Properties

Label 882.6.a.bb.1.2
Level $882$
Weight $6$
Character 882.1
Self dual yes
Analytic conductor $141.459$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,6,Mod(1,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 882.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.458529075\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{9601}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 2400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-48.4923\) of defining polynomial
Character \(\chi\) \(=\) 882.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} +16.0000 q^{4} +22.4923 q^{5} -64.0000 q^{8} +O(q^{10})\) \(q-4.00000 q^{2} +16.0000 q^{4} +22.4923 q^{5} -64.0000 q^{8} -89.9694 q^{10} -340.462 q^{11} +728.416 q^{13} +256.000 q^{16} +809.847 q^{17} -1026.20 q^{19} +359.878 q^{20} +1361.85 q^{22} -1422.03 q^{23} -2619.09 q^{25} -2913.66 q^{26} -5218.03 q^{29} +7037.74 q^{31} -1024.00 q^{32} -3239.39 q^{34} +12792.1 q^{37} +4104.81 q^{38} -1439.51 q^{40} +1173.51 q^{41} +3664.17 q^{43} -5447.39 q^{44} +5688.12 q^{46} +9313.19 q^{47} +10476.4 q^{50} +11654.7 q^{52} -35642.8 q^{53} -7657.78 q^{55} +20872.1 q^{58} -30376.2 q^{59} -32186.2 q^{61} -28151.0 q^{62} +4096.00 q^{64} +16383.8 q^{65} +21351.1 q^{67} +12957.6 q^{68} -61153.7 q^{71} -41267.8 q^{73} -51168.4 q^{74} -16419.2 q^{76} -35000.5 q^{79} +5758.04 q^{80} -4694.02 q^{82} +86193.0 q^{83} +18215.4 q^{85} -14656.7 q^{86} +21789.6 q^{88} +77992.6 q^{89} -22752.5 q^{92} -37252.8 q^{94} -23081.7 q^{95} +161765. q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{2} + 32 q^{4} - 53 q^{5} - 128 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 8 q^{2} + 32 q^{4} - 53 q^{5} - 128 q^{8} + 212 q^{10} - 191 q^{11} + 379 q^{13} + 512 q^{16} - 340 q^{17} + 1769 q^{19} - 848 q^{20} + 764 q^{22} - 3236 q^{23} - 45 q^{25} - 1516 q^{26} - 4459 q^{29} - 1994 q^{31} - 2048 q^{32} + 1360 q^{34} + 20587 q^{37} - 7076 q^{38} + 3392 q^{40} + 8814 q^{41} + 15853 q^{43} - 3056 q^{44} + 12944 q^{46} + 33912 q^{47} + 180 q^{50} + 6064 q^{52} - 49239 q^{53} - 18941 q^{55} + 17836 q^{58} - 56735 q^{59} - 67508 q^{61} + 7976 q^{62} + 8192 q^{64} + 42762 q^{65} + 75723 q^{67} - 5440 q^{68} + 8992 q^{71} + 3201 q^{73} - 82348 q^{74} + 28304 q^{76} + 26612 q^{79} - 13568 q^{80} - 35256 q^{82} - 949 q^{83} + 105020 q^{85} - 63412 q^{86} + 12224 q^{88} + 176562 q^{89} - 51776 q^{92} - 135648 q^{94} - 234098 q^{95} + 129423 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) 0 0
\(4\) 16.0000 0.500000
\(5\) 22.4923 0.402355 0.201178 0.979555i \(-0.435523\pi\)
0.201178 + 0.979555i \(0.435523\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −64.0000 −0.353553
\(9\) 0 0
\(10\) −89.9694 −0.284508
\(11\) −340.462 −0.848373 −0.424186 0.905575i \(-0.639440\pi\)
−0.424186 + 0.905575i \(0.639440\pi\)
\(12\) 0 0
\(13\) 728.416 1.19542 0.597711 0.801712i \(-0.296077\pi\)
0.597711 + 0.801712i \(0.296077\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) 809.847 0.679643 0.339821 0.940490i \(-0.389633\pi\)
0.339821 + 0.940490i \(0.389633\pi\)
\(18\) 0 0
\(19\) −1026.20 −0.652152 −0.326076 0.945344i \(-0.605726\pi\)
−0.326076 + 0.945344i \(0.605726\pi\)
\(20\) 359.878 0.201178
\(21\) 0 0
\(22\) 1361.85 0.599890
\(23\) −1422.03 −0.560518 −0.280259 0.959924i \(-0.590420\pi\)
−0.280259 + 0.959924i \(0.590420\pi\)
\(24\) 0 0
\(25\) −2619.09 −0.838110
\(26\) −2913.66 −0.845290
\(27\) 0 0
\(28\) 0 0
\(29\) −5218.03 −1.15216 −0.576079 0.817394i \(-0.695418\pi\)
−0.576079 + 0.817394i \(0.695418\pi\)
\(30\) 0 0
\(31\) 7037.74 1.31531 0.657657 0.753318i \(-0.271548\pi\)
0.657657 + 0.753318i \(0.271548\pi\)
\(32\) −1024.00 −0.176777
\(33\) 0 0
\(34\) −3239.39 −0.480580
\(35\) 0 0
\(36\) 0 0
\(37\) 12792.1 1.53616 0.768082 0.640351i \(-0.221211\pi\)
0.768082 + 0.640351i \(0.221211\pi\)
\(38\) 4104.81 0.461141
\(39\) 0 0
\(40\) −1439.51 −0.142254
\(41\) 1173.51 0.109025 0.0545124 0.998513i \(-0.482640\pi\)
0.0545124 + 0.998513i \(0.482640\pi\)
\(42\) 0 0
\(43\) 3664.17 0.302207 0.151103 0.988518i \(-0.451717\pi\)
0.151103 + 0.988518i \(0.451717\pi\)
\(44\) −5447.39 −0.424186
\(45\) 0 0
\(46\) 5688.12 0.396346
\(47\) 9313.19 0.614970 0.307485 0.951553i \(-0.400513\pi\)
0.307485 + 0.951553i \(0.400513\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 10476.4 0.592633
\(51\) 0 0
\(52\) 11654.7 0.597711
\(53\) −35642.8 −1.74294 −0.871469 0.490451i \(-0.836832\pi\)
−0.871469 + 0.490451i \(0.836832\pi\)
\(54\) 0 0
\(55\) −7657.78 −0.341347
\(56\) 0 0
\(57\) 0 0
\(58\) 20872.1 0.814698
\(59\) −30376.2 −1.13607 −0.568033 0.823006i \(-0.692295\pi\)
