Properties

Label 882.6.a.bc.1.1
Level $882$
Weight $6$
Character 882.1
Self dual yes
Analytic conductor $141.459$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,6,Mod(1,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 882.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.458529075\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{4705}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1176 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 294)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(34.7965\) of defining polynomial
Character \(\chi\) \(=\) 882.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} +16.0000 q^{4} -77.5930 q^{5} -64.0000 q^{8} +O(q^{10})\) \(q-4.00000 q^{2} +16.0000 q^{4} -77.5930 q^{5} -64.0000 q^{8} +310.372 q^{10} -618.337 q^{11} -130.372 q^{13} +256.000 q^{16} +263.895 q^{17} -91.9300 q^{19} -1241.49 q^{20} +2473.35 q^{22} +1391.69 q^{23} +2895.67 q^{25} +521.488 q^{26} +5692.02 q^{29} +6953.28 q^{31} -1024.00 q^{32} -1055.58 q^{34} +5048.02 q^{37} +367.720 q^{38} +4965.95 q^{40} -20990.1 q^{41} -21393.4 q^{43} -9893.39 q^{44} -5566.74 q^{46} +19871.5 q^{47} -11582.7 q^{50} -2085.95 q^{52} +27572.1 q^{53} +47978.6 q^{55} -22768.1 q^{58} +43536.9 q^{59} +33939.2 q^{61} -27813.1 q^{62} +4096.00 q^{64} +10116.0 q^{65} +10311.5 q^{67} +4222.32 q^{68} -76979.9 q^{71} +1986.38 q^{73} -20192.1 q^{74} -1470.88 q^{76} -5384.63 q^{79} -19863.8 q^{80} +83960.5 q^{82} -68969.3 q^{83} -20476.4 q^{85} +85573.6 q^{86} +39573.6 q^{88} -90485.6 q^{89} +22267.0 q^{92} -79486.1 q^{94} +7133.13 q^{95} +137676. q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{2} + 32 q^{4} - 18 q^{5} - 128 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 8 q^{2} + 32 q^{4} - 18 q^{5} - 128 q^{8} + 72 q^{10} - 2 q^{11} + 288 q^{13} + 512 q^{16} - 1530 q^{17} + 1188 q^{19} - 288 q^{20} + 8 q^{22} - 3390 q^{23} + 3322 q^{25} - 1152 q^{26} + 3976 q^{29} + 7596 q^{31} - 2048 q^{32} + 6120 q^{34} + 2688 q^{37} - 4752 q^{38} + 1152 q^{40} - 36630 q^{41} - 23032 q^{43} - 32 q^{44} + 13560 q^{46} - 864 q^{47} - 13288 q^{50} + 4608 q^{52} + 32920 q^{53} + 84708 q^{55} - 15904 q^{58} + 26712 q^{59} + 20412 q^{61} - 30384 q^{62} + 8192 q^{64} + 35048 q^{65} - 36172 q^{67} - 24480 q^{68} - 73706 q^{71} - 74772 q^{73} - 10752 q^{74} + 19008 q^{76} - 23116 q^{79} - 4608 q^{80} + 146520 q^{82} - 147816 q^{83} - 127380 q^{85} + 92128 q^{86} + 128 q^{88} - 164646 q^{89} - 54240 q^{92} + 3456 q^{94} + 83408 q^{95} + 162036 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) 0 0
\(4\) 16.0000 0.500000
\(5\) −77.5930 −1.38803 −0.694013 0.719963i \(-0.744159\pi\)
−0.694013 + 0.719963i \(0.744159\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −64.0000 −0.353553
\(9\) 0 0
\(10\) 310.372 0.981482
\(11\) −618.337 −1.54079 −0.770395 0.637567i \(-0.779941\pi\)
−0.770395 + 0.637567i \(0.779941\pi\)
\(12\) 0 0
\(13\) −130.372 −0.213957 −0.106978 0.994261i \(-0.534118\pi\)
−0.106978 + 0.994261i \(0.534118\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) 263.895 0.221467 0.110733 0.993850i \(-0.464680\pi\)
0.110733 + 0.993850i \(0.464680\pi\)
\(18\) 0 0
\(19\) −91.9300 −0.0584216 −0.0292108 0.999573i \(-0.509299\pi\)
−0.0292108 + 0.999573i \(0.509299\pi\)
\(20\) −1241.49 −0.694013
\(21\) 0 0
\(22\) 2473.35 1.08950
\(23\) 1391.69 0.548557 0.274278 0.961650i \(-0.411561\pi\)
0.274278 + 0.961650i \(0.411561\pi\)
\(24\) 0 0
\(25\) 2895.67 0.926616
\(26\) 521.488 0.151290
\(27\) 0 0
\(28\) 0 0
\(29\) 5692.02 1.25682 0.628408 0.777884i \(-0.283707\pi\)
0.628408 + 0.777884i \(0.283707\pi\)
\(30\) 0 0
\(31\) 6953.28 1.29953 0.649764 0.760136i \(-0.274868\pi\)
0.649764 + 0.760136i \(0.274868\pi\)
\(32\) −1024.00 −0.176777
\(33\) 0 0
\(34\) −1055.58 −0.156601
\(35\) 0 0
\(36\) 0 0
\(37\) 5048.02 0.606201 0.303101 0.952959i \(-0.401978\pi\)
0.303101 + 0.952959i \(0.401978\pi\)
\(38\) 367.720 0.0413103
\(39\) 0 0
\(40\) 4965.95 0.490741
\(41\) −20990.1 −1.95009 −0.975047 0.222000i \(-0.928742\pi\)
−0.975047 + 0.222000i \(0.928742\pi\)
\(42\) 0 0
\(43\) −21393.4 −1.76445 −0.882223 0.470831i \(-0.843954\pi\)
−0.882223 + 0.470831i \(0.843954\pi\)
\(44\) −9893.39 −0.770395
\(45\) 0 0
\(46\) −5566.74 −0.387888
\(47\) 19871.5 1.31216 0.656080 0.754692i \(-0.272213\pi\)
0.656080 + 0.754692i \(0.272213\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −11582.7 −0.655216
\(51\) 0 0
\(52\) −2085.95 −0.106978
\(53\) 27572.1 1.34828 0.674139 0.738604i \(-0.264515\pi\)
0.674139 + 0.738604i \(0.264515\pi\)
\(54\) 0 0
\(55\) 47978.6 2.13866
\(56\) 0 0
\(57\) 0 0
