Properties

Label 882.6.a.ba.1.2
Level $882$
Weight $6$
Character 882.1
Self dual yes
Analytic conductor $141.459$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [882,6,Mod(1,882)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("882.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(882, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 882.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-8,0,32,-70,0,0,-128,0,280,-62] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.458529075\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{79}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 79 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 14)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(8.88819\) of defining polynomial
Character \(\chi\) \(=\) 882.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} +16.0000 q^{4} +36.1056 q^{5} -64.0000 q^{8} -144.422 q^{10} -155.435 q^{11} +1158.87 q^{13} +256.000 q^{16} -1238.08 q^{17} -280.279 q^{19} +577.689 q^{20} +621.739 q^{22} +3482.39 q^{23} -1821.39 q^{25} -4635.48 q^{26} +5656.78 q^{29} -2314.70 q^{31} -1024.00 q^{32} +4952.32 q^{34} -2333.18 q^{37} +1121.12 q^{38} -2310.76 q^{40} -3812.61 q^{41} +3925.73 q^{43} -2486.96 q^{44} -13929.6 q^{46} +11116.5 q^{47} +7285.56 q^{50} +18541.9 q^{52} +11186.2 q^{53} -5612.06 q^{55} -22627.1 q^{58} +6010.35 q^{59} -14838.7 q^{61} +9258.81 q^{62} +4096.00 q^{64} +41841.6 q^{65} -42983.9 q^{67} -19809.3 q^{68} +19962.4 q^{71} +45550.6 q^{73} +9332.70 q^{74} -4484.47 q^{76} +108992. q^{79} +9243.02 q^{80} +15250.4 q^{82} -55829.0 q^{83} -44701.6 q^{85} -15702.9 q^{86} +9947.82 q^{88} +95545.8 q^{89} +55718.2 q^{92} -44465.8 q^{94} -10119.6 q^{95} +15004.9 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{2} + 32 q^{4} - 70 q^{5} - 128 q^{8} + 280 q^{10} - 62 q^{11} + 1820 q^{13} + 512 q^{16} - 1694 q^{17} + 826 q^{19} - 1120 q^{20} + 248 q^{22} + 2734 q^{23} + 6312 q^{25} - 7280 q^{26} + 2852 q^{29}+ \cdots - 8316 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) 0 0
\(4\) 16.0000 0.500000
\(5\) 36.1056 0.645876 0.322938 0.946420i \(-0.395329\pi\)
0.322938 + 0.946420i \(0.395329\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −64.0000 −0.353553
\(9\) 0 0
\(10\) −144.422 −0.456703
\(11\) −155.435 −0.387317 −0.193658 0.981069i \(-0.562035\pi\)
−0.193658 + 0.981069i \(0.562035\pi\)
\(12\) 0 0
\(13\) 1158.87 1.90185 0.950925 0.309422i \(-0.100136\pi\)
0.950925 + 0.309422i \(0.100136\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) −1238.08 −1.03903 −0.519513 0.854462i \(-0.673887\pi\)
−0.519513 + 0.854462i \(0.673887\pi\)
\(18\) 0 0
\(19\) −280.279 −0.178118 −0.0890588 0.996026i \(-0.528386\pi\)
−0.0890588 + 0.996026i \(0.528386\pi\)
\(20\) 577.689 0.322938
\(21\) 0 0
\(22\) 621.739 0.273874