−0.568033 + 0.823006i \(0.692295\pi\)
\(60\) 0 0
\(61\) −32186.2 −1.10751 −0.553753 0.832681i \(-0.686805\pi\)
−0.553753 + 0.832681i \(0.686805\pi\)
\(62\) −28151.0 −0.930067
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) 16383.8 0.480984
\(66\) 0 0
\(67\) 21351.1 0.581076 0.290538 0.956863i \(-0.406166\pi\)
0.290538 + 0.956863i \(0.406166\pi\)
\(68\) 12957.6 0.339821
\(69\) 0 0
\(70\) 0 0
\(71\) −61153.7 −1.43972 −0.719859 0.694121i \(-0.755793\pi\)
−0.719859 + 0.694121i \(0.755793\pi\)
\(72\) 0 0
\(73\) −41267.8 −0.906367 −0.453184 0.891417i \(-0.649712\pi\)
−0.453184 + 0.891417i \(0.649712\pi\)
\(74\) −51168.4 −1.08623
\(75\) 0 0
\(76\) −16419.2 −0.326076
\(77\) 0 0
\(78\) 0 0
\(79\) −35000.5 −0.630966 −0.315483 0.948931i \(-0.602167\pi\)
−0.315483 + 0.948931i \(0.602167\pi\)
\(80\) 5758.04 0.100589
\(81\) 0 0
\(82\) −4694.02 −0.0770922
\(83\) 86193.0 1.37334 0.686668 0.726972i \(-0.259073\pi\)
0.686668 + 0.726972i \(0.259073\pi\)
\(84\) 0 0
\(85\) 18215.4 0.273458
\(86\) −14656.7 −0.213692
\(87\) 0 0
\(88\) 21789.6 0.299945
\(89\) 77992.6 1.04371 0.521853 0.853035i \(-0.325241\pi\)
0.521853 + 0.853035i \(0.325241\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −22752.5 −0.280259
\(93\) 0 0
\(94\) −37252.8 −0.434850
\(95\) −23081.7 −0.262397
\(96\) 0 0
\(97\) 161765. 1.74565 0.872823 0.488037i \(-0.162287\pi\)
0.872823 + 0.488037i \(0.162287\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −41905.5 −0.419055
\(101\) −65854.4 −0.642364 −0.321182 0.947017i \(-0.604080\pi\)
−0.321182 + 0.947017i \(0.604080\pi\)
\(102\) 0 0
\(103\) −130198. −1.20924 −0.604619 0.796515i \(-0.706674\pi\)
−0.604619 + 0.796515i \(0.706674\pi\)
\(104\) −46618.6 −0.422645
\(105\) 0 0
\(106\) 142571. 1.23244
\(107\) −2590.95 −0.0218776 −0.0109388 0.999940i \(-0.503482\pi\)
−0.0109388 + 0.999940i \(0.503482\pi\)
\(108\) 0 0
\(109\) 110654. 0.892072 0.446036 0.895015i \(-0.352835\pi\)
0.446036 + 0.895015i \(0.352835\pi\)
\(110\) 30631.1 0.241369
\(111\) 0 0
\(112\) 0 0
\(113\) 193910. 1.42858 0.714291 0.699849i \(-0.246749\pi\)
0.714291 + 0.699849i \(0.246749\pi\)
\(114\) 0 0
\(115\) −31984.8 −0.225527
\(116\) −83488.5 −0.576079
\(117\) 0 0
\(118\) 121505. 0.803319
\(119\) 0 0
\(120\) 0 0
\(121\) −45136.8 −0.280264
\(122\) 128745. 0.783124
\(123\) 0 0
\(124\) 112604. 0.657657
\(125\) −129198. −0.739573
\(126\) 0 0
\(127\) 27429.2 0.150905 0.0754526 0.997149i \(-0.475960\pi\)
0.0754526 + 0.997149i \(0.475960\pi\)
\(128\) −16384.0 −0.0883883
\(129\) 0 0
\(130\) −65535.1 −0.340107
\(131\) 150376. 0.765597 0.382798 0.923832i \(-0.374960\pi\)
0.382798 + 0.923832i \(0.374960\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −85404.3 −0.410883
\(135\) 0 0
\(136\) −51830.2 −0.240290
\(137\) −96102.0 −0.437453 −0.218726 0.975786i \(-0.570190\pi\)
−0.218726 + 0.975786i \(0.570190\pi\)
\(138\) 0 0
\(139\) −100854. −0.442749 −0.221375 0.975189i \(-0.571054\pi\)
−0.221375 + 0.975189i \(0.571054\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 244615. 1.01803
\(143\) −247998. −1.01416
\(144\) 0 0
\(145\) −117366. −0.463577
\(146\) 165071. 0.640898
\(147\) 0 0
\(148\) 204674. 0.768082
\(149\) 360944. 1.33191 0.665954 0.745993i \(-0.268025\pi\)
0.665954 + 0.745993i \(0.268025\pi\)
\(150\) 0 0
\(151\) −434056. −1.54918 −0.774592 0.632461i \(-0.782045\pi\)
−0.774592 + 0.632461i \(0.782045\pi\)
\(152\) 65676.9 0.230570
\(153\) 0 0
\(154\) 0 0
\(155\) 158295. 0.529223
\(156\) 0 0
\(157\) 511596. 1.65645 0.828225 0.560396i \(-0.189351\pi\)
0.828225 + 0.560396i \(0.189351\pi\)
\(158\) 140002. 0.446160
\(159\) 0 0
\(160\) −23032.2 −0.0711270
\(161\) 0 0
\(162\) 0 0
\(163\) −251269. −0.740748 −0.370374 0.928883i \(-0.620770\pi\)
−0.370374 + 0.928883i \(0.620770\pi\)
\(164\) 18776.1 0.0545124
\(165\) 0 0
\(166\) −344772. −0.971095
\(167\) 419277. 1.16335 0.581674 0.813422i \(-0.302398\pi\)
0.581674 + 0.813422i \(0.302398\pi\)
\(168\) 0 0
\(169\) 159297. 0.429032
\(170\) −72861.4 −0.193364
\(171\) 0 0
\(172\) 58626.7 0.151103
\(173\) −461376. −1.17203 −0.586017 0.810299i \(-0.699305\pi\)
−0.586017 + 0.810299i \(0.699305\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −87158.2 −0.212093
\(177\) 0 0
\(178\) −311970. −0.738012
\(179\) −741706. −1.73021 −0.865105 0.501590i \(-0.832749\pi\)
−0.865105 + 0.501590i \(0.832749\pi\)
\(180\) 0 0
\(181\) −301371. −0.683762 −0.341881 0.939743i \(-0.611064\pi\)
−0.341881 + 0.939743i \(0.611064\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 91010.0 0.198173
\(185\) 287725. 0.618084
\(186\) 0 0
\(187\) −275722. −0.576590
\(188\) 149011. 0.307485
\(189\) 0 0
