Properties

Label 882.6.a.bc
Level $882$
Weight $6$
Character orbit 882.a
Self dual yes
Analytic conductor $141.459$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,6,Mod(1,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 882.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.458529075\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{4705}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1176 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 294)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{4705}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 4 q^{2} + 16 q^{4} + ( - \beta - 9) q^{5} - 64 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q - 4 q^{2} + 16 q^{4} + ( - \beta - 9) q^{5} - 64 q^{8} + (4 \beta + 36) q^{10} + ( - 9 \beta - 1) q^{11} + ( - 4 \beta + 144) q^{13} + 256 q^{16} + (15 \beta - 765) q^{17} + ( - 10 \beta + 594) q^{19} + ( - 16 \beta - 144) q^{20} + (36 \beta + 4) q^{22} + (45 \beta - 1695) q^{23} + (18 \beta + 1661) q^{25} + (16 \beta - 576) q^{26} + (54 \beta + 1988) q^{29} + (46 \beta + 3798) q^{31} - 1024 q^{32} + ( - 60 \beta + 3060) q^{34} + (54 \beta + 1344) q^{37} + (40 \beta - 2376) q^{38} + (64 \beta + 576) q^{40} + ( - 39 \beta - 18315) q^{41} + ( - 144 \beta - 11516) q^{43} + ( - 144 \beta - 16) q^{44} + ( - 180 \beta + 6780) q^{46} + (296 \beta - 432) q^{47} + ( - 72 \beta - 6644) q^{50} + ( - 64 \beta + 2304) q^{52} + (162 \beta + 16460) q^{53} + (82 \beta + 42354) q^{55} + ( - 216 \beta - 7952) q^{58} + (440 \beta + 13356) q^{59} + (346 \beta + 10206) q^{61} + ( - 184 \beta - 15192) q^{62} + 4096 q^{64} + ( - 108 \beta + 17524) q^{65} + (414 \beta - 18086) q^{67} + (240 \beta - 12240) q^{68} + ( - 585 \beta - 36853) q^{71} + (574 \beta - 37386) q^{73} + ( - 216 \beta - 5376) q^{74} + ( - 160 \beta + 9504) q^{76} + (90 \beta - 11558) q^{79} + ( - 256 \beta - 2304) q^{80} + (156 \beta + 73260) q^{82} + (72 \beta - 73908) q^{83} + (630 \beta - 63690) q^{85} + (576 \beta + 46064) q^{86} + (576 \beta + 64) q^{88} + ( - 119 \beta - 82323) q^{89} + (720 \beta - 27120) q^{92} + ( - 1184 \beta + 1728) q^{94} + ( - 504 \beta + 41704) q^{95} + (826 \beta + 81018) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{2} + 32 q^{4} - 18 q^{5} - 128 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 8 q^{2} + 32 q^{4} - 18 q^{5} - 128 q^{8} + 72 q^{10} - 2 q^{11} + 288 q^{13} + 512 q^{16} - 1530 q^{17} + 1188 q^{19} - 288 q^{20} + 8 q^{22} - 3390 q^{23} + 3322 q^{25} - 1152 q^{26} + 3976 q^{29} + 7596 q^{31} - 2048 q^{32} + 6120 q^{34} + 2688 q^{37} - 4752 q^{38} + 1152 q^{40} - 36630 q^{41} - 23032 q^{43} - 32 q^{44} + 13560 q^{46} - 864 q^{47} - 13288 q^{50} + 4608 q^{52} + 32920 q^{53} + 84708 q^{55} - 15904 q^{58} + 26712 q^{59} + 20412 q^{61} - 30384 q^{62} + 8192 q^{64} + 35048 q^{65} - 36172 q^{67} - 24480 q^{68} - 73706 q^{71} - 74772 q^{73} - 10752 q^{74} + 19008 q^{76} - 23116 q^{79} - 4608 q^{80} + 146520 q^{82} - 147816 q^{83} - 127380 q^{85} + 92128 q^{86} + 128 q^{88} - 164646 q^{89} - 54240 q^{92} + 3456 q^{94} + 83408 q^{95} + 162036 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
34.7965
−33.7965
−4.00000 0 16.0000 −77.5930 0 0 −64.0000 0 310.372
1.2 −4.00000 0 16.0000 59.5930 0 0 −64.0000 0 −238.372
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 882.6.a.bc 2
3.b odd 2 1 294.6.a.v yes 2
7.b odd 2 1 882.6.a.bg 2
21.c even 2 1 294.6.a.s 2
21.g even 6 2 294.6.e.w 4
21.h odd 6 2 294.6.e.t 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
294.6.a.s 2 21.c even 2 1
294.6.a.v yes 2 3.b odd 2 1
294.6.e.t 4 21.h odd 6 2
294.6.e.w 4 21.g even 6 2
882.6.a.bc 2 1.a even 1 1 trivial
882.6.a.bg 2 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(882))\):

\( T_{5}^{2} + 18T_{5} - 4624 \) Copy content Toggle raw display
\( T_{11}^{2} + 2T_{11} - 381104 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 4)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 18T - 4624 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 2T - 381104 \) Copy content Toggle raw display
$13$ \( T^{2} - 288T - 54544 \) Copy content Toggle raw display
$17$ \( T^{2} + 1530 T - 473400 \) Copy content Toggle raw display
$19$ \( T^{2} - 1188 T - 117664 \) Copy content Toggle raw display
$23$ \( T^{2} + 3390 T - 6654600 \) Copy content Toggle raw display
$29$ \( T^{2} - 3976 T - 9767636 \) Copy content Toggle raw display
$31$ \( T^{2} - 7596 T + 4469024 \) Copy content Toggle raw display
$37$ \( T^{2} - 2688 T - 11913444 \) Copy content Toggle raw display
$41$ \( T^{2} + 36630 T + 328282920 \) Copy content Toggle raw display
$43$ \( T^{2} + 23032 T + 35055376 \) Copy content Toggle raw display
$47$ \( T^{2} + 864 T - 412046656 \) Copy content Toggle raw display
$53$ \( T^{2} - 32920 T + 147453580 \) Copy content Toggle raw display
$59$ \( T^{2} - 26712 T - 732505264 \) Copy content Toggle raw display
$61$ \( T^{2} - 20412 T - 459101344 \) Copy content Toggle raw display
$67$ \( T^{2} + 36172 T - 479314784 \) Copy content Toggle raw display
$71$ \( T^{2} + 73706 T - 252025016 \) Copy content Toggle raw display
$73$ \( T^{2} + 74772 T - 152471584 \) Copy content Toggle raw display
$79$ \( T^{2} + 23116 T + 95476864 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 5438001744 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 6710448824 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 3353807744 \) Copy content Toggle raw display
show more
show less