\(23\) 3482.39 1.37264 0.686322 0.727298i \(-0.259224\pi\)
0.686322 + 0.727298i \(0.259224\pi\)
\(24\) 0 0
\(25\) −1821.39 −0.582844
\(26\) −4635.48 −1.34481
\(27\) 0 0
\(28\) 0 0
\(29\) 5656.78 1.24903 0.624517 0.781011i \(-0.285296\pi\)
0.624517 + 0.781011i \(0.285296\pi\)
\(30\) 0 0
\(31\) −2314.70 −0.432604 −0.216302 0.976326i \(-0.569400\pi\)
−0.216302 + 0.976326i \(0.569400\pi\)
\(32\) −1024.00 −0.176777
\(33\) 0 0
\(34\) 4952.32 0.734703
\(35\) 0 0
\(36\) 0 0
\(37\) −2333.18 −0.280184 −0.140092 0.990139i \(-0.544740\pi\)
−0.140092 + 0.990139i \(0.544740\pi\)
\(38\) 1121.12 0.125948
\(39\) 0 0
\(40\) −2310.76 −0.228352
\(41\) −3812.61 −0.354211 −0.177106 0.984192i \(-0.556673\pi\)
−0.177106 + 0.984192i \(0.556673\pi\)
\(42\) 0 0
\(43\) 3925.73 0.323780 0.161890 0.986809i \(-0.448241\pi\)
0.161890 + 0.986809i \(0.448241\pi\)
\(44\) −2486.96 −0.193658
\(45\) 0 0
\(46\) −13929.6 −0.970606
\(47\) 11116.5 0.734043 0.367022 0.930212i \(-0.380378\pi\)
0.367022 + 0.930212i \(0.380378\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 7285.56 0.412133
\(51\) 0 0
\(52\) 18541.9 0.950925
\(53\) 11186.2 0.547007 0.273504 0.961871i \(-0.411817\pi\)
0.273504 + 0.961871i \(0.411817\pi\)
\(54\) 0 0
\(55\) −5612.06 −0.250159
\(56\) 0 0
\(57\) 0 0
\(58\) −22627.1 −0.883201
\(59\) 6010.35 0.224786 0.112393 0.993664i \(-0.464148\pi\)
0.112393 + 0.993664i \(0.464148\pi\)
\(60\) 0 0
\(61\) −14838.7 −0.510589 −0.255295 0.966863i \(-0.582172\pi\)
−0.255295 + 0.966863i \(0.582172\pi\)
\(62\) 9258.81 0.305897
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) 41841.6 1.22836
\(66\) 0 0
\(67\) −42983.9 −1.16982 −0.584909 0.811099i \(-0.698870\pi\)
−0.584909 + 0.811099i \(0.698870\pi\)
\(68\) −19809.3 −0.519513
\(69\) 0 0
\(70\) 0 0
\(71\) 19962.4 0.469967 0.234984 0.971999i \(-0.424496\pi\)
0.234984 + 0.971999i \(0.424496\pi\)
\(72\) 0 0
\(73\) 45550.6 1.00043 0.500215 0.865901i \(-0.333254\pi\)
0.500215 + 0.865901i \(0.333254\pi\)
\(74\) 9332.70 0.198120
\(75\) 0 0
\(76\) −4484.47 −0.0890588
\(77\) 0 0
\(78\) 0 0
\(79\) 108992. 1.96484 0.982419 0.186687i \(-0.0597750\pi\)
0.982419 + 0.186687i \(0.0597750\pi\)
\(80\) 9243.02 0.161469
\(81\) 0 0
\(82\) 15250.4 0.250465
\(83\) −55829.0 −0.889538 −0.444769 0.895645i \(-0.646714\pi\)
−0.444769 + 0.895645i \(0.646714\pi\)
\(84\) 0 0
\(85\) −44701.6 −0.671082
\(86\) −15702.9 −0.228947
\(87\) 0 0
\(88\) 9947.82 0.136937
\(89\) 95545.8 1.27861 0.639303 0.768955i \(-0.279223\pi\)
0.639303 + 0.768955i \(0.279223\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 55718.2 0.686322
\(93\) 0 0
\(94\) −44465.8 −0.519047
\(95\) −10119.6 −0.115042
\(96\) 0 0
\(97\) 15004.9 0.161922 0.0809609 0.996717i \(-0.474201\pi\)
0.0809609 + 0.996717i \(0.474201\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −29142.2 −0.291422
\(101\) −26876.1 −0.262158 −0.131079 0.991372i \(-0.541844\pi\)
