{50} + 4608 q^{52} + 32920 q^{53} + 84708 q^{55} - 15904 q^{58} + 26712 q^{59} + 20412 q^{61} - 30384 q^{62} + 8192 q^{64} + 35048 q^{65} - 36172 q^{67} - 24480 q^{68} - 73706 q^{71} - 74772 q^{73} - 10752 q^{74} + 19008 q^{76} - 23116 q^{79} - 4608 q^{80} + 146520 q^{82} - 147816 q^{83} - 127380 q^{85} + 92128 q^{86} + 128 q^{88} - 164646 q^{89} - 54240 q^{92} + 3456 q^{94} + 83408 q^{95} + 162036 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) 0 0
\(4\) 16.0000 0.500000
\(5\) 59.5930 1.06603 0.533016 0.846105i \(-0.321059\pi\)
0.533016 + 0.846105i \(0.321059\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −64.0000 −0.353553
\(9\) 0 0
\(10\) −238.372 −0.753798
\(11\) 616.337 1.53581 0.767903 0.640566i \(-0.221300\pi\)
0.767903 + 0.640566i \(0.221300\pi\)
\(12\) 0 0
\(13\) 418.372 0.686601 0.343300 0.939226i \(-0.388455\pi\)
0.343300 + 0.939226i \(0.388455\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) −1793.90 −1.50548 −0.752740 0.658318i \(-0.771268\pi\)
−0.752740 + 0.658318i \(0.771268\pi\)
\(18\) 0 0
\(19\) 1279.93 0.813396 0.406698 0.913563i \(-0.366680\pi\)
0.406698 + 0.913563i \(0.366680\pi\)
\(20\) 953.488 0.533016
\(21\) 0 0
\(22\) −2465.35 −1.08598
\(23\) −4781.69 −1.88478 −0.942392 0.334512i \(-0.891429\pi\)
−0.942392 + 0.334512i \(0.891429\pi\)
\(24\) 0 0
\(25\) 426.326 0.136424
\(26\) −1673.49 −0.485500
\(27\) 0 0
\(28\) 0 0
\(29\) −1716.02 −0.378903 −0.189451 0.981890i \(-0.560671\pi\)
−0.189451 + 0.981890i \(0.560671\pi\)
\(30\) 0 0
\(31\) 642.722 0.120121 0.0600605 0.998195i \(-0.480871\pi\)
0.0600605 + 0.998195i \(0.480871\pi\)
\(32\) −1024.00 −0.176777
\(33\) 0 0
\(34\) 7175.58 1.06453
\(35\) 0 0
\(36\) 0 0
\(37\) −2360.02 −0.283408 −0.141704 0.989909i \(-0.545258\pi\)
−0.141704 + 0.989909i \(0.545258\pi\)
\(38\) −5119.72 −0.575158
\(39\) 0 0
\(40\) −3813.95 −0.376899
\(41\) −15639.9 −1.45303 −0.726513 0.687152i \(-0.758860\pi\)
−0.726513 + 0.687152i \(0.758860\pi\)
\(42\) 0 0
\(43\) −1638.61 −0.135146 −0.0675731 0.997714i \(-0.521526\pi\)
−0.0675731 + 0.997714i \(0.521526\pi\)
\(44\) 9861.39 0.767903
\(45\) 0 0
\(46\) 19126.7 1.33274
\(47\) −20735.5 −1.36921 −0.684606 0.728914i \(-0.740026\pi\)
−0.684606 + 0.728914i \(0.740026\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −1705.30 −0.0964666
\(51\) 0 0
\(52\) 6693.95 0.343300
\(53\) 5347.93 0.261515 0.130757 0.991414i \(-0.458259\pi\)
0.130757 + 0.991414i \(0.458259\pi\)
\(54\) 0 0
\(55\) 36729.4 1.63722
\(56\) 0 0
\(57\) 0 0
\(58\) 6864.09 0.267925
\(59\) −16824.9 −0.629250 −0.314625 0.949216i \(-0.601879\pi\)
−0.314625 + 0.949216i \(0.601879\pi\)
\(60\) 0 0
\(61\) −13527.2 −0.465460 −0.232730 0.972541i \(-0.574766\pi\)
−0.232730 + 0.972541i \(0.574766\pi\)
\(62\) −2570.89 −0.0849384
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) 24932.0 0.731938
\(66\) 0 0
\(67\) −46483.5 −1.26506 −0.632531 0.774535i \(-0.717984\pi\)
−0.632531 + 0.774535i \(0.717984\pi\)
\(68\) −28702.3 −0.752740
\(69\) 0 0
\(70\) 0 0
\(71\) 3273.91 0.0770762 0.0385381 0.999257i \(-0.487730\pi\)
0.0385381 + 0.999257i \(0.487730\pi\)
\(72\) 0 0
\(73\) −76758.4 −1.68585 −0.842924 0.538032i \(-0.819168\pi\)
−0.842924 + 0.538032i \(0.819168\pi\)
\(74\) 9440.09 0.200400
\(75\) 0 0
\(76\) 20478.9 0.406698
\(77\) 0 0
\(78\) 0 0
\(79\) −17731.4 −0.319650 −0.159825 0.987145i \(-0.551093\pi\)
−0.159825 + 0.987145i \(0.551093\pi\)
\(80\) 15255.8 0.266508
\(81\) 0 0
\(82\) 62559.5 1.02744
\(83\) −78846.7 −1.25629 −0.628143 0.778098i \(-0.716185\pi\)
−0.628143 + 0.778098i \(0.716185\pi\)
\(84\) 0 0
\(85\) −106904. −1.60489
\(86\) 6554.43 0.0955628
\(87\) 0 0
\(88\) −39445.6 −0.542990
\(89\) −74160.4 −0.992424 −0.496212 0.868201i \(-0.665276\pi\)
−0.496212 + 0.868201i \(0.665276\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −76507.0 −0.942392
\(93\) 0 0
\(94\) 82942.1 0.968179
\(95\) 76274.9 0.867107
\(96\) 0 0
\(97\) 24360.2 0.262876 0.131438 0.991324i \(-0.458041\pi\)
0.131438 + 0.991324i \(0.458041\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 6821.22 0.0682122
\(101\) 148780. 1.45124 0.725622 0.688093i \(-0.241552\pi\)
0.725622 + 0.688093i \(0.241552\pi\)
\(102\) 0 0
\(103\) 205516. 1.90877 0.954383 0.298584i \(-0.0965143\pi\)
0.954383 + 0.298584i \(0.0965143\pi\)
\(104\) −26775.8 −0.242750
\(105\) 0 0
\(106\) −21391.7 −0.184919