\(190\) 92326.7 0.185542
\(191\) −263183. −0.522004 −0.261002 0.965338i \(-0.584053\pi\)
−0.261002 + 0.965338i \(0.584053\pi\)
\(192\) 0 0
\(193\) −831127. −1.60611 −0.803053 0.595908i \(-0.796792\pi\)
−0.803053 + 0.595908i \(0.796792\pi\)
\(194\) −647061. −1.23436
\(195\) 0 0
\(196\) 0 0
\(197\) 1.05421e6 1.93536 0.967681 0.252178i \(-0.0811470\pi\)
0.967681 + 0.252178i \(0.0811470\pi\)
\(198\) 0 0
\(199\) −698568. −1.25048 −0.625239 0.780434i \(-0.714998\pi\)
−0.625239 + 0.780434i \(0.714998\pi\)
\(200\) 167622. 0.296317
\(201\) 0 0
\(202\) 263418. 0.454220
\(203\) 0 0
\(204\) 0 0
\(205\) 26394.9 0.0438667
\(206\) 520792. 0.855060
\(207\) 0 0
\(208\) 186474. 0.298855
\(209\) 349382. 0.553268
\(210\) 0 0
\(211\) −99693.6 −0.154156 −0.0770781 0.997025i \(-0.524559\pi\)
−0.0770781 + 0.997025i \(0.524559\pi\)
\(212\) −570284. −0.871469
\(213\) 0 0
\(214\) 10363.8 0.0154698
\(215\) 82415.7 0.121594
\(216\) 0 0
\(217\) 0 0
\(218\) −442615. −0.630790
\(219\) 0 0
\(220\) −122525. −0.170674
\(221\) 589905. 0.812459
\(222\) 0 0
\(223\) −526194. −0.708572 −0.354286 0.935137i \(-0.615276\pi\)
−0.354286 + 0.935137i \(0.615276\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −775642. −1.01016
\(227\) −981605. −1.26436 −0.632182 0.774820i \(-0.717840\pi\)
−0.632182 + 0.774820i \(0.717840\pi\)
\(228\) 0 0
\(229\) 85081.0 0.107212 0.0536061 0.998562i \(-0.482928\pi\)
0.0536061 + 0.998562i \(0.482928\pi\)
\(230\) 127939. 0.159472
\(231\) 0 0
\(232\) 333954. 0.407349
\(233\) −113123. −0.136509 −0.0682544 0.997668i \(-0.521743\pi\)
−0.0682544 + 0.997668i \(0.521743\pi\)
\(234\) 0 0
\(235\) 209476. 0.247436
\(236\) −486019. −0.568033
\(237\) 0 0
\(238\) 0 0
\(239\) 895100. 1.01362 0.506812 0.862057i \(-0.330824\pi\)
0.506812 + 0.862057i \(0.330824\pi\)
\(240\) 0 0
\(241\) −527715. −0.585270 −0.292635 0.956224i \(-0.594532\pi\)
−0.292635 + 0.956224i \(0.594532\pi\)
\(242\) 180547. 0.198177
\(243\) 0 0
\(244\) −514980. −0.553753
\(245\) 0 0
\(246\) 0 0
\(247\) −747501. −0.779596
\(248\) −450416. −0.465034
\(249\) 0 0
\(250\) 516793. 0.522957
\(251\) −1.19293e6 −1.19517 −0.597584 0.801806i \(-0.703873\pi\)
−0.597584 + 0.801806i \(0.703873\pi\)
\(252\) 0 0
\(253\) 484147. 0.475528
\(254\) −109717. −0.106706
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) −1.19492e6 −1.12851 −0.564257 0.825599i \(-0.690837\pi\)
−0.564257 + 0.825599i \(0.690837\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 262140. 0.240492
\(261\) 0 0
\(262\) −601504. −0.541359
\(263\) 2.12230e6 1.89199 0.945993 0.324186i \(-0.105090\pi\)
0.945993 + 0.324186i \(0.105090\pi\)
\(264\) 0 0
\(265\) −801690. −0.701280
\(266\) 0 0
\(267\) 0 0
\(268\) 341617. 0.290538
\(269\) 154977. 0.130583 0.0652913 0.997866i \(-0.479202\pi\)
0.0652913 + 0.997866i \(0.479202\pi\)
\(270\) 0 0
\(271\) −1.95888e6 −1.62026 −0.810129 0.586252i \(-0.800603\pi\)
−0.810129 + 0.586252i \(0.800603\pi\)
\(272\) 207321. 0.169911
\(273\) 0 0
\(274\) 384408. 0.309326
\(275\) 891701. 0.711030
\(276\) 0 0
\(277\) −1.74953e6 −1.37000 −0.685001 0.728542i \(-0.740198\pi\)
−0.685001 + 0.728542i \(0.740198\pi\)
\(278\) 403418. 0.313071
\(279\) 0 0
\(280\) 0 0
\(281\) −1.40665e6 −1.06272 −0.531361 0.847145i \(-0.678319\pi\)
−0.531361 + 0.847145i \(0.678319\pi\)
\(282\) 0 0
\(283\) −1.95707e6 −1.45258 −0.726291 0.687388i \(-0.758757\pi\)
−0.726291 + 0.687388i \(0.758757\pi\)
\(284\) −978460. −0.719859
\(285\) 0 0
\(286\) 991991. 0.717121
\(287\) 0 0
\(288\) 0 0
\(289\) −764005. −0.538086
\(290\) 469463. 0.327798
\(291\) 0 0
\(292\) −660285. −0.453184
\(293\) −1.26998e6 −0.864229 −0.432114 0.901819i \(-0.642232\pi\)
−0.432114 + 0.901819i \(0.642232\pi\)
\(294\) 0 0
\(295\) −683232. −0.457102
\(296\) −818695. −0.543116
\(297\) 0 0
\(298\) −1.44378e6 −0.941802
\(299\) −1.03583e6 −0.670055
\(300\) 0 0
\(301\) 0 0
\(302\) 1.73622e6 1.09544
\(303\) 0 0
\(304\) −262708. −0.163038
\(305\) −723944. −0.445611
\(306\) 0 0
\(307\) 41854.4 0.0253451 0.0126726 0.999920i \(-0.495966\pi\)
0.0126726 + 0.999920i \(0.495966\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −633182. −0.374217
\(311\) −2.29189e6 −1.34367 −0.671837 0.740699i \(-0.734494\pi\)
−0.671837 + 0.740699i \(0.734494\pi\)
\(312\) 0 0
\(313\) −2.27150e6 −1.31054 −0.655271 0.755394i \(-0.727446\pi\)
−0.655271 + 0.755394i \(0.727446\pi\)
\(314\) −2.04639e6 −1.17129
\(315\) 0 0
\(316\) −560007. −0.315483
\(317\) 1.98474e6 1.10932 0.554659 0.832078i \(-0.312849\pi\)
0.554659 + 0.832078i \(0.312849\pi\)
\(318\) 0 0
\(319\) 1.77654e6 0.977459
\(320\) 92128.7 0.0502944
\(321\) 0 0
\(322\) 0 0
\(323\) −831066. −0.443230
