Properties

Label 882.6.a.bc
Level $882$
Weight $6$
Character orbit 882.a
Self dual yes
Analytic conductor $141.459$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [882,6,Mod(1,882)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("882.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(882, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 882.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-8,0,32,-18,0,0,-128,0,72,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.458529075\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{4705}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1176 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 294)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{4705}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 4 q^{2} + 16 q^{4} + ( - \beta - 9) q^{5} - 64 q^{8} + (4 \beta + 36) q^{10} + ( - 9 \beta - 1) q^{11} + ( - 4 \beta + 144) q^{13} + 256 q^{16} + (15 \beta - 765) q^{17} + ( - 10 \beta + 594) q^{19}+ \cdots + (826 \beta + 81018) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{2} + 32 q^{4} - 18 q^{5} - 128 q^{8} + 72 q^{10} - 2 q^{11} + 288 q^{13} + 512 q^{16} - 1530 q^{17} + 1188 q^{19} - 288 q^{20} + 8 q^{22} - 3390 q^{23} + 3322 q^{25} - 1152 q^{26} + 3976 q^{29}+ \cdots + 162036 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
34.7965
−33.7965
−4.00000 0 16.0000 −77.5930 0 0 −64.0000 0 310.372
1.2 −4.00000 0 16.0000 59.5930 0 0 −64.0000 0 −238.372
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 882.6.a.bc 2
3.b odd 2 1 294.6.a.v yes 2
7.b odd 2 1 882.6.a.bg 2
21.c even 2 1 294.6.a.s 2
21.g even 6 2 294.6.e.w 4
21.h odd 6 2 294.6.e.t 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
294.6.a.s 2 21.c even 2 1
294.6.a.v yes 2 3.b odd 2 1
294.6.e.t 4 21.h odd 6 2
294.6.e.w 4 21.g even 6 2
882.6.a.bc 2 1.a even 1 1 trivial
882.6.a.bg 2 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(882))\):

\( T_{5}^{2} + 18T_{5} - 4624 \) Copy content Toggle raw display
\( T_{11}^{2} + 2T_{11} - 381104 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 4)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 18T - 4624 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 2T - 381104 \) Copy content Toggle raw display
$13$ \( T^{2} - 288T - 54544 \) Copy content Toggle raw display
$17$ \( T^{2} + 1530 T - 473400 \) Copy content Toggle raw display
$19$ \( T^{2} - 1188 T - 117664 \) Copy content Toggle raw display
$23$ \( T^{2} + 3390 T - 6654600 \) Copy content Toggle raw display
$29$ \( T^{2} - 3976 T - 9767636 \) Copy content Toggle raw display
$31$ \( T^{2} - 7596 T + 4469024 \) Copy content Toggle raw display
$37$ \( T^{2} - 2688 T - 11913444 \) Copy content Toggle raw display
$41$ \( T^{2} + 36630 T + 328282920 \) Copy content Toggle raw display
$43$ \( T^{2} + 23032 T + 35055376 \) Copy content Toggle raw display
$47$ \( T^{2} + 864 T - 412046656 \) Copy content Toggle raw display
$53$ \( T^{2} - 32920 T + 147453580 \) Copy content Toggle raw display
$59$ \( T^{2} - 26712 T - 732505264 \) Copy content Toggle raw display
$61$ \( T^{2} - 20412 T - 459101344 \) Copy content Toggle raw display
$67$ \( T^{2} + 36172 T - 479314784 \) Copy content Toggle raw display
$71$ \( T^{2} + 73706 T - 252025016 \) Copy content Toggle raw display
$73$ \( T^{2} + 74772 T - 152471584 \) Copy content Toggle raw display
$79$ \( T^{2} + 23116 T + 95476864 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 5438001744 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 6710448824 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 3353807744 \) Copy content Toggle raw display
show more
show less