\(58\) −22768.1 −0.888703
\(59\) 43536.9 1.62827 0.814137 0.580672i \(-0.197210\pi\)
0.814137 + 0.580672i \(0.197210\pi\)
\(60\) 0 0
\(61\) 33939.2 1.16782 0.583911 0.811818i \(-0.301522\pi\)
0.583911 + 0.811818i \(0.301522\pi\)
\(62\) −27813.1 −0.918904
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) 10116.0 0.296977
\(66\) 0 0
\(67\) 10311.5 0.280631 0.140315 0.990107i \(-0.455188\pi\)
0.140315 + 0.990107i \(0.455188\pi\)
\(68\) 4222.32 0.110733
\(69\) 0 0
\(70\) 0 0
\(71\) −76979.9 −1.81231 −0.906153 0.422950i \(-0.860995\pi\)
−0.906153 + 0.422950i \(0.860995\pi\)
\(72\) 0 0
\(73\) 1986.38 0.0436271 0.0218135 0.999762i \(-0.493056\pi\)
0.0218135 + 0.999762i \(0.493056\pi\)
\(74\) −20192.1 −0.428649
\(75\) 0 0
\(76\) −1470.88 −0.0292108
\(77\) 0 0
\(78\) 0 0
\(79\) −5384.63 −0.0970707 −0.0485353 0.998821i \(-0.515455\pi\)
−0.0485353 + 0.998821i \(0.515455\pi\)
\(80\) −19863.8 −0.347006
\(81\) 0 0
\(82\) 83960.5 1.37892
\(83\) −68969.3 −1.09891 −0.549453 0.835525i \(-0.685164\pi\)
−0.549453 + 0.835525i \(0.685164\pi\)
\(84\) 0 0
\(85\) −20476.4 −0.307402
\(86\) 85573.6 1.24765
\(87\) 0 0
\(88\) 39573.6 0.544752
\(89\) −90485.6 −1.21089 −0.605444 0.795888i \(-0.707005\pi\)
−0.605444 + 0.795888i \(0.707005\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 22267.0 0.274278
\(93\) 0 0
\(94\) −79486.1 −0.927837
\(95\) 7133.13 0.0810907
\(96\) 0 0
\(97\) 137676. 1.48569 0.742845 0.669463i \(-0.233476\pi\)
0.742845 + 0.669463i \(0.233476\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 46330.8 0.463308
\(101\) 137942. 1.34553 0.672765 0.739856i \(-0.265106\pi\)
0.672765 + 0.739856i \(0.265106\pi\)
\(102\) 0 0
\(103\) −11512.1 −0.106921 −0.0534605 0.998570i \(-0.517025\pi\)
−0.0534605 + 0.998570i \(0.517025\pi\)
\(104\) 8343.81 0.0756451
\(105\) 0 0
\(106\) −110288. −0.953377
\(107\) 98404.3 0.830911 0.415456 0.909613i \(-0.363622\pi\)
0.415456 + 0.909613i \(0.363622\pi\)
\(108\) 0 0
\(109\) −167534. −1.35063 −0.675315 0.737530i \(-0.735992\pi\)
−0.675315 + 0.737530i \(0.735992\pi\)
\(110\) −191915. −1.51226
\(111\) 0 0
\(112\) 0 0
\(113\) 81313.6 0.599055 0.299528 0.954088i \(-0.403171\pi\)
0.299528 + 0.954088i \(0.403171\pi\)
\(114\) 0 0
\(115\) −107985. −0.761411
\(116\) 91072.4 0.628408
\(117\) 0 0
\(118\) −174148. −1.15136
\(119\) 0 0
\(120\) 0 0
\(121\) 221290. 1.37403
\(122\) −135757. −0.825775
\(123\) 0 0
\(124\) 111252. 0.649764
\(125\) 17794.1 0.101859
\(126\) 0 0
\(127\) −90944.8 −0.500344 −0.250172 0.968201i \(-0.580487\pi\)
−0.250172 + 0.968201i \(0.580487\pi\)
\(128\) −16384.0 −0.0883883
\(129\) 0 0
\(130\) −40463.8 −0.209995
\(131\) −242668. −1.23547 −0.617737 0.786385i \(-0.711950\pi\)
−0.617737 + 0.786385i \(0.711950\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −41246.0 −0.198436
\(135\) 0 0
\(136\) −16889.3 −0.0783004
\(137\) −11717.8 −0.0533391 −0.0266695 0.999644i \(-0.508490\pi\)
−0.0266695 + 0.999644i \(0.508490\pi\)
\(138\) 0 0
\(139\) 170260. 0.747438 0.373719 0.927542i \(-0.378082\pi\)
0.373719 + 0.927542i \(0.378082\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 307920. 1.28149
\(143\) 80613.8 0.329662
\(144\) 0 0
\(145\) −441661. −1.74449
\(146\) −7945.53 −0.0308490
\(147\) 0 0
\(148\) 80768.4 0.303101
\(149\) 169502. 0.625476 0.312738 0.949839i \(-0.398754\pi\)
0.312738 + 0.949839i \(0.398754\pi\)
\(150\) 0 0
\(151\) 241968. 0.863605 0.431802 0.901968i \(-0.357878\pi\)
0.431802 + 0.901968i \(0.357878\pi\)
\(152\) 5883.52 0.0206552
\(153\) 0 0
\(154\) 0 0
\(155\) −539526. −1.80378
\(156\) 0 0
\(157\) −259036. −0.838709 −0.419354 0.907823i \(-0.637744\pi\)
−0.419354 + 0.907823i \(0.637744\pi\)
\(158\) 21538.5 0.0686393
\(159\) 0 0
\(160\) 79455.2 0.245371
\(161\) 0 0
\(162\) 0 0
\(163\) −314858. −0.928209 −0.464105 0.885780i \(-0.653624\pi\)
−0.464105 + 0.885780i \(0.653624\pi\)
\(164\) −335842. −0.975047
\(165\) 0 0
\(166\) 275877. 0.777044
\(167\) 84097.1 0.233340 0.116670 0.993171i \(-0.462778\pi\)
0.116670 + 0.993171i \(0.462778\pi\)
\(168\) 0 0
\(169\) −354296. −0.954223
\(170\) 81905.6 0.217366
\(171\) 0 0
\(172\) −342294. −0.882223
\(173\) 747559. 1.89902 0.949511 0.313733i \(-0.101580\pi\)
0.949511 + 0.313733i \(0.101580\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −158294. −0.385198
\(177\) 0 0
\(178\) 361942. 0.856228
\(179\) −90323.6 −0.210702 −0.105351 0.994435i \(-0.533597\pi\)
−0.105351 + 0.994435i \(0.533597\pi\)
\(180\) 0 0
\(181\) 188607. 0.427919 0.213959 0.976843i \(-0.431364\pi\)
0.213959 + 0.976843i \(0.431364\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −89067.8 −0.193944