\(324\) 0 0
\(325\) −1.90779e6 −1.00189
\(326\) 1.00508e6 0.523788
\(327\) 0 0
\(328\) −75104.3 −0.0385461
\(329\) 0 0
\(330\) 0 0
\(331\) 638461. 0.320305 0.160153 0.987092i \(-0.448801\pi\)
0.160153 + 0.987092i \(0.448801\pi\)
\(332\) 1.37909e6 0.686668
\(333\) 0 0
\(334\) −1.67711e6 −0.822611
\(335\) 480236. 0.233799
\(336\) 0 0
\(337\) 2.72026e6 1.30478 0.652388 0.757886i \(-0.273767\pi\)
0.652388 + 0.757886i \(0.273767\pi\)
\(338\) −637186. −0.303371
\(339\) 0 0
\(340\) 291446. 0.136729
\(341\) −2.39608e6 −1.11588
\(342\) 0 0
\(343\) 0 0
\(344\) −234507. −0.106846
\(345\) 0 0
\(346\) 1.84551e6 0.828753
\(347\) −2.62076e6 −1.16843 −0.584217 0.811597i \(-0.698598\pi\)
−0.584217 + 0.811597i \(0.698598\pi\)
\(348\) 0 0
\(349\) −575592. −0.252960 −0.126480 0.991969i \(-0.540368\pi\)
−0.126480 + 0.991969i \(0.540368\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 348633. 0.149972
\(353\) −2.58972e6 −1.10615 −0.553077 0.833130i \(-0.686546\pi\)
−0.553077 + 0.833130i \(0.686546\pi\)
\(354\) 0 0
\(355\) −1.37549e6 −0.579278
\(356\) 1.24788e6 0.521853
\(357\) 0 0
\(358\) 2.96682e6 1.22344
\(359\) −2.86779e6 −1.17439 −0.587193 0.809447i \(-0.699767\pi\)
−0.587193 + 0.809447i \(0.699767\pi\)
\(360\) 0 0
\(361\) −1.42301e6 −0.574698
\(362\) 1.20548e6 0.483493
\(363\) 0 0
\(364\) 0 0
\(365\) −928210. −0.364682
\(366\) 0 0
\(367\) 1.95451e6 0.757482 0.378741 0.925503i \(-0.376357\pi\)
0.378741 + 0.925503i \(0.376357\pi\)
\(368\) −364040. −0.140129
\(369\) 0 0
\(370\) −1.15090e6 −0.437052
\(371\) 0 0
\(372\) 0 0
\(373\) 2.21110e6 0.822878 0.411439 0.911437i \(-0.365026\pi\)
0.411439 + 0.911437i \(0.365026\pi\)
\(374\) 1.10289e6 0.407711
\(375\) 0 0
\(376\) −596044. −0.217425
\(377\) −3.80090e6 −1.37731
\(378\) 0 0
\(379\) 3.81232e6 1.36330 0.681649 0.731679i \(-0.261263\pi\)
0.681649 + 0.731679i \(0.261263\pi\)
\(380\) −369307. −0.131198
\(381\) 0 0
\(382\) 1.05273e6 0.369112
\(383\) 3.80606e6 1.32580 0.662901 0.748707i \(-0.269325\pi\)
0.662901 + 0.748707i \(0.269325\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 3.32451e6 1.13569
\(387\) 0 0
\(388\) 2.58825e6 0.872823
\(389\) −3.07524e6 −1.03040 −0.515200 0.857070i \(-0.672282\pi\)
−0.515200 + 0.857070i \(0.672282\pi\)
\(390\) 0 0
\(391\) −1.15163e6 −0.380952
\(392\) 0 0
\(393\) 0 0
\(394\) −4.21685e6 −1.36851
\(395\) −787242. −0.253873
\(396\) 0 0
\(397\) −2.19133e6 −0.697800 −0.348900 0.937160i \(-0.613445\pi\)
−0.348900 + 0.937160i \(0.613445\pi\)
\(398\) 2.79427e6 0.884221
\(399\) 0 0
\(400\) −670488. −0.209528
\(401\) −1.77668e6 −0.551757 −0.275879 0.961192i \(-0.588969\pi\)
−0.275879 + 0.961192i \(0.588969\pi\)
\(402\) 0 0
\(403\) 5.12640e6 1.57235
\(404\) −1.05367e6 −0.321182
\(405\) 0 0
\(406\) 0 0
\(407\) −4.35522e6 −1.30324
\(408\) 0 0
\(409\) −2.36118e6 −0.697945 −0.348973 0.937133i \(-0.613469\pi\)
−0.348973 + 0.937133i \(0.613469\pi\)
\(410\) −105580. −0.0310185
\(411\) 0 0
\(412\) −2.08317e6 −0.604619
\(413\) 0 0
\(414\) 0 0
\(415\) 1.93868e6 0.552569
\(416\) −745898. −0.211323
\(417\) 0 0
\(418\) −1.39753e6 −0.391219
\(419\) −3.23493e6 −0.900181 −0.450090 0.892983i \(-0.648608\pi\)
−0.450090 + 0.892983i \(0.648608\pi\)
\(420\) 0 0
\(421\) −2.85759e6 −0.785769 −0.392884 0.919588i \(-0.628523\pi\)
−0.392884 + 0.919588i \(0.628523\pi\)
\(422\) 398774. 0.109005
\(423\) 0 0
\(424\) 2.28114e6 0.616222
\(425\) −2.12107e6 −0.569615
\(426\) 0 0
\(427\) 0 0
\(428\) −41455.2 −0.0109388
\(429\) 0 0
\(430\) −329663. −0.0859803
\(431\) 88386.2 0.0229188 0.0114594 0.999934i \(-0.496352\pi\)
0.0114594 + 0.999934i \(0.496352\pi\)
\(432\) 0 0
\(433\) 3.09418e6 0.793097 0.396549 0.918014i \(-0.370208\pi\)
0.396549 + 0.918014i \(0.370208\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 1.77046e6 0.446036
\(437\) 1.45929e6 0.365543
\(438\) 0 0
\(439\) −485178. −0.120155 −0.0600773 0.998194i \(-0.519135\pi\)
−0.0600773 + 0.998194i \(0.519135\pi\)
\(440\) 490098. 0.120684
\(441\) 0 0
\(442\) −2.35962e6 −0.574495
\(443\) −1.27520e6 −0.308722 −0.154361 0.988015i \(-0.549332\pi\)
−0.154361 + 0.988015i \(0.549332\pi\)
\(444\) 0 0
\(445\) 1.75424e6 0.419941
\(446\) 2.10478e6 0.501036
\(447\) 0 0
\(448\) 0 0
\(449\) 3.79144e6 0.887541 0.443770 0.896141i \(-0.353641\pi\)
0.443770 + 0.896141i \(0.353641\pi\)
\(450\) 0 0
\(451\) −399534. −0.0924937
\(452\) 3.10257e6 0.714291
\(453\) 0 0
\(454\) 3.92642e6 0.894040
\(455\) 0 0
\(456\) 0 0
\(457\) 1.70281e6 0.381395 0.190698 0.981649i \(-0.438925\pi\)
0.190698 + 0.981649i \(0.438925\pi\)
\(458\) −340324. −0.0758104
\(459\) 0 0
\(460\) −511757. −0.112764
\(461\) 4.55537e6 0.998323 0.499161 0.866509i \(-0.333642\pi\)