\(107\) 104578. 0.883038 0.441519 0.897252i \(-0.354440\pi\)
0.441519 + 0.897252i \(0.354440\pi\)
\(108\) 0 0
\(109\) 212746. 1.71512 0.857560 0.514383i \(-0.171979\pi\)
0.857560 + 0.514383i \(0.171979\pi\)
\(110\) −146917. −1.15769
\(111\) 0 0
\(112\) 0 0
\(113\) −224886. −1.65678 −0.828391 0.560150i \(-0.810744\pi\)
−0.828391 + 0.560150i \(0.810744\pi\)
\(114\) 0 0
\(115\) −284955. −2.00924
\(116\) −27456.4 −0.189451
\(117\) 0 0
\(118\) 67299.7 0.444947
\(119\) 0 0
\(120\) 0 0
\(121\) 218820. 1.35870
\(122\) 54108.7 0.329130
\(123\) 0 0
\(124\) 10283.6 0.0600605
\(125\) −160822. −0.920599
\(126\) 0 0
\(127\) −44027.2 −0.242221 −0.121110 0.992639i \(-0.538646\pi\)
−0.121110 + 0.992639i \(0.538646\pi\)
\(128\) −16384.0 −0.0883883
\(129\) 0 0
\(130\) −99728.2 −0.517559
\(131\) 391132. 1.99134 0.995668 0.0929748i \(-0.0296376\pi\)
0.995668 + 0.0929748i \(0.0296376\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 185934. 0.894534
\(135\) 0 0
\(136\) 114809. 0.532267
\(137\) −70982.2 −0.323108 −0.161554 0.986864i \(-0.551651\pi\)
−0.161554 + 0.986864i \(0.551651\pi\)
\(138\) 0 0
\(139\) 102764. 0.451133 0.225567 0.974228i \(-0.427577\pi\)
0.225567 + 0.974228i \(0.427577\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −13095.6 −0.0545011
\(143\) 257858. 1.05449
\(144\) 0 0
\(145\) −102263. −0.403923
\(146\) 307034. 1.19208
\(147\) 0 0
\(148\) −37760.4 −0.141704
\(149\) 226298. 0.835053 0.417527 0.908665i \(-0.362897\pi\)
0.417527 + 0.908665i \(0.362897\pi\)
\(150\) 0 0
\(151\) −548224. −1.95666 −0.978330 0.207051i \(-0.933613\pi\)
−0.978330 + 0.207051i \(0.933613\pi\)
\(152\) −81915.5 −0.287579
\(153\) 0 0
\(154\) 0 0
\(155\) 38301.7 0.128053
\(156\) 0 0
\(157\) 241144. 0.780778 0.390389 0.920650i \(-0.372341\pi\)
0.390389 + 0.920650i \(0.372341\pi\)
\(158\) 70925.5 0.226027
\(159\) 0 0
\(160\) −61023.2 −0.188450
\(161\) 0 0
\(162\) 0 0
\(163\) 630902. 1.85991 0.929957 0.367668i \(-0.119844\pi\)
0.929957 + 0.367668i \(0.119844\pi\)
\(164\) −250238. −0.726513
\(165\) 0 0
\(166\) 315387. 0.888328
\(167\) −239113. −0.663456 −0.331728 0.943375i \(-0.607632\pi\)
−0.331728 + 0.943375i \(0.607632\pi\)
\(168\) 0 0
\(169\) −196258. −0.528579
\(170\) 427614. 1.13483
\(171\) 0 0
\(172\) −26217.7 −0.0675731
\(173\) 302939. 0.769556 0.384778 0.923009i \(-0.374278\pi\)
0.384778 + 0.923009i \(0.374278\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 157782. 0.383952
\(177\) 0 0
\(178\) 296642. 0.701750
\(179\) 105990. 0.247247 0.123623 0.992329i \(-0.460549\pi\)
0.123623 + 0.992329i \(0.460549\pi\)
\(180\) 0 0
\(181\) −473727. −1.07481 −0.537405 0.843324i \(-0.680595\pi\)
−0.537405 + 0.843324i \(0.680595\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 306028. 0.666371
\(185\) −140641. −0.302122
\(186\) 0 0
\(187\) −1.10564e6 −2.31212
\(188\) −331768. −0.684606
\(189\) 0 0
\(190\) −305099. −0.613137
\(191\) 587813. 1.16589 0.582943 0.812513i \(-0.301901\pi\)
0.582943 + 0.812513i \(0.301901\pi\)
\(192\) 0 0
\(193\) −366861. −0.708938 −0.354469 0.935068i \(-0.615338\pi\)
−0.354469 + 0.935068i \(0.615338\pi\)
\(194\) −97440.7 −0.185881
\(195\) 0 0
\(196\) 0 0
\(197\) −727471. −1.33552 −0.667760 0.744377i \(-0.732747\pi\)
−0.667760 + 0.744377i \(0.732747\pi\)
\(198\) 0 0
\(199\) −234812. −0.420327 −0.210163 0.977666i \(-0.567400\pi\)
−0.210163 + 0.977666i \(0.567400\pi\)
\(200\) −27284.9 −0.0482333
\(201\) 0 0
\(202\) −595119. −1.02619
\(203\) 0 0
\(204\) 0 0
\(205\) −932027. −1.54897
\(206\) −822065. −1.34970
\(207\) 0 0
\(208\) 107103. 0.171650
\(209\) 788868. 1.24922
\(210\) 0 0
\(211\) −308050. −0.476337 −0.238169 0.971224i \(-0.576547\pi\)
−0.238169 + 0.971224i \(0.576547\pi\)
\(212\) 85566.9 0.130757
\(213\) 0 0
\(214\) −418311. −0.624402
\(215\) −97649.5 −0.144070
\(216\) 0 0
\(217\) 0 0
\(218\) −850983. −1.21277
\(219\) 0 0
\(220\) 587670. 0.818610
\(221\) −750515. −1.03366
\(222\) 0 0
\(223\) 510190. 0.687021 0.343510 0.939149i \(-0.388384\pi\)
0.343510 + 0.939149i \(0.388384\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 899542. 1.17152
\(227\) −1.03803e6 −1.33705 −0.668523 0.743692i \(-0.733073\pi\)
−0.668523 + 0.743692i \(0.733073\pi\)
\(228\) 0 0
\(229\) −1.03849e6 −1.30862 −0.654310 0.756226i \(-0.727041\pi\)
−0.654310 + 0.756226i \(0.727041\pi\)
\(230\) 1.13982e6 1.42075
\(231\) 0 0