\(185\) −391691. −0.841423
\(186\) 0 0
\(187\) −163176. −0.341234
\(188\) 317944. 0.656080
\(189\) 0 0
\(190\) −28532.5 −0.0573398
\(191\) 670537. 1.32996 0.664981 0.746861i \(-0.268440\pi\)
0.664981 + 0.746861i \(0.268440\pi\)
\(192\) 0 0
\(193\) −957035. −1.84942 −0.924708 0.380677i \(-0.875691\pi\)
−0.924708 + 0.380677i \(0.875691\pi\)
\(194\) −550703. −1.05054
\(195\) 0 0
\(196\) 0 0
\(197\) −48400.6 −0.0888557 −0.0444279 0.999013i \(-0.514146\pi\)
−0.0444279 + 0.999013i \(0.514146\pi\)
\(198\) 0 0
\(199\) 761708. 1.36350 0.681751 0.731585i \(-0.261219\pi\)
0.681751 + 0.731585i \(0.261219\pi\)
\(200\) −185323. −0.327608
\(201\) 0 0
\(202\) −551769. −0.951434
\(203\) 0 0
\(204\) 0 0
\(205\) 1.62869e6 2.70678
\(206\) 46048.5 0.0756045
\(207\) 0 0
\(208\) −33375.2 −0.0534892
\(209\) 56843.7 0.0900154
\(210\) 0 0
\(211\) −698206. −1.07964 −0.539818 0.841781i \(-0.681507\pi\)
−0.539818 + 0.841781i \(0.681507\pi\)
\(212\) 441153. 0.674139
\(213\) 0 0
\(214\) −393617. −0.587543
\(215\) 1.65998e6 2.44910
\(216\) 0 0
\(217\) 0 0
\(218\) 670135. 0.955039
\(219\) 0 0
\(220\) 767658. 1.06933
\(221\) −34404.5 −0.0473843
\(222\) 0 0
\(223\) −1.25402e6 −1.68866 −0.844332 0.535821i \(-0.820002\pi\)
−0.844332 + 0.535821i \(0.820002\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −325254. −0.423596
\(227\) 799712. 1.03008 0.515038 0.857168i \(-0.327778\pi\)
0.515038 + 0.857168i \(0.327778\pi\)
\(228\) 0 0
\(229\) −876062. −1.10394 −0.551971 0.833863i \(-0.686124\pi\)
−0.551971 + 0.833863i \(0.686124\pi\)
\(230\) 431940. 0.538399
\(231\) 0 0
\(232\) −364289. −0.444351
\(233\) −354407. −0.427674 −0.213837 0.976869i \(-0.568596\pi\)
−0.213837 + 0.976869i \(0.568596\pi\)
\(234\) 0 0
\(235\) −1.54189e6 −1.82131
\(236\) 696591. 0.814137
\(237\) 0 0
\(238\) 0 0
\(239\) −883393. −1.00037 −0.500183 0.865920i \(-0.666734\pi\)
−0.500183 + 0.865920i \(0.666734\pi\)
\(240\) 0 0
\(241\) −618631. −0.686103 −0.343051 0.939317i \(-0.611460\pi\)
−0.343051 + 0.939317i \(0.611460\pi\)
\(242\) −885159. −0.971589
\(243\) 0 0
\(244\) 543027. 0.583911
\(245\) 0 0
\(246\) 0 0
\(247\) 11985.1 0.0124997
\(248\) −445010. −0.459452
\(249\) 0 0
\(250\) −71176.4 −0.0720254
\(251\) −538736. −0.539749 −0.269875 0.962895i \(-0.586982\pi\)
−0.269875 + 0.962895i \(0.586982\pi\)
\(252\) 0 0
\(253\) −860530. −0.845211
\(254\) 363779. 0.353797
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) 360248. 0.340227 0.170113 0.985425i \(-0.445587\pi\)
0.170113 + 0.985425i \(0.445587\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 161855. 0.148489
\(261\) 0 0
\(262\) 970671. 0.873612
\(263\) −614181. −0.547529 −0.273764 0.961797i \(-0.588269\pi\)
−0.273764 + 0.961797i \(0.588269\pi\)
\(264\) 0 0
\(265\) −2.13940e6 −1.87145
\(266\) 0 0
\(267\) 0 0
\(268\) 164984. 0.140315
\(269\) 152269. 0.128301 0.0641505 0.997940i \(-0.479566\pi\)
0.0641505 + 0.997940i \(0.479566\pi\)
\(270\) 0 0
\(271\) 509710. 0.421599 0.210800 0.977529i \(-0.432393\pi\)
0.210800 + 0.977529i \(0.432393\pi\)
\(272\) 67557.1 0.0553667
\(273\) 0 0
\(274\) 46871.3 0.0377164
\(275\) −1.79050e6 −1.42772
\(276\) 0 0
\(277\) 348739. 0.273087 0.136544 0.990634i \(-0.456401\pi\)
0.136544 + 0.990634i \(0.456401\pi\)
\(278\) −681039. −0.528518
\(279\) 0 0
\(280\) 0 0
\(281\) −1.45741e6 −1.10107 −0.550537 0.834811i \(-0.685577\pi\)
−0.550537 + 0.834811i \(0.685577\pi\)
\(282\) 0 0
\(283\) −1.96116e6 −1.45562 −0.727810 0.685779i \(-0.759462\pi\)
−0.727810 + 0.685779i \(0.759462\pi\)
\(284\) −1.23168e6 −0.906153
\(285\) 0 0
\(286\) −322455. −0.233107
\(287\) 0 0
\(288\) 0 0
\(289\) −1.35022e6 −0.950952
\(290\) 1.76664e6 1.23354
\(291\) 0 0
\(292\) 31782.1 0.0218135
\(293\) 1.37485e6 0.935591 0.467795 0.883837i \(-0.345048\pi\)
0.467795 + 0.883837i \(0.345048\pi\)
\(294\) 0 0
\(295\) −3.37816e6 −2.26009
\(296\) −323073. −0.214325
\(297\) 0 0
\(298\) −678010. −0.442278
\(299\) −181437. −0.117367
\(300\) 0 0
\(301\) 0 0
\(302\) −967871. −0.610661
\(303\) 0 0
\(304\) −23534.1 −0.0146054
\(305\) −2.63344e6 −1.62097
\(306\) 0 0
\(307\) 2.11456e6 1.28048 0.640241 0.768174i \(-0.278834\pi\)
0.640241 + 0.768174i \(0.278834\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 2.15810e6 1.27546
\(311\) −373460. −0.218949 −0.109475 0.993990i \(-0.534917\pi\)
−0.109475 + 0.993990i \(0.534917\pi\)
\(312\) 0 0
\(313\) −466003. −0.268861 −0.134430 0.990923i \(-0.542920\pi\)
−0.134430 + 0.990923i \(0.542920\pi\)
\(314\) 1.03614e6 0.593057
\(315\) 0 0
\(316\) −86154.1 −0.0485353
\(317\) −1.77386e6 −0.991450 −0.495725 0.868479i \(-0.665098\pi\)
−0.495725 + 0.868479i \(0.665098\pi\)