0.499161 + 0.866509i \(0.333642\pi\)
\(462\) 0 0
\(463\) 5.82647e6 1.26314 0.631572 0.775317i \(-0.282410\pi\)
0.631572 + 0.775317i \(0.282410\pi\)
\(464\) −1.33582e6 −0.288039
\(465\) 0 0
\(466\) 452492. 0.0965263
\(467\) −3.54261e6 −0.751677 −0.375839 0.926685i \(-0.622645\pi\)
−0.375839 + 0.926685i \(0.622645\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −837902. −0.174964
\(471\) 0 0
\(472\) 1.94408e6 0.401660
\(473\) −1.24751e6 −0.256384
\(474\) 0 0
\(475\) 2.68772e6 0.546575
\(476\) 0 0
\(477\) 0 0
\(478\) −3.58040e6 −0.716740
\(479\) −4.23542e6 −0.843447 −0.421723 0.906725i \(-0.638575\pi\)
−0.421723 + 0.906725i \(0.638575\pi\)
\(480\) 0 0
\(481\) 9.31797e6 1.83636
\(482\) 2.11086e6 0.413849
\(483\) 0 0
\(484\) −722189. −0.140132
\(485\) 3.63848e6 0.702370
\(486\) 0 0
\(487\) −5.65479e6 −1.08042 −0.540212 0.841529i \(-0.681656\pi\)
−0.540212 + 0.841529i \(0.681656\pi\)
\(488\) 2.05992e6 0.391562
\(489\) 0 0
\(490\) 0 0
\(491\) −8.33183e6 −1.55968 −0.779842 0.625976i \(-0.784701\pi\)
−0.779842 + 0.625976i \(0.784701\pi\)
\(492\) 0 0
\(493\) −4.22581e6 −0.783055
\(494\) 2.99001e6 0.551258
\(495\) 0 0
\(496\) 1.80166e6 0.328828
\(497\) 0 0
\(498\) 0 0
\(499\) −7.23769e6 −1.30121 −0.650607 0.759415i \(-0.725485\pi\)
−0.650607 + 0.759415i \(0.725485\pi\)
\(500\) −2.06717e6 −0.369787
\(501\) 0 0
\(502\) 4.77170e6 0.845112
\(503\) −6.16761e6 −1.08692 −0.543459 0.839436i \(-0.682886\pi\)
−0.543459 + 0.839436i \(0.682886\pi\)
\(504\) 0 0
\(505\) −1.48122e6 −0.258459
\(506\) −1.93659e6 −0.336249
\(507\) 0 0
\(508\) 438868. 0.0754526
\(509\) 1.83488e6 0.313916 0.156958 0.987605i \(-0.449831\pi\)
0.156958 + 0.987605i \(0.449831\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −262144. −0.0441942
\(513\) 0 0
\(514\) 4.77969e6 0.797980
\(515\) −2.92846e6 −0.486543
\(516\) 0 0
\(517\) −3.17079e6 −0.521724
\(518\) 0 0
\(519\) 0 0
\(520\) −1.04856e6 −0.170054
\(521\) 5.31040e6 0.857103 0.428551 0.903517i \(-0.359024\pi\)
0.428551 + 0.903517i \(0.359024\pi\)
\(522\) 0 0
\(523\) 2.98835e6 0.477725 0.238862 0.971053i \(-0.423226\pi\)
0.238862 + 0.971053i \(0.423226\pi\)
\(524\) 2.40601e6 0.382798
\(525\) 0 0
\(526\) −8.48921e6 −1.33784
\(527\) 5.69950e6 0.893943
\(528\) 0 0
\(529\) −4.41417e6 −0.685820
\(530\) 3.20676e6 0.495880
\(531\) 0 0
\(532\) 0 0
\(533\) 854800. 0.130331
\(534\) 0 0
\(535\) −58276.6 −0.00880257
\(536\) −1.36647e6 −0.205441
\(537\) 0 0
\(538\) −619907. −0.0923359
\(539\) 0 0
\(540\) 0 0
\(541\) 2.16832e6 0.318516 0.159258 0.987237i \(-0.449090\pi\)
0.159258 + 0.987237i \(0.449090\pi\)
\(542\) 7.83551e6 1.14570
\(543\) 0 0
\(544\) −829283. −0.120145
\(545\) 2.48886e6 0.358930
\(546\) 0 0
\(547\) −9.13272e6 −1.30506 −0.652532 0.757761i \(-0.726293\pi\)
−0.652532 + 0.757761i \(0.726293\pi\)
\(548\) −1.53763e6 −0.218726
\(549\) 0 0
\(550\) −3.56681e6 −0.502774
\(551\) 5.35475e6 0.751381
\(552\) 0 0
\(553\) 0 0
\(554\) 6.99810e6 0.968737
\(555\) 0 0
\(556\) −1.61367e6 −0.221375
\(557\) 9.22028e6 1.25923 0.629617 0.776906i \(-0.283212\pi\)
0.629617 + 0.776906i \(0.283212\pi\)
\(558\) 0 0
\(559\) 2.66904e6 0.361264
\(560\) 0 0
\(561\) 0 0
\(562\) 5.62660e6 0.751458
\(563\) 8.49277e6 1.12922 0.564610 0.825358i \(-0.309027\pi\)
0.564610 + 0.825358i \(0.309027\pi\)
\(564\) 0 0
\(565\) 4.36150e6 0.574797
\(566\) 7.82828e6 1.02713
\(567\) 0 0
\(568\) 3.91384e6 0.509017
\(569\) 4.70912e6 0.609760 0.304880 0.952391i \(-0.401384\pi\)
0.304880 + 0.952391i \(0.401384\pi\)
\(570\) 0 0
\(571\) −1.72807e6 −0.221805 −0.110902 0.993831i \(-0.535374\pi\)
−0.110902 + 0.993831i \(0.535374\pi\)
\(572\) −3.96796e6 −0.507081
\(573\) 0 0
\(574\) 0 0
\(575\) 3.72443e6 0.469776
\(576\) 0 0
\(577\) −2.38499e6 −0.298227 −0.149113 0.988820i \(-0.547642\pi\)
−0.149113 + 0.988820i \(0.547642\pi\)
\(578\) 3.05602e6 0.380484
\(579\) 0 0
\(580\) −1.87785e6 −0.231788
\(581\) 0 0
\(582\) 0 0
\(583\) 1.21350e7 1.47866
\(584\) 2.64114e6 0.320449
\(585\) 0 0
\(586\) 5.07993e6 0.611102
\(587\) −3.44904e6 −0.413145 −0.206573 0.978431i \(-0.566231\pi\)
−0.206573 + 0.978431i \(0.566231\pi\)
\(588\) 0 0
\(589\) −7.22214e6 −0.857784
\(590\) 2.73293e6 0.323220
\(591\) 0 0
\(592\) 3.27478e6 0.384041
\(593\) 1.13468e6 0.132507 0.0662533 0.997803i \(-0.478895\pi\)
0.0662533 + 0.997803i \(0.478895\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 5.77511e6 0.665954
\(597\) 0 0
\(598\) 4.14332e6 0.473800
\(599\) −7.61865e6 −0.867583 −0.433792 0.901013i \(-0.642825\pi\)
−0.433792 + 0.901013i \(0.642825\pi\)
\(600\) 0 0
\(601\) −9.78414e6 −1.10493 −0.552467 0.833535i \(-0.686314\pi\)