\(232\) 109825. 0.133962
\(233\) −1.31745e6 −1.58981 −0.794905 0.606734i \(-0.792479\pi\)
−0.794905 + 0.606734i \(0.792479\pi\)
\(234\) 0 0
\(235\) −1.23569e6 −1.45962
\(236\) −269199. −0.314625
\(237\) 0 0
\(238\) 0 0
\(239\) −800669. −0.906689 −0.453345 0.891335i \(-0.649769\pi\)
−0.453345 + 0.891335i \(0.649769\pi\)
\(240\) 0 0
\(241\) 402307. 0.446185 0.223093 0.974797i \(-0.428385\pi\)
0.223093 + 0.974797i \(0.428385\pi\)
\(242\) −875281. −0.960747
\(243\) 0 0
\(244\) −216435. −0.232730
\(245\) 0 0
\(246\) 0 0
\(247\) 535487. 0.558479
\(248\) −41134.2 −0.0424692
\(249\) 0 0
\(250\) 643288. 0.650962
\(251\) 1.29078e6 1.29320 0.646601 0.762828i \(-0.276190\pi\)
0.646601 + 0.762828i \(0.276190\pi\)
\(252\) 0 0
\(253\) −2.94713e6 −2.89466
\(254\) 176109. 0.171276
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) 1.76435e6 1.66629 0.833146 0.553053i \(-0.186537\pi\)
0.833146 + 0.553053i \(0.186537\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 398913. 0.365969
\(261\) 0 0
\(262\) −1.56453e6 −1.40809
\(263\) −427745. −0.381325 −0.190663 0.981656i \(-0.561064\pi\)
−0.190663 + 0.981656i \(0.561064\pi\)
\(264\) 0 0
\(265\) 318699. 0.278783
\(266\) 0 0
\(267\) 0 0
\(268\) −743736. −0.632531
\(269\) 1.26691e6 1.06749 0.533744 0.845646i \(-0.320784\pi\)
0.533744 + 0.845646i \(0.320784\pi\)
\(270\) 0 0
\(271\) −312034. −0.258095 −0.129047 0.991638i \(-0.541192\pi\)
−0.129047 + 0.991638i \(0.541192\pi\)
\(272\) −459237. −0.376370
\(273\) 0 0
\(274\) 283929. 0.228472
\(275\) 262760. 0.209521
\(276\) 0 0
\(277\) −1.67860e6 −1.31446 −0.657229 0.753691i \(-0.728271\pi\)
−0.657229 + 0.753691i \(0.728271\pi\)
\(278\) −411057. −0.319000
\(279\) 0 0
\(280\) 0 0
\(281\) 765001. 0.577958 0.288979 0.957335i \(-0.406684\pi\)
0.288979 + 0.957335i \(0.406684\pi\)
\(282\) 0 0
\(283\) −85831.7 −0.0637062 −0.0318531 0.999493i \(-0.510141\pi\)
−0.0318531 + 0.999493i \(0.510141\pi\)
\(284\) 52382.5 0.0385381
\(285\) 0 0
\(286\) −1.03143e6 −0.745634
\(287\) 0 0
\(288\) 0 0
\(289\) 1.79820e6 1.26647
\(290\) 409052. 0.285616
\(291\) 0 0
\(292\) −1.22813e6 −0.842924
\(293\) 97784.7 0.0665429 0.0332715 0.999446i \(-0.489407\pi\)
0.0332715 + 0.999446i \(0.489407\pi\)
\(294\) 0 0
\(295\) −1.00265e6 −0.670800
\(296\) 151041. 0.100200
\(297\) 0 0
\(298\) −905190. −0.590472
\(299\) −2.00052e6 −1.29409
\(300\) 0 0
\(301\) 0 0
\(302\) 2.19289e6 1.38357
\(303\) 0 0
\(304\) 327662. 0.203349
\(305\) −806125. −0.496196
\(306\) 0 0
\(307\) −1.75546e6 −1.06303 −0.531514 0.847050i \(-0.678377\pi\)
−0.531514 + 0.847050i \(0.678377\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −153207. −0.0905470
\(311\) 1.80396e6 1.05761 0.528804 0.848744i \(-0.322641\pi\)
0.528804 + 0.848744i \(0.322641\pi\)
\(312\) 0 0
\(313\) 2.46429e6 1.42178 0.710888 0.703305i \(-0.248293\pi\)
0.710888 + 0.703305i \(0.248293\pi\)
\(314\) −964576. −0.552093
\(315\) 0 0
\(316\) −283702. −0.159825
\(317\) −1.65286e6 −0.923822 −0.461911 0.886926i \(-0.652836\pi\)
−0.461911 + 0.886926i \(0.652836\pi\)
\(318\) 0 0
\(319\) −1.05765e6 −0.581922
\(320\) 244093. 0.133254
\(321\) 0 0
\(322\) 0 0
\(323\) −2.29606e6 −1.22455
\(324\) 0 0
\(325\) 178363. 0.0936690
\(326\) −2.52361e6 −1.31516
\(327\) 0 0
\(328\) 1.00095e6 0.513722
\(329\) 0 0
\(330\) 0 0
\(331\) −1.66814e6 −0.836881 −0.418440 0.908244i \(-0.637423\pi\)
−0.418440 + 0.908244i \(0.637423\pi\)
\(332\) −1.26155e6 −0.628143
\(333\) 0 0
\(334\) 956452. 0.469134
\(335\) −2.77009e6 −1.34860
\(336\) 0 0
\(337\) −524769. −0.251706 −0.125853 0.992049i \(-0.540167\pi\)
−0.125853 + 0.992049i \(0.540167\pi\)
\(338\) 785031. 0.373762
\(339\) 0 0
\(340\) −1.71046e6 −0.802444
\(341\) 396133. 0.184483
\(342\) 0 0
\(343\) 0 0
\(344\) 104871. 0.0477814
\(345\) 0 0
\(346\) −1.21176e6 −0.544158
\(347\) −1.92637e6 −0.858846 −0.429423 0.903103i \(-0.641283\pi\)
−0.429423 + 0.903103i \(0.641283\pi\)
\(348\) 0 0
\(349\) 340342. 0.149573 0.0747864 0.997200i \(-0.476173\pi\)
0.0747864 + 0.997200i \(0.476173\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −631129. −0.271495
\(353\) 74791.2 0.0319458 0.0159729 0.999872i \(-0.494915\pi\)
0.0159729 + 0.999872i \(0.494915\pi\)
\(354\) 0 0
\(355\) 195102. 0.0821657
\(356\) −1.18657e6 −0.496212
\(357\) 0 0
\(358\) −423958. −0.174830
\(359\) −2.41754e6 −0.990004 −0.495002 0.868892i \(-0.664833\pi\)