\(318\) 0 0
\(319\) −3.51959e6 −1.93649
\(320\) −317821. −0.173503
\(321\) 0 0
\(322\) 0 0
\(323\) −24259.9 −0.0129385
\(324\) 0 0
\(325\) −377515. −0.198256
\(326\) 1.25943e6 0.656343
\(327\) 0 0
\(328\) 1.34337e6 0.689462
\(329\) 0 0
\(330\) 0 0
\(331\) −1.77186e6 −0.888911 −0.444456 0.895801i \(-0.646603\pi\)
−0.444456 + 0.895801i \(0.646603\pi\)
\(332\) −1.10351e6 −0.549453
\(333\) 0 0
\(334\) −336388. −0.164997
\(335\) −800100. −0.389522
\(336\) 0 0
\(337\) −702563. −0.336985 −0.168492 0.985703i \(-0.553890\pi\)
−0.168492 + 0.985703i \(0.553890\pi\)
\(338\) 1.41718e6 0.674737
\(339\) 0 0
\(340\) −327623. −0.153701
\(341\) −4.29947e6 −2.00230
\(342\) 0 0
\(343\) 0 0
\(344\) 1.36918e6 0.623826
\(345\) 0 0
\(346\) −2.99024e6 −1.34281
\(347\) 1.76407e6 0.786490 0.393245 0.919434i \(-0.371353\pi\)
0.393245 + 0.919434i \(0.371353\pi\)
\(348\) 0 0
\(349\) 2.00221e6 0.879927 0.439964 0.898016i \(-0.354991\pi\)
0.439964 + 0.898016i \(0.354991\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 633177. 0.272376
\(353\) −2.81887e6 −1.20403 −0.602017 0.798483i \(-0.705636\pi\)
−0.602017 + 0.798483i \(0.705636\pi\)
\(354\) 0 0
\(355\) 5.97310e6 2.51553
\(356\) −1.44777e6 −0.605444
\(357\) 0 0
\(358\) 361294. 0.148989
\(359\) −616146. −0.252318 −0.126159 0.992010i \(-0.540265\pi\)
−0.126159 + 0.992010i \(0.540265\pi\)
\(360\) 0 0
\(361\) −2.46765e6 −0.996587
\(362\) −754428. −0.302584
\(363\) 0 0
\(364\) 0 0
\(365\) −154129. −0.0605555
\(366\) 0 0
\(367\) 1.50738e6 0.584196 0.292098 0.956388i \(-0.405647\pi\)
0.292098 + 0.956388i \(0.405647\pi\)
\(368\) 356271. 0.137139
\(369\) 0 0
\(370\) 1.56676e6 0.594976
\(371\) 0 0
\(372\) 0 0
\(373\) −525518. −0.195576 −0.0977881 0.995207i \(-0.531177\pi\)
−0.0977881 + 0.995207i \(0.531177\pi\)
\(374\) 652704. 0.241289
\(375\) 0 0
\(376\) −1.27178e6 −0.463918
\(377\) −742080. −0.268904
\(378\) 0 0
\(379\) −97563.3 −0.0348890 −0.0174445 0.999848i \(-0.505553\pi\)
−0.0174445 + 0.999848i \(0.505553\pi\)
\(380\) 114130. 0.0405453
\(381\) 0 0
\(382\) −2.68215e6 −0.940425
\(383\) −5.02105e6 −1.74903 −0.874516 0.484997i \(-0.838821\pi\)
−0.874516 + 0.484997i \(0.838821\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 3.82814e6 1.30773
\(387\) 0 0
\(388\) 2.20281e6 0.742845
\(389\) −4.56548e6 −1.52972 −0.764862 0.644195i \(-0.777193\pi\)
−0.764862 + 0.644195i \(0.777193\pi\)
\(390\) 0 0
\(391\) 367259. 0.121487
\(392\) 0 0
\(393\) 0 0
\(394\) 193603. 0.0628305
\(395\) 417810. 0.134737
\(396\) 0 0
\(397\) −4.90003e6 −1.56035 −0.780176 0.625560i \(-0.784870\pi\)
−0.780176 + 0.625560i \(0.784870\pi\)
\(398\) −3.04683e6 −0.964141
\(399\) 0 0
\(400\) 741293. 0.231654
\(401\) 1.58377e6 0.491850 0.245925 0.969289i \(-0.420908\pi\)
0.245925 + 0.969289i \(0.420908\pi\)
\(402\) 0 0
\(403\) −906513. −0.278043
\(404\) 2.20707e6 0.672765
\(405\) 0 0
\(406\) 0 0
\(407\) −3.12138e6 −0.934029
\(408\) 0 0
\(409\) −1.69804e6 −0.501925 −0.250962 0.967997i \(-0.580747\pi\)
−0.250962 + 0.967997i \(0.580747\pi\)
\(410\) −6.51475e6 −1.91398
\(411\) 0 0
\(412\) −184194. −0.0534605
\(413\) 0 0
\(414\) 0 0
\(415\) 5.35154e6 1.52531
\(416\) 133501. 0.0378226
\(417\) 0 0
\(418\) −227375. −0.0636505
\(419\) −5.55194e6 −1.54493 −0.772466 0.635056i \(-0.780977\pi\)
−0.772466 + 0.635056i \(0.780977\pi\)
\(420\) 0 0
\(421\) 1.21525e6 0.334164 0.167082 0.985943i \(-0.446566\pi\)
0.167082 + 0.985943i \(0.446566\pi\)
\(422\) 2.79283e6 0.763419
\(423\) 0 0
\(424\) −1.76461e6 −0.476688
\(425\) 764154. 0.205215
\(426\) 0 0
\(427\) 0 0
\(428\) 1.57447e6 0.415456
\(429\) 0 0
\(430\) −6.63991e6 −1.73177
\(431\) −1.32530e6 −0.343654 −0.171827 0.985127i \(-0.554967\pi\)
−0.171827 + 0.985127i \(0.554967\pi\)
\(432\) 0 0
\(433\) 5.48145e6 1.40500 0.702499 0.711685i \(-0.252068\pi\)
0.702499 + 0.711685i \(0.252068\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −2.68054e6 −0.675315
\(437\) −127938. −0.0320475
\(438\) 0 0
\(439\) 6.06386e6 1.50172 0.750858 0.660464i \(-0.229640\pi\)
0.750858 + 0.660464i \(0.229640\pi\)
\(440\) −3.07063e6 −0.756129
\(441\) 0 0
\(442\) 137618. 0.0335058
\(443\) −1.82827e6 −0.442619 −0.221309 0.975204i \(-0.571033\pi\)
−0.221309 + 0.975204i \(0.571033\pi\)
\(444\) 0 0
\(445\) 7.02105e6 1.68075
\(446\) 5.01609e6 1.19407
\(447\) 0 0
\(448\) 0 0
\(449\) −8.20432e6 −1.92056 −0.960278 0.279046i \(-0.909982\pi\)
−0.960278 + 0.279046i \(0.909982\pi\)
\(450\) 0 0
\(451\) 1.29790e7 3.00469
\(452\) 1.30102e6 0.299528
\(453\) 0 0
\(454\) −3.19885e6 −0.728373
\(455\) 0 0
\(456\) 0 0
\(457\) −3.57078e6 −0.799784 −0.399892 0.916562i \(-0.630952\pi\)