−0.552467 + 0.833535i \(0.686314\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −6.94489e6 −0.774592
\(605\) −1.01523e6 −0.112766
\(606\) 0 0
\(607\) −1.85335e6 −0.204167 −0.102083 0.994776i \(-0.532551\pi\)
−0.102083 + 0.994776i \(0.532551\pi\)
\(608\) 1.05083e6 0.115285
\(609\) 0 0
\(610\) 2.89578e6 0.315094
\(611\) 6.78388e6 0.735148
\(612\) 0 0
\(613\) −7.12097e6 −0.765399 −0.382699 0.923873i \(-0.625005\pi\)
−0.382699 + 0.923873i \(0.625005\pi\)
\(614\) −167417. −0.0179217
\(615\) 0 0
\(616\) 0 0
\(617\) 2.75212e6 0.291041 0.145521 0.989355i \(-0.453514\pi\)
0.145521 + 0.989355i \(0.453514\pi\)
\(618\) 0 0
\(619\) 1.30332e7 1.36718 0.683588 0.729868i \(-0.260419\pi\)
0.683588 + 0.729868i \(0.260419\pi\)
\(620\) 2.53273e6 0.264612
\(621\) 0 0
\(622\) 9.16758e6 0.950120
\(623\) 0 0
\(624\) 0 0
\(625\) 5.27870e6 0.540539
\(626\) 9.08598e6 0.926693
\(627\) 0 0
\(628\) 8.18554e6 0.828225
\(629\) 1.03597e7 1.04404
\(630\) 0 0
\(631\) −4.40820e6 −0.440745 −0.220373 0.975416i \(-0.570727\pi\)
−0.220373 + 0.975416i \(0.570727\pi\)
\(632\) 2.24003e6 0.223080
\(633\) 0 0
\(634\) −7.93897e6 −0.784406
\(635\) 616948. 0.0607175
\(636\) 0 0
\(637\) 0 0
\(638\) −7.10616e6 −0.691168
\(639\) 0 0
\(640\) −368515. −0.0355635
\(641\) 7.98390e6 0.767485 0.383742 0.923440i \(-0.374635\pi\)
0.383742 + 0.923440i \(0.374635\pi\)
\(642\) 0 0
\(643\) −1.52102e6 −0.145080 −0.0725398 0.997366i \(-0.523110\pi\)
−0.0725398 + 0.997366i \(0.523110\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 3.32426e6 0.313411
\(647\) −1.25249e7 −1.17629 −0.588146 0.808755i \(-0.700142\pi\)
−0.588146 + 0.808755i \(0.700142\pi\)
\(648\) 0 0
\(649\) 1.03419e7 0.963806
\(650\) 7.63116e6 0.708447
\(651\) 0 0
\(652\) −4.02031e6 −0.370374
\(653\) 1.70740e7 1.56694 0.783471 0.621428i \(-0.213447\pi\)
0.783471 + 0.621428i \(0.213447\pi\)
\(654\) 0 0
\(655\) 3.38231e6 0.308042
\(656\) 300417. 0.0272562
\(657\) 0 0
\(658\) 0 0
\(659\) 2.12585e6 0.190686 0.0953432 0.995444i \(-0.469605\pi\)
0.0953432 + 0.995444i \(0.469605\pi\)
\(660\) 0 0
\(661\) 2.60011e6 0.231466 0.115733 0.993280i \(-0.463078\pi\)
0.115733 + 0.993280i \(0.463078\pi\)
\(662\) −2.55384e6 −0.226490
\(663\) 0 0
\(664\) −5.51635e6 −0.485547
\(665\) 0 0
\(666\) 0 0
\(667\) 7.42020e6 0.645805
\(668\) 6.70843e6 0.581674
\(669\) 0 0
\(670\) −1.92094e6 −0.165321
\(671\) 1.09582e7 0.939577
\(672\) 0 0
\(673\) −1.44746e7 −1.23188 −0.615942 0.787792i \(-0.711224\pi\)
−0.615942 + 0.787792i \(0.711224\pi\)
\(674\) −1.08810e7 −0.922615
\(675\) 0 0
\(676\) 2.54875e6 0.214516
\(677\) −3.28845e6 −0.275753 −0.137876 0.990449i \(-0.544028\pi\)
−0.137876 + 0.990449i \(0.544028\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −1.16578e6 −0.0966819
\(681\) 0 0
\(682\) 9.58433e6 0.789043
\(683\) −8.81887e6 −0.723371 −0.361685 0.932300i \(-0.617799\pi\)
−0.361685 + 0.932300i \(0.617799\pi\)
\(684\) 0 0
\(685\) −2.16156e6 −0.176011
\(686\) 0 0
\(687\) 0 0
\(688\) 938026. 0.0755517
\(689\) −2.59628e7 −2.08354
\(690\) 0 0
\(691\) 8.59617e6 0.684873 0.342436 0.939541i \(-0.388748\pi\)
0.342436 + 0.939541i \(0.388748\pi\)
\(692\) −7.38202e6 −0.586017
\(693\) 0 0
\(694\) 1.04831e7 0.826208
\(695\) −2.26845e6 −0.178143
\(696\) 0 0
\(697\) 950360. 0.0740979
\(698\) 2.30237e6 0.178870
\(699\) 0 0
\(700\) 0 0
\(701\) −2.06437e7 −1.58669 −0.793347 0.608770i \(-0.791663\pi\)
−0.793347 + 0.608770i \(0.791663\pi\)
\(702\) 0 0
\(703\) −1.31273e7 −1.00181
\(704\) −1.39453e6 −0.106047
\(705\) 0 0
\(706\) 1.03589e7 0.782169
\(707\) 0 0
\(708\) 0 0
\(709\) −426882. −0.0318928 −0.0159464 0.999873i \(-0.505076\pi\)
−0.0159464 + 0.999873i \(0.505076\pi\)
\(710\) 5.50196e6 0.409611
\(711\) 0 0
\(712\) −4.99153e6 −0.369006
\(713\) −1.00079e7 −0.737257
\(714\) 0 0
\(715\) −5.57805e6 −0.408054
\(716\) −1.18673e7 −0.865105
\(717\) 0 0
\(718\) 1.14712e7 0.830417
\(719\) 3.80724e6 0.274655 0.137328 0.990526i \(-0.456149\pi\)
0.137328 + 0.990526i \(0.456149\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 5.69204e6 0.406373
\(723\) 0 0
\(724\) −4.82193e6 −0.341881
\(725\) 1.36665e7 0.965635
\(726\) 0 0
\(727\) 2.22044e7 1.55813 0.779065 0.626943i \(-0.215694\pi\)
0.779065 + 0.626943i \(0.215694\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 3.71284e6 0.257869
\(731\) 2.96741e6 0.205393
\(732\) 0 0
\(733\) 2.90572e7 1.99753 0.998766 0.0496729i \(-0.0158179\pi\)
0.998766 + 0.0496729i \(0.0158179\pi\)
\(734\) −7.81804e6 −0.535621
\(735\) 0 0
\(736\) 1.45616e6 0.0990865
\(737\) −7.26923e6 −0.492969
\(738\) 0 0
\(739\) 2.13523e7 1.43824 0.719122 0.694883i \(-0.244544\pi\)
0.719122 + 0.694883i \(0.244544\pi\)