−0.495002 + 0.868892i \(0.664833\pi\)
\(360\) 0 0
\(361\) −837878. −0.338386
\(362\) 1.89491e6 0.760005
\(363\) 0 0
\(364\) 0 0
\(365\) −4.57426e6 −1.79717
\(366\) 0 0
\(367\) 161864. 0.0627314 0.0313657 0.999508i \(-0.490014\pi\)
0.0313657 + 0.999508i \(0.490014\pi\)
\(368\) −1.22411e6 −0.471196
\(369\) 0 0
\(370\) 562563. 0.213632
\(371\) 0 0
\(372\) 0 0
\(373\) 77002.5 0.0286571 0.0143286 0.999897i \(-0.495439\pi\)
0.0143286 + 0.999897i \(0.495439\pi\)
\(374\) 4.42258e6 1.63492
\(375\) 0 0
\(376\) 1.32707e6 0.484089
\(377\) −717936. −0.260155
\(378\) 0 0
\(379\) −774165. −0.276844 −0.138422 0.990373i \(-0.544203\pi\)
−0.138422 + 0.990373i \(0.544203\pi\)
\(380\) 1.22040e6 0.433553
\(381\) 0 0
\(382\) −2.35125e6 −0.824406
\(383\) −3.63328e6 −1.26561 −0.632807 0.774309i \(-0.718098\pi\)
−0.632807 + 0.774309i \(0.718098\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 1.46744e6 0.501295
\(387\) 0 0
\(388\) 389763. 0.131438
\(389\) 2.51908e6 0.844048 0.422024 0.906585i \(-0.361320\pi\)
0.422024 + 0.906585i \(0.361320\pi\)
\(390\) 0 0
\(391\) 8.57784e6 2.83750
\(392\) 0 0
\(393\) 0 0
\(394\) 2.90989e6 0.944355
\(395\) −1.05667e6 −0.340757
\(396\) 0 0
\(397\) 5.59278e6 1.78095 0.890474 0.455034i \(-0.150373\pi\)
0.890474 + 0.455034i \(0.150373\pi\)
\(398\) 939246. 0.297216
\(399\) 0 0
\(400\) 109139. 0.0341061
\(401\) 191062. 0.0593353 0.0296676 0.999560i \(-0.490555\pi\)
0.0296676 + 0.999560i \(0.490555\pi\)
\(402\) 0 0
\(403\) 268897. 0.0824751
\(404\) 2.38048e6 0.725622
\(405\) 0 0
\(406\) 0 0
\(407\) −1.45457e6 −0.435260
\(408\) 0 0
\(409\) 4.45805e6 1.31776 0.658880 0.752248i \(-0.271030\pi\)
0.658880 + 0.752248i \(0.271030\pi\)
\(410\) 3.72811e6 1.09529
\(411\) 0 0
\(412\) 3.28826e6 0.954383
\(413\) 0 0
\(414\) 0 0
\(415\) −4.69871e6 −1.33924
\(416\) −428413. −0.121375
\(417\) 0 0
\(418\) −3.15547e6 −0.883332
\(419\) −4.76120e6 −1.32489 −0.662447 0.749109i \(-0.730482\pi\)
−0.662447 + 0.749109i \(0.730482\pi\)
\(420\) 0 0
\(421\) −1.38498e6 −0.380835 −0.190418 0.981703i \(-0.560984\pi\)
−0.190418 + 0.981703i \(0.560984\pi\)
\(422\) 1.23220e6 0.336821
\(423\) 0 0
\(424\) −342268. −0.0924595
\(425\) −764784. −0.205384
\(426\) 0 0
\(427\) 0 0
\(428\) 1.67324e6 0.441519
\(429\) 0 0
\(430\) 390598. 0.101873
\(431\) −4.55891e6 −1.18214 −0.591069 0.806621i \(-0.701294\pi\)
−0.591069 + 0.806621i \(0.701294\pi\)
\(432\) 0 0
\(433\) −6.00870e6 −1.54014 −0.770071 0.637958i \(-0.779779\pi\)
−0.770071 + 0.637958i \(0.779779\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 3.40393e6 0.857560
\(437\) −6.12022e6 −1.53308
\(438\) 0 0
\(439\) 560503. 0.138809 0.0694044 0.997589i \(-0.477890\pi\)
0.0694044 + 0.997589i \(0.477890\pi\)
\(440\) −2.35068e6 −0.578844
\(441\) 0 0
\(442\) 3.00206e6 0.730910
\(443\) −3.34074e6 −0.808786 −0.404393 0.914585i \(-0.632517\pi\)
−0.404393 + 0.914585i \(0.632517\pi\)
\(444\) 0 0
\(445\) −4.41944e6 −1.05796
\(446\) −2.04076e6 −0.485797
\(447\) 0 0
\(448\) 0 0
\(449\) 6.47842e6 1.51654 0.758269 0.651942i \(-0.226045\pi\)
0.758269 + 0.651942i \(0.226045\pi\)
\(450\) 0 0
\(451\) −9.63943e6 −2.23157
\(452\) −3.59817e6 −0.828391
\(453\) 0 0
\(454\) 4.15213e6 0.945434
\(455\) 0 0
\(456\) 0 0
\(457\) 4.31138e6 0.965663 0.482831 0.875713i \(-0.339608\pi\)
0.482831 + 0.875713i \(0.339608\pi\)
\(458\) 4.15396e6 0.925334
\(459\) 0 0
\(460\) −4.55928e6 −1.00462
\(461\) 320951. 0.0703374 0.0351687 0.999381i \(-0.488803\pi\)
0.0351687 + 0.999381i \(0.488803\pi\)
\(462\) 0 0
\(463\) −3.14239e6 −0.681251 −0.340626 0.940199i \(-0.610639\pi\)
−0.340626 + 0.940199i \(0.610639\pi\)
\(464\) −439302. −0.0947257
\(465\) 0 0
\(466\) 5.26981e6 1.12417
\(467\) −4.14587e6 −0.879677 −0.439839 0.898077i \(-0.644964\pi\)
−0.439839 + 0.898077i \(0.644964\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 4.94277e6 1.03211
\(471\) 0 0
\(472\) 1.07679e6 0.222473
\(473\) −1.00993e6 −0.207558
\(474\) 0 0
\(475\) 545667. 0.110967
\(476\) 0 0
\(477\) 0 0
\(478\) 3.20268e6 0.641126
\(479\) 257678. 0.0513142 0.0256571 0.999671i \(-0.491832\pi\)
0.0256571 + 0.999671i \(0.491832\pi\)
\(480\) 0 0
\(481\) −987367. −0.194588
\(482\) −1.60923e6 −0.315501
\(483\) 0 0
\(484\) 3.50113e6 0.679351
\(485\) 1.45170e6 0.280234
\(486\) 0 0
\(487\) 1.72033e6 0.328692 0.164346 0.986403i \(-0.447449\pi\)