−0.399892 + 0.916562i \(0.630952\pi\)
\(458\) 3.50425e6 0.780605
\(459\) 0 0
\(460\) −1.72776e6 −0.380705
\(461\) 5.63952e6 1.23592 0.617959 0.786211i \(-0.287960\pi\)
0.617959 + 0.786211i \(0.287960\pi\)
\(462\) 0 0
\(463\) 796223. 0.172616 0.0863082 0.996268i \(-0.472493\pi\)
0.0863082 + 0.996268i \(0.472493\pi\)
\(464\) 1.45716e6 0.314204
\(465\) 0 0
\(466\) 1.41763e6 0.302411
\(467\) −133452. −0.0283160 −0.0141580 0.999900i \(-0.504507\pi\)
−0.0141580 + 0.999900i \(0.504507\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 6.16757e6 1.28786
\(471\) 0 0
\(472\) −2.78636e6 −0.575682
\(473\) 1.32283e7 2.71864
\(474\) 0 0
\(475\) −266199. −0.0541344
\(476\) 0 0
\(477\) 0 0
\(478\) 3.53357e6 0.707366
\(479\) 4.47697e6 0.891549 0.445775 0.895145i \(-0.352928\pi\)
0.445775 + 0.895145i \(0.352928\pi\)
\(480\) 0 0
\(481\) −658121. −0.129701
\(482\) 2.47452e6 0.485148
\(483\) 0 0
\(484\) 3.54063e6 0.687017
\(485\) −1.06827e7 −2.06218
\(486\) 0 0
\(487\) 4.05633e6 0.775017 0.387509 0.921866i \(-0.373336\pi\)
0.387509 + 0.921866i \(0.373336\pi\)
\(488\) −2.17211e6 −0.412888
\(489\) 0 0
\(490\) 0 0
\(491\) 300928. 0.0563325 0.0281662 0.999603i \(-0.491033\pi\)
0.0281662 + 0.999603i \(0.491033\pi\)
\(492\) 0 0
\(493\) 1.50210e6 0.278343
\(494\) −47940.4 −0.00883862
\(495\) 0 0
\(496\) 1.78004e6 0.324882
\(497\) 0 0
\(498\) 0 0
\(499\) 4.26638e6 0.767024 0.383512 0.923536i \(-0.374715\pi\)
0.383512 + 0.923536i \(0.374715\pi\)
\(500\) 284705. 0.0509297
\(501\) 0 0
\(502\) 2.15495e6 0.381660
\(503\) −2.34185e6 −0.412704 −0.206352 0.978478i \(-0.566159\pi\)
−0.206352 + 0.978478i \(0.566159\pi\)
\(504\) 0 0
\(505\) −1.07033e7 −1.86763
\(506\) 3.44212e6 0.597654
\(507\) 0 0
\(508\) −1.45512e6 −0.250172
\(509\) 6.29127e6 1.07633 0.538163 0.842841i \(-0.319119\pi\)
0.538163 + 0.842841i \(0.319119\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −262144. −0.0441942
\(513\) 0 0
\(514\) −1.44099e6 −0.240577
\(515\) 893261. 0.148409
\(516\) 0 0
\(517\) −1.22873e7 −2.02176
\(518\) 0 0
\(519\) 0 0
\(520\) −647421. −0.104997
\(521\) −1.08898e6 −0.175762 −0.0878812 0.996131i \(-0.528010\pi\)
−0.0878812 + 0.996131i \(0.528010\pi\)
\(522\) 0 0
\(523\) 6.04665e6 0.966631 0.483316 0.875446i \(-0.339432\pi\)
0.483316 + 0.875446i \(0.339432\pi\)
\(524\) −3.88268e6 −0.617737
\(525\) 0 0
\(526\) 2.45672e6 0.387161
\(527\) 1.83494e6 0.287802
\(528\) 0 0
\(529\) −4.49956e6 −0.699086
\(530\) 8.55760e6 1.32331
\(531\) 0 0
\(532\) 0 0
\(533\) 2.73653e6 0.417236
\(534\) 0 0
\(535\) −7.63549e6 −1.15333
\(536\) −659936. −0.0992179
\(537\) 0 0
\(538\) −609075. −0.0907226
\(539\) 0 0
\(540\) 0 0
\(541\) −4.27361e6 −0.627772 −0.313886 0.949461i \(-0.601631\pi\)
−0.313886 + 0.949461i \(0.601631\pi\)
\(542\) −2.03884e6 −0.298116
\(543\) 0 0
\(544\) −270229. −0.0391502
\(545\) 1.29995e7 1.87471
\(546\) 0 0
\(547\) 1.04021e7 1.48646 0.743230 0.669036i \(-0.233293\pi\)
0.743230 + 0.669036i \(0.233293\pi\)
\(548\) −187485. −0.0266695
\(549\) 0 0
\(550\) 7.16201e6 1.00955
\(551\) −523268. −0.0734252
\(552\) 0 0
\(553\) 0 0
\(554\) −1.39496e6 −0.193102
\(555\) 0 0
\(556\) 2.72416e6 0.373719
\(557\) 8.19079e6 1.11863 0.559317 0.828954i \(-0.311063\pi\)
0.559317 + 0.828954i \(0.311063\pi\)
\(558\) 0 0
\(559\) 2.78910e6 0.377515
\(560\) 0 0
\(561\) 0 0
\(562\) 5.82965e6 0.778577
\(563\) 5.27402e6 0.701246 0.350623 0.936517i \(-0.385970\pi\)
0.350623 + 0.936517i \(0.385970\pi\)
\(564\) 0 0
\(565\) −6.30936e6 −0.831504
\(566\) 7.84466e6 1.02928
\(567\) 0 0
\(568\) 4.92671e6 0.640747
\(569\) 1.27444e7 1.65020 0.825102 0.564984i \(-0.191118\pi\)
0.825102 + 0.564984i \(0.191118\pi\)
\(570\) 0 0
\(571\) 1.01607e7 1.30417 0.652084 0.758147i \(-0.273895\pi\)
0.652084 + 0.758147i \(0.273895\pi\)
\(572\) 1.28982e6 0.164831
\(573\) 0 0
\(574\) 0 0
\(575\) 4.02987e6 0.508301
\(576\) 0 0
\(577\) 9.43480e6 1.17976 0.589879 0.807491i \(-0.299175\pi\)
0.589879 + 0.807491i \(0.299175\pi\)
\(578\) 5.40087e6 0.672425
\(579\) 0 0
\(580\) −7.06658e6 −0.872246
\(581\) 0 0
\(582\) 0 0
\(583\) −1.70488e7 −2.07741
\(584\) −127129. −0.0154245
\(585\) 0 0
\(586\) −5.49940e6 −0.661563
\(587\) 8.48788e6 1.01673 0.508363 0.861143i \(-0.330251\pi\)
0.508363 + 0.861143i \(0.330251\pi\)
\(588\) 0 0
\(589\) −639215. −0.0759204
\(590\) 1.35126e7 1.59812
\(591\) 0 0
\(592\) 1.29229e6 0.151550
\(593\) −3.22262e6 −0.376333 −0.188166 0.982137i \(-0.560254\pi\)
−0.188166 + 0.982137i \(0.560254\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 2.71204e6 0.312738
\(597\) 0 0
\(598\) 725747. 0.0829913