\(740\) 4.60359e6 0.309042
\(741\) 0 0
\(742\) 0 0
\(743\) −3.91874e6 −0.260420 −0.130210 0.991486i \(-0.541565\pi\)
−0.130210 + 0.991486i \(0.541565\pi\)
\(744\) 0 0
\(745\) 8.11848e6 0.535900
\(746\) −8.84438e6 −0.581863
\(747\) 0 0
\(748\) −4.41155e6 −0.288295
\(749\) 0 0
\(750\) 0 0
\(751\) 5.66912e6 0.366789 0.183394 0.983039i \(-0.441291\pi\)
0.183394 + 0.983039i \(0.441291\pi\)
\(752\) 2.38418e6 0.153743
\(753\) 0 0
\(754\) 1.52036e7 0.973908
\(755\) −9.76293e6 −0.623323
\(756\) 0 0
\(757\) −1.91706e7 −1.21590 −0.607949 0.793976i \(-0.708007\pi\)
−0.607949 + 0.793976i \(0.708007\pi\)
\(758\) −1.52493e7 −0.963998
\(759\) 0 0
\(760\) 1.47723e6 0.0927712
\(761\) 1.46336e7 0.915987 0.457993 0.888956i \(-0.348568\pi\)
0.457993 + 0.888956i \(0.348568\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −4.21092e6 −0.261002
\(765\) 0 0
\(766\) −1.52242e7 −0.937483
\(767\) −2.21265e7 −1.35808
\(768\) 0 0
\(769\) −1.57337e7 −0.959432 −0.479716 0.877424i \(-0.659260\pi\)
−0.479716 + 0.877424i \(0.659260\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −1.32980e7 −0.803053
\(773\) 4.04904e6 0.243727 0.121864 0.992547i \(-0.461113\pi\)
0.121864 + 0.992547i \(0.461113\pi\)
\(774\) 0 0
\(775\) −1.84325e7 −1.10238
\(776\) −1.03530e7 −0.617179
\(777\) 0 0
\(778\) 1.23010e7 0.728602
\(779\) −1.20425e6 −0.0711007
\(780\) 0 0
\(781\) 2.08205e7 1.22142
\(782\) 4.60651e6 0.269374
\(783\) 0 0
\(784\) 0 0
\(785\) 1.15070e7 0.666481
\(786\) 0 0
\(787\) 2.16111e7 1.24377 0.621886 0.783108i \(-0.286367\pi\)
0.621886 + 0.783108i \(0.286367\pi\)
\(788\) 1.68674e7 0.967681
\(789\) 0 0
\(790\) 3.14897e6 0.179515
\(791\) 0 0
\(792\) 0 0
\(793\) −2.34450e7 −1.32394
\(794\) 8.76530e6 0.493419
\(795\) 0 0
\(796\) −1.11771e7 −0.625239
\(797\) 1.38162e7 0.770445 0.385222 0.922824i \(-0.374125\pi\)
0.385222 + 0.922824i \(0.374125\pi\)
\(798\) 0 0
\(799\) 7.54226e6 0.417960
\(800\) 2.68195e6 0.148158
\(801\) 0 0
\(802\) 7.10672e6 0.390151
\(803\) 1.40501e7 0.768937
\(804\) 0 0
\(805\) 0 0
\(806\) −2.05056e7 −1.11182
\(807\) 0 0
\(808\) 4.21468e6 0.227110
\(809\) 3.50756e7 1.88423 0.942116 0.335287i \(-0.108833\pi\)
0.942116 + 0.335287i \(0.108833\pi\)
\(810\) 0 0
\(811\) −6.56287e6 −0.350382 −0.175191 0.984534i \(-0.556054\pi\)
−0.175191 + 0.984534i \(0.556054\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 1.74209e7 0.921530
\(815\) −5.65164e6 −0.298044
\(816\) 0 0
\(817\) −3.76017e6 −0.197085
\(818\) 9.44473e6 0.493522
\(819\) 0 0
\(820\) 422318. 0.0219334
\(821\) 1.77894e6 0.0921093 0.0460547 0.998939i \(-0.485335\pi\)
0.0460547 + 0.998939i \(0.485335\pi\)
\(822\) 0 0
\(823\) 1.89586e7 0.975676 0.487838 0.872934i \(-0.337786\pi\)
0.487838 + 0.872934i \(0.337786\pi\)
\(824\) 8.33268e6 0.427530
\(825\) 0 0
\(826\) 0 0
\(827\) −2.82110e7 −1.43435 −0.717174 0.696894i \(-0.754565\pi\)
−0.717174 + 0.696894i \(0.754565\pi\)
\(828\) 0 0
\(829\) 2.24021e7 1.13214 0.566072 0.824356i \(-0.308462\pi\)
0.566072 + 0.824356i \(0.308462\pi\)
\(830\) −7.75473e6 −0.390725
\(831\) 0 0
\(832\) 2.98359e6 0.149428
\(833\) 0 0
\(834\) 0 0
\(835\) 9.43051e6 0.468079
\(836\) 5.59012e6 0.276634
\(837\) 0 0
\(838\) 1.29397e7 0.636524
\(839\) −1.50303e7 −0.737162 −0.368581 0.929596i \(-0.620156\pi\)
−0.368581 + 0.929596i \(0.620156\pi\)
\(840\) 0 0
\(841\) 6.71672e6 0.327467
\(842\) 1.14304e7 0.555622
\(843\) 0 0
\(844\) −1.59510e6 −0.0770781
\(845\) 3.58295e6 0.172623
\(846\) 0 0
\(847\) 0 0
\(848\) −9.12455e6 −0.435734
\(849\) 0 0
\(850\) 8.48426e6 0.402779
\(851\) −1.81908e7 −0.861048
\(852\) 0 0
\(853\) 3.18297e7 1.49782 0.748911 0.662670i \(-0.230577\pi\)
0.748911 + 0.662670i \(0.230577\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 165821. 0.00773490
\(857\) 2.17823e7 1.01310 0.506549 0.862211i \(-0.330921\pi\)
0.506549 + 0.862211i \(0.330921\pi\)
\(858\) 0 0
\(859\) −3.73349e7 −1.72636 −0.863181 0.504895i \(-0.831531\pi\)
−0.863181 + 0.504895i \(0.831531\pi\)
\(860\) 1.31865e6 0.0607972
\(861\) 0 0
\(862\) −353545. −0.0162060
\(863\) 1.54613e7 0.706675 0.353338 0.935496i \(-0.385047\pi\)
0.353338 + 0.935496i \(0.385047\pi\)
\(864\) 0 0
\(865\) −1.03774e7 −0.471574
\(866\) −1.23767e7 −0.560805
\(867\) 0 0
\(868\) 0 0
\(869\) 1.19163e7 0.535294
\(870\) 0 0
\(871\) 1.55525e7 0.694630
\(872\) −7.08184e6 −0.315395
\(873\) 0 0
\(874\) −5.83716e6 −0.258478
\(875\) 0 0
\(876\) 0 0
\(877\) −6.81762e6 −0.299319 −0.149659 0.988738i \(-0.547818\pi\)
−0.149659 + 0.988738i \(0.547818\pi\)
\(878\) 1.94071e6 0.0849621
\(879\) 0 0
\(880\) −1.96039e6 −0.0853368
\(881\) −1.20903e7 −0.524805 −0.262402 0.964959i \(-0.584515\pi\)