0.164346 + 0.986403i \(0.447449\pi\)
\(488\) 865739. 0.164565
\(489\) 0 0
\(490\) 0 0
\(491\) −6.49101e6 −1.21509 −0.607546 0.794285i \(-0.707846\pi\)
−0.607546 + 0.794285i \(0.707846\pi\)
\(492\) 0 0
\(493\) 3.07836e6 0.570430
\(494\) −2.14195e6 −0.394904
\(495\) 0 0
\(496\) 164537. 0.0300302
\(497\) 0 0
\(498\) 0 0
\(499\) 379631. 0.0682512 0.0341256 0.999418i \(-0.489135\pi\)
0.0341256 + 0.999418i \(0.489135\pi\)
\(500\) −2.57315e6 −0.460300
\(501\) 0 0
\(502\) −5.16311e6 −0.914433
\(503\) 8.60340e6 1.51618 0.758089 0.652151i \(-0.226133\pi\)
0.758089 + 0.652151i \(0.226133\pi\)
\(504\) 0 0
\(505\) 8.86624e6 1.54707
\(506\) 1.17885e7 2.04684
\(507\) 0 0
\(508\) −704435. −0.121110
\(509\) −1.03543e6 −0.177144 −0.0885718 0.996070i \(-0.528230\pi\)
−0.0885718 + 0.996070i \(0.528230\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −262144. −0.0441942
\(513\) 0 0
\(514\) −7.05739e6 −1.17825
\(515\) 1.22473e7 2.03481
\(516\) 0 0
\(517\) −1.27801e7 −2.10284
\(518\) 0 0
\(519\) 0 0
\(520\) −1.59565e6 −0.258779
\(521\) −6.42373e6 −1.03680 −0.518398 0.855140i \(-0.673471\pi\)
−0.518398 + 0.855140i \(0.673471\pi\)
\(522\) 0 0
\(523\) 8.06384e6 1.28910 0.644551 0.764561i \(-0.277044\pi\)
0.644551 + 0.764561i \(0.277044\pi\)
\(524\) 6.25811e6 0.995668
\(525\) 0 0
\(526\) 1.71098e6 0.269638
\(527\) −1.15298e6 −0.180840
\(528\) 0 0
\(529\) 1.64282e7 2.55241
\(530\) −1.27480e6 −0.197129
\(531\) 0 0
\(532\) 0 0
\(533\) −6.54329e6 −0.997649
\(534\) 0 0
\(535\) 6.23210e6 0.941347
\(536\) 2.97494e6 0.447267
\(537\) 0 0
\(538\) −5.06762e6 −0.754829
\(539\) 0 0
\(540\) 0 0
\(541\) −8.62213e6 −1.26655 −0.633274 0.773928i \(-0.718289\pi\)
−0.633274 + 0.773928i \(0.718289\pi\)
\(542\) 1.24814e6 0.182500
\(543\) 0 0
\(544\) 1.83695e6 0.266134
\(545\) 1.26782e7 1.82837
\(546\) 0 0
\(547\) −3.51266e6 −0.501958 −0.250979 0.967993i \(-0.580753\pi\)
−0.250979 + 0.967993i \(0.580753\pi\)
\(548\) −1.13571e6 −0.161554
\(549\) 0 0
\(550\) −1.05104e6 −0.148154
\(551\) −2.19639e6 −0.308198
\(552\) 0 0
\(553\) 0 0
\(554\) 6.71438e6 0.929462
\(555\) 0 0
\(556\) 1.64423e6 0.225567
\(557\) 1.22183e7 1.66868 0.834340 0.551251i \(-0.185849\pi\)
0.834340 + 0.551251i \(0.185849\pi\)
\(558\) 0 0
\(559\) −685548. −0.0927915
\(560\) 0 0
\(561\) 0 0
\(562\) −3.06000e6 −0.408678
\(563\) −1.48761e6 −0.197796 −0.0988980 0.995098i \(-0.531532\pi\)
−0.0988980 + 0.995098i \(0.531532\pi\)
\(564\) 0 0
\(565\) −1.34016e7 −1.76618
\(566\) 343327. 0.0450471
\(567\) 0 0
\(568\) −209530. −0.0272506
\(569\) −5.83501e6 −0.755547 −0.377773 0.925898i \(-0.623310\pi\)
−0.377773 + 0.925898i \(0.623310\pi\)
\(570\) 0 0
\(571\) 9.83227e6 1.26201 0.631006 0.775778i \(-0.282642\pi\)
0.631006 + 0.775778i \(0.282642\pi\)
\(572\) 4.12573e6 0.527243
\(573\) 0 0
\(574\) 0 0
\(575\) −2.03856e6 −0.257130
\(576\) 0 0
\(577\) 324006. 0.0405147 0.0202574 0.999795i \(-0.493551\pi\)
0.0202574 + 0.999795i \(0.493551\pi\)
\(578\) −7.19281e6 −0.895528
\(579\) 0 0
\(580\) −1.63621e6 −0.201961
\(581\) 0 0
\(582\) 0 0
\(583\) 3.29613e6 0.401636
\(584\) 4.91254e6 0.596038
\(585\) 0 0
\(586\) −391139. −0.0470530
\(587\) −4.27646e6 −0.512258 −0.256129 0.966643i \(-0.582447\pi\)
−0.256129 + 0.966643i \(0.582447\pi\)
\(588\) 0 0
\(589\) 822639. 0.0977060
\(590\) 4.01059e6 0.474327
\(591\) 0 0
\(592\) −604166. −0.0708519
\(593\) 1.58930e7 1.85596 0.927982 0.372625i \(-0.121542\pi\)
0.927982 + 0.372625i \(0.121542\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 3.62076e6 0.417527
\(597\) 0 0
\(598\) 8.00209e6 0.915062
\(599\) 1.75061e7 1.99353 0.996766 0.0803623i \(-0.0256077\pi\)
0.996766 + 0.0803623i \(0.0256077\pi\)
\(600\) 0 0
\(601\) −5.98914e6 −0.676361 −0.338180 0.941081i \(-0.609811\pi\)
−0.338180 + 0.941081i \(0.609811\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −8.77158e6 −0.978330
\(605\) 1.30402e7 1.44842
\(606\) 0 0
\(607\) −3.27501e6 −0.360778 −0.180389 0.983595i \(-0.557736\pi\)
−0.180389 + 0.983595i \(0.557736\pi\)
\(608\) −1.31065e6 −0.143790
\(609\) 0 0
\(610\) 3.22450e6 0.350863
\(611\) −8.67516e6 −0.940101
\(612\) 0 0
\(613\) −7.62114e6 −0.819160 −0.409580 0.912274i \(-0.634325\pi\)
−0.409580 + 0.912274i \(0.634325\pi\)
\(614\) 7.02183e6 0.751674
\(615\) 0 0
\(616\) 0 0
\(617\) −1.28554e7 −1.35948 −0.679741 0.733453i \(-0.737908\pi\)
−0.679741 + 0.733453i \(0.737908\pi\)