\(599\) 2.74313e6 0.312377 0.156189 0.987727i \(-0.450079\pi\)
0.156189 + 0.987727i \(0.450079\pi\)
\(600\) 0 0
\(601\) −1.28775e7 −1.45427 −0.727137 0.686492i \(-0.759149\pi\)
−0.727137 + 0.686492i \(0.759149\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 3.87148e6 0.431802
\(605\) −1.71705e7 −1.90720
\(606\) 0 0
\(607\) −2.89143e6 −0.318524 −0.159262 0.987236i \(-0.550911\pi\)
−0.159262 + 0.987236i \(0.550911\pi\)
\(608\) 94136.3 0.0103276
\(609\) 0 0
\(610\) 1.05338e7 1.14620
\(611\) −2.59069e6 −0.280745
\(612\) 0 0
\(613\) 1.44252e7 1.55050 0.775248 0.631657i \(-0.217625\pi\)
0.775248 + 0.631657i \(0.217625\pi\)
\(614\) −8.45823e6 −0.905438
\(615\) 0 0
\(616\) 0 0
\(617\) −9.56131e6 −1.01112 −0.505562 0.862790i \(-0.668715\pi\)
−0.505562 + 0.862790i \(0.668715\pi\)
\(618\) 0 0
\(619\) −7.74922e6 −0.812889 −0.406445 0.913675i \(-0.633232\pi\)
−0.406445 + 0.913675i \(0.633232\pi\)
\(620\) −8.63241e6 −0.901889
\(621\) 0 0
\(622\) 1.49384e6 0.154820
\(623\) 0 0
\(624\) 0 0
\(625\) −1.04297e7 −1.06800
\(626\) 1.86401e6 0.190113
\(627\) 0 0
\(628\) −4.14458e6 −0.419354
\(629\) 1.33215e6 0.134254
\(630\) 0 0
\(631\) −667060. −0.0666948 −0.0333474 0.999444i \(-0.510617\pi\)
−0.0333474 + 0.999444i \(0.510617\pi\)
\(632\) 344616. 0.0343197
\(633\) 0 0
\(634\) 7.09544e6 0.701061
\(635\) 7.05668e6 0.694490
\(636\) 0 0
\(637\) 0 0
\(638\) 1.40784e7 1.36930
\(639\) 0 0
\(640\) 1.27128e6 0.122685
\(641\) 1.57468e7 1.51373 0.756864 0.653573i \(-0.226731\pi\)
0.756864 + 0.653573i \(0.226731\pi\)
\(642\) 0 0
\(643\) −1.13073e6 −0.107852 −0.0539262 0.998545i \(-0.517174\pi\)
−0.0539262 + 0.998545i \(0.517174\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 97039.5 0.00914887
\(647\) −2.26531e6 −0.212749 −0.106375 0.994326i \(-0.533924\pi\)
−0.106375 + 0.994326i \(0.533924\pi\)
\(648\) 0 0
\(649\) −2.69205e7 −2.50883
\(650\) 1.51006e6 0.140188
\(651\) 0 0
\(652\) −5.03773e6 −0.464105
\(653\) −1.91461e7 −1.75710 −0.878550 0.477651i \(-0.841488\pi\)
−0.878550 + 0.477651i \(0.841488\pi\)
\(654\) 0 0
\(655\) 1.88293e7 1.71487
\(656\) −5.37347e6 −0.487523
\(657\) 0 0
\(658\) 0 0
\(659\) −2.15578e7 −1.93371 −0.966853 0.255335i \(-0.917814\pi\)
−0.966853 + 0.255335i \(0.917814\pi\)
\(660\) 0 0
\(661\) −8.08195e6 −0.719470 −0.359735 0.933055i \(-0.617133\pi\)
−0.359735 + 0.933055i \(0.617133\pi\)
\(662\) 7.08743e6 0.628555
\(663\) 0 0
\(664\) 4.41404e6 0.388522
\(665\) 0 0
\(666\) 0 0
\(667\) 7.92150e6 0.689434
\(668\) 1.34555e6 0.116670
\(669\) 0 0
\(670\) 3.20040e6 0.275434
\(671\) −2.09859e7 −1.79937
\(672\) 0 0
\(673\) 1.12701e7 0.959159 0.479580 0.877498i \(-0.340789\pi\)
0.479580 + 0.877498i \(0.340789\pi\)
\(674\) 2.81025e6 0.238284
\(675\) 0 0
\(676\) −5.66874e6 −0.477111
\(677\) 8.50353e6 0.713062 0.356531 0.934283i \(-0.383959\pi\)
0.356531 + 0.934283i \(0.383959\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 1.31049e6 0.108683
\(681\) 0 0
\(682\) 1.71979e7 1.41584
\(683\) −506305. −0.0415298 −0.0207649 0.999784i \(-0.506610\pi\)
−0.0207649 + 0.999784i \(0.506610\pi\)
\(684\) 0 0
\(685\) 909221. 0.0740360
\(686\) 0 0
\(687\) 0 0
\(688\) −5.47671e6 −0.441112
\(689\) −3.59463e6 −0.288473
\(690\) 0 0
\(691\) 5.02613e6 0.400441 0.200221 0.979751i \(-0.435834\pi\)
0.200221 + 0.979751i \(0.435834\pi\)
\(692\) 1.19609e7 0.949511
\(693\) 0 0
\(694\) −7.05629e6 −0.556132
\(695\) −1.32110e7 −1.03746
\(696\) 0 0
\(697\) −5.53919e6 −0.431881
\(698\) −8.00885e6 −0.622203
\(699\) 0 0
\(700\) 0 0
\(701\) 1.29711e7 0.996966 0.498483 0.866900i \(-0.333891\pi\)
0.498483 + 0.866900i \(0.333891\pi\)
\(702\) 0 0
\(703\) −464065. −0.0354153
\(704\) −2.53271e6 −0.192599
\(705\) 0 0
\(706\) 1.12755e7 0.851381
\(707\) 0 0
\(708\) 0 0
\(709\) 5.96629e6 0.445747 0.222874 0.974847i \(-0.428456\pi\)
0.222874 + 0.974847i \(0.428456\pi\)
\(710\) −2.38924e7 −1.77875
\(711\) 0 0
\(712\) 5.79108e6 0.428114
\(713\) 9.67677e6 0.712864
\(714\) 0 0
\(715\) −6.25507e6 −0.457580
\(716\) −1.44518e6 −0.105351
\(717\) 0 0
\(718\) 2.46459e6 0.178416
\(719\) −1.58476e7 −1.14325 −0.571624 0.820516i \(-0.693686\pi\)
−0.571624 + 0.820516i \(0.693686\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 9.87059e6 0.704693
\(723\) 0 0
\(724\) 3.01771e6 0.213959
\(725\) 1.64822e7 1.16459
\(726\) 0 0
\(727\) 1.52350e7 1.06907 0.534534 0.845147i \(-0.320487\pi\)
0.534534 + 0.845147i \(0.320487\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 616518. 0.0428192
\(731\) −5.64561e6 −0.390767
\(732\) 0 0
\(733\) 7.58714e6 0.521576 0.260788 0.965396i \(-0.416018\pi\)
0.260788 + 0.965396i \(0.416018\pi\)
\(734\) −6.02954e6 −0.413089