−0.262402 + 0.964959i \(0.584515\pi\)
\(882\) 0 0
\(883\) 1.63966e7 0.707706 0.353853 0.935301i \(-0.384871\pi\)
0.353853 + 0.935301i \(0.384871\pi\)
\(884\) 9.43848e6 0.406230
\(885\) 0 0
\(886\) 5.10078e6 0.218299
\(887\) −2.57006e7 −1.09682 −0.548409 0.836210i \(-0.684766\pi\)
−0.548409 + 0.836210i \(0.684766\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −7.01695e6 −0.296943
\(891\) 0 0
\(892\) −8.41911e6 −0.354286
\(893\) −9.55721e6 −0.401054
\(894\) 0 0
\(895\) −1.66827e7 −0.696160
\(896\) 0 0
\(897\) 0 0
\(898\) −1.51658e7 −0.627586
\(899\) −3.67232e7 −1.51545
\(900\) 0 0
\(901\) −2.88652e7 −1.18457
\(902\) 1.59813e6 0.0654029
\(903\) 0 0
\(904\) −1.24103e7 −0.505080
\(905\) −6.77854e6 −0.275115
\(906\) 0 0
\(907\) −2.34481e7 −0.946434 −0.473217 0.880946i \(-0.656907\pi\)
−0.473217 + 0.880946i \(0.656907\pi\)
\(908\) −1.57057e7 −0.632182
\(909\) 0 0
\(910\) 0 0
\(911\) 3.29134e7 1.31395 0.656973 0.753914i \(-0.271837\pi\)
0.656973 + 0.753914i \(0.271837\pi\)
\(912\) 0 0
\(913\) −2.93454e7 −1.16510
\(914\) −6.81123e6 −0.269687
\(915\) 0 0
\(916\) 1.36130e6 0.0536061
\(917\) 0 0
\(918\) 0 0
\(919\) −2.52264e7 −0.985294 −0.492647 0.870229i \(-0.663971\pi\)
−0.492647 + 0.870229i \(0.663971\pi\)
\(920\) 2.04703e6 0.0797359
\(921\) 0 0
\(922\) −1.82215e7 −0.705921
\(923\) −4.45454e7 −1.72107
\(924\) 0 0
\(925\) −3.35037e7 −1.28748
\(926\) −2.33059e7 −0.893178
\(927\) 0 0
\(928\) 5.34327e6 0.203675
\(929\) 2.51164e7 0.954812 0.477406 0.878683i \(-0.341577\pi\)
0.477406 + 0.878683i \(0.341577\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −1.80997e6 −0.0682544
\(933\) 0 0
\(934\) 1.41704e7 0.531516
\(935\) −6.20163e6 −0.231994
\(936\) 0 0
\(937\) −8.25845e6 −0.307291 −0.153645 0.988126i \(-0.549101\pi\)
−0.153645 + 0.988126i \(0.549101\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 3.35161e6 0.123718
\(941\) 1.27088e7 0.467875 0.233938 0.972252i \(-0.424839\pi\)
0.233938 + 0.972252i \(0.424839\pi\)
\(942\) 0 0
\(943\) −1.66876e6 −0.0611103
\(944\) −7.77630e6 −0.284016
\(945\) 0 0
\(946\) 4.99003e6 0.181291
\(947\) −1.06278e7 −0.385096 −0.192548 0.981288i \(-0.561675\pi\)
−0.192548 + 0.981288i \(0.561675\pi\)
\(948\) 0 0
\(949\) −3.00601e7 −1.08349
\(950\) −1.07509e7 −0.386487
\(951\) 0 0
\(952\) 0 0
\(953\) −749727. −0.0267406 −0.0133703 0.999911i \(-0.504256\pi\)
−0.0133703 + 0.999911i \(0.504256\pi\)
\(954\) 0 0
\(955\) −5.91959e6 −0.210031
\(956\) 1.43216e7 0.506812
\(957\) 0 0
\(958\) 1.69417e7 0.596407
\(959\) 0 0
\(960\) 0 0
\(961\) 2.09007e7 0.730050
\(962\) −3.72719e7 −1.29851
\(963\) 0 0
\(964\) −8.44343e6 −0.292635
\(965\) −1.86940e7 −0.646225
\(966\) 0 0
\(967\) 2.97713e7 1.02384 0.511920 0.859033i \(-0.328934\pi\)
0.511920 + 0.859033i \(0.328934\pi\)
\(968\) 2.88876e6 0.0990883
\(969\) 0 0
\(970\) −1.45539e7 −0.496651
\(971\) −1.51210e7 −0.514676 −0.257338 0.966321i \(-0.582845\pi\)
−0.257338 + 0.966321i \(0.582845\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 2.26192e7 0.763975
\(975\) 0 0
\(976\) −8.23968e6 −0.276876
\(977\) −1.93107e6 −0.0647235 −0.0323617 0.999476i \(-0.510303\pi\)
−0.0323617 + 0.999476i \(0.510303\pi\)
\(978\) 0 0
\(979\) −2.65535e7 −0.885452
\(980\) 0 0
\(981\) 0 0
\(982\) 3.33273e7 1.10286
\(983\) 4.22343e7 1.39406 0.697030 0.717042i \(-0.254504\pi\)
0.697030 + 0.717042i \(0.254504\pi\)
\(984\) 0 0
\(985\) 2.37117e7 0.778703
\(986\) 1.69032e7 0.553704
\(987\) 0 0
\(988\) −1.19600e7 −0.389798
\(989\) −5.21056e6 −0.169392
\(990\) 0 0
\(991\) 5.83480e6 0.188730 0.0943651 0.995538i \(-0.469918\pi\)
0.0943651 + 0.995538i \(0.469918\pi\)
\(992\) −7.20665e6 −0.232517
\(993\) 0 0
\(994\) 0 0
\(995\) −1.57124e7 −0.503136
\(996\) 0 0
\(997\) −1.23461e7 −0.393360 −0.196680 0.980468i \(-0.563016\pi\)
−0.196680 + 0.980468i \(0.563016\pi\)
\(998\) 2.89508e7 0.920097
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.6.a.bb.1.2 2
3.2 odd 2 294.6.a.w.1.1 2
7.3 odd 6 126.6.g.h.37.2 4
7.5 odd 6 126.6.g.h.109.2 4
7.6 odd 2 882.6.a.bh.1.1 2
21.2 odd 6 294.6.e.s.67.2 4
21.5 even 6 42.6.e.c.25.1 4
21.11 odd 6 294.6.e.s.79.2 4
21.17 even 6 42.6.e.c.37.1 yes 4
21.20 even 2 294.6.a.r.1.2 2
84.47 odd 6 336.6.q.f.193.1 4
84.59 odd 6 336.6.q.f.289.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.6.e.c.25.1 4 21.5 even 6
42.6.e.c.37.1 yes 4 21.17 even 6
126.6.g.h.37.2 4 7.3 odd 6
126.6.g.h.109.2 4 7.5 odd 6
294.6.a.r.1.2 2 21.20 even 2
294.6.a.w.1.1 2 3.2 odd 2
294.6.e.s.67.2 4 21.2 odd 6
294.6.e.s.79.2 4 21.11 odd 6
336.6.q.f.193.1 4 84.47 odd 6
336.6.q.f.289.1 4 84.59 odd 6
882.6.a.bb.1.2 2 1.1 even 1 trivial
882.6.a.bh.1.1 2 7.6 odd 2