\(618\) 0 0
\(619\) −8.52350e6 −0.894111 −0.447055 0.894506i \(-0.647527\pi\)
−0.447055 + 0.894506i \(0.647527\pi\)
\(620\) 612828. 0.0640264
\(621\) 0 0
\(622\) −7.21582e6 −0.747842
\(623\) 0 0
\(624\) 0 0
\(625\) −1.09161e7 −1.11781
\(626\) −9.85716e6 −1.00535
\(627\) 0 0
\(628\) 3.85831e6 0.390389
\(629\) 4.23363e6 0.426664
\(630\) 0 0
\(631\) −1.37373e7 −1.37350 −0.686750 0.726894i \(-0.740963\pi\)
−0.686750 + 0.726894i \(0.740963\pi\)
\(632\) 1.13481e6 0.113013
\(633\) 0 0
\(634\) 6.61144e6 0.653241
\(635\) −2.62371e6 −0.258215
\(636\) 0 0
\(637\) 0 0
\(638\) 4.23059e6 0.411481
\(639\) 0 0
\(640\) −976372. −0.0942248
\(641\) 5.04466e6 0.484939 0.242470 0.970159i \(-0.422043\pi\)
0.242470 + 0.970159i \(0.422043\pi\)
\(642\) 0 0
\(643\) 9.94759e6 0.948835 0.474417 0.880300i \(-0.342659\pi\)
0.474417 + 0.880300i \(0.342659\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 9.18424e6 0.865888
\(647\) −1.26276e6 −0.118593 −0.0592966 0.998240i \(-0.518886\pi\)
−0.0592966 + 0.998240i \(0.518886\pi\)
\(648\) 0 0
\(649\) −1.03698e7 −0.966406
\(650\) −713451. −0.0662340
\(651\) 0 0
\(652\) 1.00944e7 0.929957
\(653\) 1.28147e7 1.17605 0.588026 0.808842i \(-0.299905\pi\)
0.588026 + 0.808842i \(0.299905\pi\)
\(654\) 0 0
\(655\) 2.33087e7 2.12283
\(656\) −4.00381e6 −0.363257
\(657\) 0 0
\(658\) 0 0
\(659\) 3.81355e6 0.342071 0.171035 0.985265i \(-0.445289\pi\)
0.171035 + 0.985265i \(0.445289\pi\)
\(660\) 0 0
\(661\) 1.66244e7 1.47994 0.739968 0.672642i \(-0.234841\pi\)
0.739968 + 0.672642i \(0.234841\pi\)
\(662\) 6.67257e6 0.591764
\(663\) 0 0
\(664\) 5.04619e6 0.444164
\(665\) 0 0
\(666\) 0 0
\(667\) 8.20548e6 0.714150
\(668\) −3.82581e6 −0.331728
\(669\) 0 0
\(670\) 1.10804e7 0.953602
\(671\) −8.33730e6 −0.714857
\(672\) 0 0
\(673\) 1.76139e7 1.49905 0.749527 0.661974i \(-0.230281\pi\)
0.749527 + 0.661974i \(0.230281\pi\)
\(674\) 2.09908e6 0.177983
\(675\) 0 0
\(676\) −3.14013e6 −0.264290
\(677\) 1.78430e7 1.49622 0.748112 0.663573i \(-0.230961\pi\)
0.748112 + 0.663573i \(0.230961\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 6.84183e6 0.567414
\(681\) 0 0
\(682\) −1.58453e6 −0.130449
\(683\) −1.41532e7 −1.16092 −0.580459 0.814289i \(-0.697127\pi\)
−0.580459 + 0.814289i \(0.697127\pi\)
\(684\) 0 0
\(685\) −4.23004e6 −0.344444
\(686\) 0 0
\(687\) 0 0
\(688\) −419484. −0.0337865
\(689\) 2.23743e6 0.179556
\(690\) 0 0
\(691\) 2.22535e6 0.177297 0.0886487 0.996063i \(-0.471745\pi\)
0.0886487 + 0.996063i \(0.471745\pi\)
\(692\) 4.84703e6 0.384778
\(693\) 0 0
\(694\) 7.70547e6 0.607296
\(695\) 6.12403e6 0.480923
\(696\) 0 0
\(697\) 2.80563e7 2.18750
\(698\) −1.36137e6 −0.105764
\(699\) 0 0
\(700\) 0 0
\(701\) 4.49378e6 0.345396 0.172698 0.984975i \(-0.444752\pi\)
0.172698 + 0.984975i \(0.444752\pi\)
\(702\) 0 0
\(703\) −3.02066e6 −0.230523
\(704\) 2.52452e6 0.191976
\(705\) 0 0
\(706\) −299165. −0.0225891
\(707\) 0 0
\(708\) 0 0
\(709\) −1.54232e7 −1.15228 −0.576141 0.817350i \(-0.695442\pi\)
−0.576141 + 0.817350i \(0.695442\pi\)
\(710\) −780408. −0.0580999
\(711\) 0 0
\(712\) 4.74627e6 0.350875
\(713\) −3.07329e6 −0.226402
\(714\) 0 0
\(715\) 1.53665e7 1.12412
\(716\) 1.69583e6 0.123623
\(717\) 0 0
\(718\) 9.67014e6 0.700038
\(719\) 1.07276e7 0.773890 0.386945 0.922103i \(-0.373530\pi\)
0.386945 + 0.922103i \(0.373530\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 3.35151e6 0.239275
\(723\) 0 0
\(724\) −7.57963e6 −0.537405
\(725\) −731585. −0.0516916
\(726\) 0 0
\(727\) 2.05652e7 1.44310 0.721551 0.692362i \(-0.243430\pi\)
0.721551 + 0.692362i \(0.243430\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 1.82971e7 1.27079
\(731\) 2.93949e6 0.203460
\(732\) 0 0
\(733\) 3.29322e6 0.226392 0.113196 0.993573i \(-0.463891\pi\)
0.113196 + 0.993573i \(0.463891\pi\)
\(734\) −647455. −0.0443578
\(735\) 0 0
\(736\) 4.89645e6 0.333186
\(737\) −2.86495e7 −1.94289
\(738\) 0 0
\(739\) −7.71767e6 −0.519847 −0.259923 0.965629i \(-0.583697\pi\)
−0.259923 + 0.965629i \(0.583697\pi\)
\(740\) −2.25025e6 −0.151061
\(741\) 0 0
\(742\) 0 0
\(743\) 8.33553e6 0.553938 0.276969 0.960879i \(-0.410670\pi\)
0.276969 + 0.960879i \(0.410670\pi\)
\(744\) 0 0
\(745\) 1.34857e7 0.890193
\(746\) −308010. −0.0202636
\(747\) 0 0
\(748\) −1.76903e7 −1.15606
\(749\) 0 0
\(750\) 0 0
\(751\) −1.80694e7 −1.16908 −0.584539 0.811366i \(-0.698725\pi\)