\(735\) 0 0
\(736\) −1.42509e6 −0.0969720
\(737\) −6.37598e6 −0.432393
\(738\) 0 0
\(739\) 2.82397e6 0.190217 0.0951085 0.995467i \(-0.469680\pi\)
0.0951085 + 0.995467i \(0.469680\pi\)
\(740\) −6.26706e6 −0.420712
\(741\) 0 0
\(742\) 0 0
\(743\) −8.78322e6 −0.583689 −0.291845 0.956466i \(-0.594269\pi\)
−0.291845 + 0.956466i \(0.594269\pi\)
\(744\) 0 0
\(745\) −1.31522e7 −0.868176
\(746\) 2.10207e6 0.138293
\(747\) 0 0
\(748\) −2.61082e6 −0.170617
\(749\) 0 0
\(750\) 0 0
\(751\) −9.94029e6 −0.643131 −0.321565 0.946887i \(-0.604209\pi\)
−0.321565 + 0.946887i \(0.604209\pi\)
\(752\) 5.08711e6 0.328040
\(753\) 0 0
\(754\) 2.96832e6 0.190144
\(755\) −1.87750e7 −1.19871
\(756\) 0 0
\(757\) 2.43882e7 1.54682 0.773411 0.633905i \(-0.218549\pi\)
0.773411 + 0.633905i \(0.218549\pi\)
\(758\) 390253. 0.0246702
\(759\) 0 0
\(760\) −456520. −0.0286699
\(761\) 1.38814e7 0.868906 0.434453 0.900694i \(-0.356942\pi\)
0.434453 + 0.900694i \(0.356942\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 1.07286e7 0.664981
\(765\) 0 0
\(766\) 2.00842e7 1.23675
\(767\) −5.67600e6 −0.348380
\(768\) 0 0
\(769\) 5.94704e6 0.362648 0.181324 0.983423i \(-0.441962\pi\)
0.181324 + 0.983423i \(0.441962\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −1.53126e7 −0.924708
\(773\) 1.88923e7 1.13720 0.568599 0.822615i \(-0.307486\pi\)
0.568599 + 0.822615i \(0.307486\pi\)
\(774\) 0 0
\(775\) 2.01344e7 1.20416
\(776\) −8.81125e6 −0.525271
\(777\) 0 0
\(778\) 1.82619e7 1.08168
\(779\) 1.92962e6 0.113928
\(780\) 0 0
\(781\) 4.75995e7 2.79238
\(782\) −1.46904e6 −0.0859044
\(783\) 0 0
\(784\) 0 0
\(785\) 2.00994e7 1.16415
\(786\) 0 0
\(787\) −1.71518e7 −0.987125 −0.493563 0.869710i \(-0.664306\pi\)
−0.493563 + 0.869710i \(0.664306\pi\)
\(788\) −774410. −0.0444279
\(789\) 0 0
\(790\) −1.67124e6 −0.0952732
\(791\) 0 0
\(792\) 0 0
\(793\) −4.42472e6 −0.249863
\(794\) 1.96001e7 1.10334
\(795\) 0 0
\(796\) 1.21873e7 0.681751
\(797\) −1.22205e7 −0.681462 −0.340731 0.940161i \(-0.610675\pi\)
−0.340731 + 0.940161i \(0.610675\pi\)
\(798\) 0 0
\(799\) 5.24400e6 0.290600
\(800\) −2.96517e6 −0.163804
\(801\) 0 0
\(802\) −6.33510e6 −0.347790
\(803\) −1.22825e6 −0.0672202
\(804\) 0 0
\(805\) 0 0
\(806\) 3.62605e6 0.196606
\(807\) 0 0
\(808\) −8.82830e6 −0.475717
\(809\) −2.46850e7 −1.32605 −0.663027 0.748595i \(-0.730729\pi\)
−0.663027 + 0.748595i \(0.730729\pi\)
\(810\) 0 0
\(811\) 3.18910e7 1.70262 0.851308 0.524667i \(-0.175810\pi\)
0.851308 + 0.524667i \(0.175810\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 1.24855e7 0.660458
\(815\) 2.44308e7 1.28838
\(816\) 0 0
\(817\) 1.96670e6 0.103082
\(818\) 6.79215e6 0.354914
\(819\) 0 0
\(820\) 2.60590e7 1.35339
\(821\) 1.71012e7 0.885460 0.442730 0.896655i \(-0.354010\pi\)
0.442730 + 0.896655i \(0.354010\pi\)
\(822\) 0 0
\(823\) −295105. −0.0151872 −0.00759358 0.999971i \(-0.502417\pi\)
−0.00759358 + 0.999971i \(0.502417\pi\)
\(824\) 736776. 0.0378022
\(825\) 0 0
\(826\) 0 0
\(827\) 1.30891e6 0.0665496 0.0332748 0.999446i \(-0.489406\pi\)
0.0332748 + 0.999446i \(0.489406\pi\)
\(828\) 0 0
\(829\) −8.17046e6 −0.412914 −0.206457 0.978456i \(-0.566193\pi\)
−0.206457 + 0.978456i \(0.566193\pi\)
\(830\) −2.14061e7 −1.07856
\(831\) 0 0
\(832\) −534004. −0.0267446
\(833\) 0 0
\(834\) 0 0
\(835\) −6.52535e6 −0.323882
\(836\) 909500. 0.0450077
\(837\) 0 0
\(838\) 2.22078e7 1.09243
\(839\) −2.22357e7 −1.09055 −0.545276 0.838256i \(-0.683575\pi\)
−0.545276 + 0.838256i \(0.683575\pi\)
\(840\) 0 0
\(841\) 1.18880e7 0.579586
\(842\) −4.86099e6 −0.236290
\(843\) 0 0
\(844\) −1.11713e7 −0.539818
\(845\) 2.74909e7 1.32449
\(846\) 0 0
\(847\) 0 0
\(848\) 7.05845e6 0.337070
\(849\) 0 0
\(850\) −3.05662e6 −0.145109
\(851\) 7.02526e6 0.332536
\(852\) 0 0
\(853\) −2.33553e7 −1.09904 −0.549518 0.835482i \(-0.685189\pi\)
−0.549518 + 0.835482i \(0.685189\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −6.29788e6 −0.293772
\(857\) 2.14845e7 0.999249 0.499625 0.866242i \(-0.333471\pi\)
0.499625 + 0.866242i \(0.333471\pi\)
\(858\) 0 0
\(859\) −659584. −0.0304991 −0.0152496 0.999884i \(-0.504854\pi\)
−0.0152496 + 0.999884i \(0.504854\pi\)
\(860\) 2.65596e7 1.22455
\(861\) 0 0
\(862\) 5.30120e6 0.243000
\(863\) −2.90949e6 −0.132981 −0.0664905 0.997787i \(-0.521180\pi\)
−0.0664905 + 0.997787i \(0.521180\pi\)
\(864\) 0 0
\(865\) −5.80053e7 −2.63589
\(866\) −2.19258e7 −0.993483
\(867\) 0 0
\(868\) 0 0
\(869\) 3.32952e6 0.149566
\(870\) 0 0
\(871\) −1.34433e6 −0.0600428
\(872\) 1.07222e7 0.477520
\(873\) 0 0
\(874\) 511751. 0.0226610
\(875\) 0 0
\(876\) 0 0
\(877\) −866950. −0.0380623 −0.0190311 0.999819i \(-0.506058\pi\)
−0.0190311 + 0.999819i \(0.506058\pi\)
\(878\) −2.42554e7 −1.06187
\(879\) 0 0
\(880\) 1.22825e7 0.534664
\(881\) −2.38015e7 −1.03315 −0.516577 0.856240i \(-0.672794\pi\)
−0.516577 + 0.856240i \(0.672794\pi\)
\(882\) 0 0
\(883\) −2.59761e7 −1.12117 −0.560586 0.828096i \(-0.689424\pi\)
−0.560586 + 0.828096i \(0.689424\pi\)
\(884\) −550472. −0.0236922
\(885\) 0 0
\(886\) 7.31306e6 0.312979
\(887\) −3.04811e7 −1.30084 −0.650418 0.759577i \(-0.725406\pi\)
−0.650418 + 0.759577i \(0.725406\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −2.80842e7 −1.18847
\(891\) 0 0
\(892\) −2.00644e7 −0.844332
\(893\) −1.82679e6 −0.0766584
\(894\) 0 0
\(895\) 7.00848e6 0.292460
\(896\) 0 0
\(897\) 0 0
\(898\) 3.28173e7 1.35804
\(899\) 3.95782e7 1.63327
\(900\) 0 0
\(901\) 7.27613e6 0.298599
\(902\) −5.19159e7 −2.12463
\(903\) 0 0
\(904\) −5.20407e6 −0.211798
\(905\) −1.46346e7 −0.593962
\(906\) 0 0
\(907\) −1.12185e7 −0.452810 −0.226405 0.974033i \(-0.572697\pi\)
−0.226405 + 0.974033i \(0.572697\pi\)
\(908\) 1.27954e7 0.515038
\(909\) 0 0
\(910\) 0 0
\(911\) 4.12952e7 1.64855 0.824277 0.566187i \(-0.191582\pi\)
0.824277 + 0.566187i \(0.191582\pi\)
\(912\) 0 0
\(913\) 4.26463e7 1.69318
\(914\) 1.42831e7 0.565533
\(915\) 0 0
\(916\) −1.40170e7 −0.551971
\(917\) 0 0
\(918\) 0 0
\(919\) −2.50746e7 −0.979365 −0.489683 0.871901i \(-0.662887\pi\)
−0.489683 + 0.871901i \(0.662887\pi\)
\(920\) 6.91104e6 0.269199
\(921\) 0 0
\(922\) −2.25581e7 −0.873926
\(923\) 1.00360e7 0.387755
\(924\) 0 0
\(925\) 1.46174e7 0.561716
\(926\) −3.18489e6 −0.122058
\(927\) 0 0
\(928\) −5.82863e6 −0.222176
\(929\) 3.58109e7 1.36137 0.680684 0.732577i \(-0.261683\pi\)
0.680684 + 0.732577i \(0.261683\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −5.67051e6 −0.213837
\(933\) 0 0
\(934\) 533807. 0.0200225
\(935\) 1.26613e7 0.473642
\(936\) 0 0
\(937\) −2.87422e7 −1.06948 −0.534738 0.845018i \(-0.679590\pi\)
−0.534738 + 0.845018i \(0.679590\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −2.46703e7 −0.910656
\(941\) −6.80282e6 −0.250446 −0.125223 0.992129i \(-0.539965\pi\)
−0.125223 + 0.992129i \(0.539965\pi\)
\(942\) 0 0
\(943\) −2.92116e7 −1.06974
\(944\) 1.11455e7 0.407069
\(945\) 0 0
\(946\) −5.29133e7 −1.92237
\(947\) −4.21262e7 −1.52643 −0.763216 0.646143i \(-0.776381\pi\)
−0.763216 + 0.646143i \(0.776381\pi\)
\(948\) 0 0
\(949\) −258969. −0.00933430
\(950\) 1.06480e6 0.0382788
\(951\) 0 0
\(952\) 0 0
\(953\) −1.31637e7 −0.469512 −0.234756 0.972054i \(-0.575429\pi\)
−0.234756 + 0.972054i \(0.575429\pi\)
\(954\) 0 0
\(955\) −5.20289e7 −1.84602
\(956\) −1.41343e7 −0.500183
\(957\) 0 0
\(958\) −1.79079e7 −0.630421
\(959\) 0 0
\(960\) 0 0
\(961\) 1.97189e7 0.688771
\(962\) 2.63248e6 0.0917124
\(963\) 0 0
\(964\) −9.89810e6 −0.343051
\(965\) 7.42592e7 2.56704
\(966\) 0 0
\(967\) −3.62355e7 −1.24614 −0.623071 0.782165i \(-0.714115\pi\)
−0.623071 + 0.782165i \(0.714115\pi\)
\(968\) −1.41625e7 −0.485795
\(969\) 0 0
\(970\) 4.27307e7 1.45818
\(971\) −4.02139e7 −1.36876 −0.684380 0.729125i \(-0.739927\pi\)
−0.684380 + 0.729125i \(0.739927\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −1.62253e7 −0.548020
\(975\) 0 0
\(976\) 8.68843e6 0.291956
\(977\) −4.98719e7 −1.67155 −0.835776 0.549071i \(-0.814982\pi\)
−0.835776 + 0.549071i \(0.814982\pi\)
\(978\) 0 0
\(979\) 5.59506e7 1.86573
\(980\) 0 0
\(981\) 0 0
\(982\) −1.20371e6 −0.0398331
\(983\) −2.46828e7 −0.814723 −0.407361 0.913267i \(-0.633551\pi\)
−0.407361 + 0.913267i \(0.633551\pi\)
\(984\) 0 0
\(985\) 3.75555e6 0.123334
\(986\) −6.00839e6 −0.196818
\(987\) 0 0
\(988\) 191762. 0.00624985
\(989\) −2.97729e7 −0.967899
\(990\) 0 0
\(991\) −5.73487e7 −1.85498 −0.927491 0.373847i \(-0.878039\pi\)
−0.927491 + 0.373847i \(0.878039\pi\)
\(992\) −7.12016e6 −0.229726
\(993\) 0 0
\(994\) 0 0
\(995\) −5.91032e7 −1.89258
\(996\) 0 0
\(997\) 5.73578e7 1.82749 0.913744 0.406291i \(-0.133178\pi\)
0.913744 + 0.406291i \(0.133178\pi\)
\(998\) −1.70655e7 −0.542368
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.6.a.bc.1.1 2
3.2 odd 2 294.6.a.v.1.2 yes 2
7.6 odd 2 882.6.a.bg.1.2 2
21.2 odd 6 294.6.e.t.67.1 4
21.5 even 6 294.6.e.w.67.2 4
21.11 odd 6 294.6.e.t.79.1 4
21.17 even 6 294.6.e.w.79.2 4
21.20 even 2 294.6.a.s.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
294.6.a.s.1.1 2 21.20 even 2
294.6.a.v.1.2 yes 2 3.2 odd 2
294.6.e.t.67.1 4 21.2 odd 6
294.6.e.t.79.1 4 21.11 odd 6
294.6.e.w.67.2 4 21.5 even 6
294.6.e.w.79.2 4 21.17 even 6
882.6.a.bc.1.1 2 1.1 even 1 trivial
882.6.a.bg.1.2 2 7.6 odd 2