−0.584539 + 0.811366i \(0.698725\pi\)
\(752\) −5.30830e6 −0.342303
\(753\) 0 0
\(754\) 2.87174e6 0.183957
\(755\) −3.26703e7 −2.08586
\(756\) 0 0
\(757\) −8.13311e6 −0.515842 −0.257921 0.966166i \(-0.583037\pi\)
−0.257921 + 0.966166i \(0.583037\pi\)
\(758\) 3.09666e6 0.195758
\(759\) 0 0
\(760\) −4.88159e6 −0.306568
\(761\) −2.01691e6 −0.126248 −0.0631239 0.998006i \(-0.520106\pi\)
−0.0631239 + 0.998006i \(0.520106\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 9.40501e6 0.582943
\(765\) 0 0
\(766\) 1.45331e7 0.894925
\(767\) −7.03908e6 −0.432043
\(768\) 0 0
\(769\) 1.18971e7 0.725478 0.362739 0.931891i \(-0.381842\pi\)
0.362739 + 0.931891i \(0.381842\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −5.86977e6 −0.354469
\(773\) −172292. −0.0103709 −0.00518545 0.999987i \(-0.501651\pi\)
−0.00518545 + 0.999987i \(0.501651\pi\)
\(774\) 0 0
\(775\) 274009. 0.0163874
\(776\) −1.55905e6 −0.0929407
\(777\) 0 0
\(778\) −1.00763e7 −0.596832
\(779\) −2.00179e7 −1.18189
\(780\) 0 0
\(781\) 2.01783e6 0.118374
\(782\) −3.43114e7 −2.00642
\(783\) 0 0
\(784\) 0 0
\(785\) 1.43705e7 0.832334
\(786\) 0 0
\(787\) −1.09131e7 −0.628075 −0.314037 0.949411i \(-0.601682\pi\)
−0.314037 + 0.949411i \(0.601682\pi\)
\(788\) −1.16395e7 −0.667760
\(789\) 0 0
\(790\) 4.22666e6 0.240952
\(791\) 0 0
\(792\) 0 0
\(793\) −5.65939e6 −0.319585
\(794\) −2.23711e7 −1.25932
\(795\) 0 0
\(796\) −3.75699e6 −0.210163
\(797\) 2.45403e7 1.36847 0.684234 0.729263i \(-0.260137\pi\)
0.684234 + 0.729263i \(0.260137\pi\)
\(798\) 0 0
\(799\) 3.71974e7 2.06132
\(800\) −436558. −0.0241166
\(801\) 0 0
\(802\) −764247. −0.0419564
\(803\) −4.73090e7 −2.58914
\(804\) 0 0
\(805\) 0 0
\(806\) −1.07559e6 −0.0583187
\(807\) 0 0
\(808\) −9.52191e6 −0.513093
\(809\) 3.07074e7 1.64958 0.824788 0.565442i \(-0.191294\pi\)
0.824788 + 0.565442i \(0.191294\pi\)
\(810\) 0 0
\(811\) 1.51675e7 0.809771 0.404886 0.914367i \(-0.367311\pi\)
0.404886 + 0.914367i \(0.367311\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 5.81828e6 0.307775
\(815\) 3.75974e7 1.98273
\(816\) 0 0
\(817\) −2.09730e6 −0.109927
\(818\) −1.78322e7 −0.931797
\(819\) 0 0
\(820\) −1.49124e7 −0.774486
\(821\) −3.48574e6 −0.180483 −0.0902416 0.995920i \(-0.528764\pi\)
−0.0902416 + 0.995920i \(0.528764\pi\)
\(822\) 0 0
\(823\) −2.20822e7 −1.13643 −0.568214 0.822881i \(-0.692365\pi\)
−0.568214 + 0.822881i \(0.692365\pi\)
\(824\) −1.31530e7 −0.674851
\(825\) 0 0
\(826\) 0 0
\(827\) −2.28055e7 −1.15951 −0.579757 0.814789i \(-0.696853\pi\)
−0.579757 + 0.814789i \(0.696853\pi\)
\(828\) 0 0
\(829\) −3.56532e7 −1.80182 −0.900912 0.434002i \(-0.857101\pi\)
−0.900912 + 0.434002i \(0.857101\pi\)
\(830\) 1.87948e7 0.946986
\(831\) 0 0
\(832\) 1.71365e6 0.0858251
\(833\) 0 0
\(834\) 0 0
\(835\) −1.42495e7 −0.707266
\(836\) 1.26219e7 0.624610
\(837\) 0 0
\(838\) 1.90448e7 0.936842
\(839\) −2.55545e7 −1.25332 −0.626662 0.779291i \(-0.715579\pi\)
−0.626662 + 0.779291i \(0.715579\pi\)
\(840\) 0 0
\(841\) −1.75664e7 −0.856433
\(842\) 5.53990e6 0.269291
\(843\) 0 0
\(844\) −4.92879e6 −0.238169
\(845\) −1.16956e7 −0.563483
\(846\) 0 0
\(847\) 0 0
\(848\) 1.36907e6 0.0653787
\(849\) 0 0
\(850\) 3.05914e6 0.145228
\(851\) 1.12849e7 0.534162
\(852\) 0 0
\(853\) 2.55946e6 0.120441 0.0602206 0.998185i \(-0.480820\pi\)
0.0602206 + 0.998185i \(0.480820\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −6.69297e6 −0.312201
\(857\) −4.96836e6 −0.231079 −0.115540 0.993303i \(-0.536860\pi\)
−0.115540 + 0.993303i \(0.536860\pi\)
\(858\) 0 0
\(859\) −1.11897e7 −0.517411 −0.258706 0.965956i \(-0.583296\pi\)
−0.258706 + 0.965956i \(0.583296\pi\)
\(860\) −1.56239e6 −0.0720351
\(861\) 0 0
\(862\) 1.82356e7 0.835897
\(863\) 2.97620e6 0.136030 0.0680151 0.997684i \(-0.478333\pi\)
0.0680151 + 0.997684i \(0.478333\pi\)
\(864\) 0 0
\(865\) 1.80530e7 0.820371
\(866\) 2.40348e7 1.08905
\(867\) 0 0
\(868\) 0 0
\(869\) −1.09285e7 −0.490920
\(870\) 0 0
\(871\) −1.94474e7 −0.868593
\(872\) −1.36157e7 −0.606387
\(873\) 0 0
\(874\) 2.44809e7 1.08405
\(875\) 0 0
\(876\) 0 0
\(877\) 2.84689e7 1.24989 0.624945 0.780669i \(-0.285121\pi\)
0.624945 + 0.780669i \(0.285121\pi\)
\(878\) −2.24201e6 −0.0981526
\(879\) 0 0
\(880\) 9.40272e6 0.409305
\(881\) 1.97744e7 0.858346 0.429173 0.903222i \(-0.358805\pi\)
0.429173 + 0.903222i \(0.358805\pi\)
\(882\) 0 0
\(883\) 1.88722e7 0.814556 0.407278 0.913304i \(-0.366478\pi\)
0.407278 + 0.913304i \(0.366478\pi\)
\(884\) −1.20082e7 −0.516831
\(885\) 0 0
\(886\) 1.33630e7 0.571898
\(887\) 1.71526e7 0.732016 0.366008 0.930612i \(-0.380724\pi\)
0.366008 + 0.930612i \(0.380724\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 1.76778e7 0.748088
\(891\) 0 0
\(892\) 8.16304e6 0.343510
\(893\) −2.65400e7 −1.11371
\(894\) 0 0
\(895\) 6.31624e6 0.263573
\(896\) 0 0
\(897\) 0 0
\(898\) −2.59137e7 −1.07235
\(899\) −1.10292e6 −0.0455142
\(900\) 0 0
\(901\) −9.59363e6 −0.393705
\(902\) 3.85577e7 1.57796
\(903\) 0 0
\(904\) 1.43927e7 0.585761
\(905\) −2.82308e7 −1.14578
\(906\) 0 0
\(907\) −2.02760e7 −0.818399 −0.409199 0.912445i \(-0.634192\pi\)
−0.409199 + 0.912445i \(0.634192\pi\)
\(908\) −1.66085e7 −0.668523
\(909\) 0 0
\(910\) 0 0
\(911\) 1.53633e7 0.613322 0.306661 0.951819i \(-0.400788\pi\)
0.306661 + 0.951819i \(0.400788\pi\)
\(912\) 0 0
\(913\) −4.85961e7 −1.92941
\(914\) −1.72455e7 −0.682827
\(915\) 0 0
\(916\) −1.66158e7 −0.654310
\(917\) 0 0
\(918\) 0 0
\(919\) 2.10973e7 0.824021 0.412010 0.911179i \(-0.364827\pi\)
0.412010 + 0.911179i \(0.364827\pi\)
\(920\) 1.82371e7 0.710373
\(921\) 0 0
\(922\) −1.28380e6 −0.0497360
\(923\) 1.36971e6 0.0529206
\(924\) 0 0
\(925\) −1.00614e6 −0.0386637
\(926\) 1.25695e7 0.481717
\(927\) 0 0
\(928\) 1.75721e6 0.0669812
\(929\) 1.17648e7 0.447244 0.223622 0.974676i \(-0.428212\pi\)
0.223622 + 0.974676i \(0.428212\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −2.10792e7 −0.794905
\(933\) 0 0
\(934\) 1.65835e7 0.622026
\(935\) −6.58886e7 −2.46480
\(936\) 0 0
\(937\) 7.83051e6 0.291367 0.145684 0.989331i \(-0.453462\pi\)
0.145684 + 0.989331i \(0.453462\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −1.97711e7 −0.729812
\(941\) −3.39315e7 −1.24919 −0.624595 0.780948i \(-0.714736\pi\)
−0.624595 + 0.780948i \(0.714736\pi\)
\(942\) 0 0
\(943\) 7.47849e7 2.73864
\(944\) −4.30718e6 −0.157312
\(945\) 0 0
\(946\) 4.03974e6 0.146766
\(947\) 4.08599e7 1.48055 0.740274 0.672305i \(-0.234696\pi\)
0.740274 + 0.672305i \(0.234696\pi\)
\(948\) 0 0
\(949\) −3.21136e7 −1.15751
\(950\) −2.18267e6 −0.0784655
\(951\) 0 0
\(952\) 0 0
\(953\) 3.53837e7 1.26203 0.631016 0.775770i \(-0.282638\pi\)
0.631016 + 0.775770i \(0.282638\pi\)
\(954\) 0 0
\(955\) 3.50296e7 1.24287
\(956\) −1.28107e7 −0.453345
\(957\) 0 0
\(958\) −1.03071e6 −0.0362846
\(959\) 0 0
\(960\) 0 0
\(961\) −2.82161e7 −0.985571
\(962\) 3.94947e6 0.137594
\(963\) 0 0
\(964\) 6.43691e6 0.223093
\(965\) −2.18623e7 −0.755750
\(966\) 0 0
\(967\) −4.37744e7 −1.50541 −0.752703 0.658360i \(-0.771250\pi\)
−0.752703 + 0.658360i \(0.771250\pi\)
\(968\) −1.40045e7 −0.480374
\(969\) 0 0
\(970\) −5.80679e6 −0.198156
\(971\) 7.16196e6 0.243772 0.121886 0.992544i \(-0.461106\pi\)
0.121886 + 0.992544i \(0.461106\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −6.88132e6 −0.232421
\(975\) 0 0
\(976\) −3.46296e6 −0.116365
\(977\) 2.68803e7 0.900945 0.450473 0.892790i \(-0.351255\pi\)
0.450473 + 0.892790i \(0.351255\pi\)
\(978\) 0 0
\(979\) −4.57078e7 −1.52417
\(980\) 0 0
\(981\) 0 0
\(982\) 2.59641e7 0.859199
\(983\) −1.06207e6 −0.0350565 −0.0175283 0.999846i \(-0.505580\pi\)
−0.0175283 + 0.999846i \(0.505580\pi\)
\(984\) 0 0
\(985\) −4.33522e7 −1.42371
\(986\) −1.23135e7 −0.403355
\(987\) 0 0
\(988\) 8.56779e6 0.279239
\(989\) 7.83531e6 0.254721
\(990\) 0 0
\(991\) −7.39380e6 −0.239157 −0.119579 0.992825i \(-0.538154\pi\)
−0.119579 + 0.992825i \(0.538154\pi\)
\(992\) −658147. −0.0212346
\(993\) 0 0
\(994\) 0 0
\(995\) −1.39931e7 −0.448082
\(996\) 0 0
\(997\) 2.41365e7 0.769019 0.384510 0.923121i \(-0.374371\pi\)
0.384510 + 0.923121i \(0.374371\pi\)
\(998\) −1.51852e6 −0.0482609
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.6.a.bc.1.2 2
3.2 odd 2 294.6.a.v.1.1 yes 2
7.6 odd 2 882.6.a.bg.1.1 2
21.2 odd 6 294.6.e.t.67.2 4
21.5 even 6 294.6.e.w.67.1 4
21.11 odd 6 294.6.e.t.79.2 4
21.17 even 6 294.6.e.w.79.1 4
21.20 even 2 294.6.a.s.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
294.6.a.s.1.2 2 21.20 even 2
294.6.a.v.1.1 yes 2 3.2 odd 2
294.6.e.t.67.2 4 21.2 odd 6
294.6.e.t.79.2 4 21.11 odd 6
294.6.e.w.67.1 4 21.5 even 6
294.6.e.w.79.1 4 21.17 even 6
882.6.a.bc.1.2 2 1.1 even 1 trivial
882.6.a.bg.1.1 2 7.6 odd 2