−0.131079 + 0.991372i \(0.541844\pi\)
\(102\) 0 0
\(103\) −51915.2 −0.482171 −0.241086 0.970504i \(-0.577503\pi\)
−0.241086 + 0.970504i \(0.577503\pi\)
\(104\) −74167.6 −0.672405
\(105\) 0 0
\(106\) −44744.8 −0.386793
\(107\) 24974.8 0.210883 0.105442 0.994425i \(-0.466374\pi\)
0.105442 + 0.994425i \(0.466374\pi\)
\(108\) 0 0
\(109\) −3636.14 −0.0293140 −0.0146570 0.999893i \(-0.504666\pi\)
−0.0146570 + 0.999893i \(0.504666\pi\)
\(110\) 22448.2 0.176889
\(111\) 0 0
\(112\) 0 0
\(113\) −62175.0 −0.458057 −0.229028 0.973420i \(-0.573555\pi\)
−0.229028 + 0.973420i \(0.573555\pi\)
\(114\) 0 0
\(115\) 125734. 0.886557
\(116\) 90508.5 0.624517
\(117\) 0 0
\(118\) −24041.4 −0.158948
\(119\) 0 0
\(120\) 0 0
\(121\) −136891. −0.849986
\(122\) 59354.9 0.361041
\(123\) 0 0
\(124\) −37035.2 −0.216302
\(125\) −178592. −1.02232
\(126\) 0 0
\(127\) 63550.3 0.349630 0.174815 0.984601i \(-0.444067\pi\)
0.174815 + 0.984601i \(0.444067\pi\)
\(128\) −16384.0 −0.0883883
\(129\) 0 0
\(130\) −167366. −0.868581
\(131\) −136297. −0.693918 −0.346959 0.937880i \(-0.612786\pi\)
−0.346959 + 0.937880i \(0.612786\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 171935. 0.827187
\(135\) 0 0
\(136\) 79237.2 0.367351
\(137\) −335303. −1.52629 −0.763144 0.646228i \(-0.776345\pi\)
−0.763144 + 0.646228i \(0.776345\pi\)
\(138\) 0 0
\(139\) 58195.2 0.255476 0.127738 0.991808i \(-0.459228\pi\)
0.127738 + 0.991808i \(0.459228\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −79849.7 −0.332317
\(143\) −180129. −0.736618
\(144\) 0 0
\(145\) 204241. 0.806721
\(146\) −182202. −0.707411
\(147\) 0 0
\(148\) −37330.8 −0.140092
\(149\) −283058. −1.04450 −0.522251 0.852792i \(-0.674908\pi\)
−0.522251 + 0.852792i \(0.674908\pi\)
\(150\) 0 0
\(151\) −241558. −0.862142 −0.431071 0.902318i \(-0.641864\pi\)
−0.431071 + 0.902318i \(0.641864\pi\)
\(152\) 17937.9 0.0629741
\(153\) 0 0
\(154\) 0 0
\(155\) −83573.6 −0.279409
\(156\) 0 0
\(157\) −214029. −0.692984 −0.346492 0.938053i \(-0.612627\pi\)
−0.346492 + 0.938053i \(0.612627\pi\)
\(158\) −435968. −1.38935
\(159\) 0 0
\(160\) −36972.1 −0.114176
\(161\) 0 0
\(162\) 0 0
\(163\) 64466.0 0.190047 0.0950237 0.995475i \(-0.469707\pi\)
0.0950237 + 0.995475i \(0.469707\pi\)
\(164\) −61001.7 −0.177106
\(165\) 0 0
\(166\) 223316. 0.628999
\(167\) 442694. 1.22832 0.614162 0.789180i \(-0.289494\pi\)
0.614162 + 0.789180i \(0.289494\pi\)
\(168\) 0 0
\(169\) 971685. 2.61703
\(170\) 178806. 0.474527
\(171\) 0 0
\(172\) 62811.7 0.161890
\(173\) 78599.0 0.199665 0.0998325 0.995004i \(-0.468169\pi\)
0.0998325 + 0.995004i \(0.468169\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −39791.3 −0.0968292
\(177\) 0 0
\(178\) −382183. −0.904111
\(179\) 510427. 1.19070 0.595348 0.803468i \(-0.297014\pi\)
0.595348 + 0.803468i \(0.297014\pi\)
\(180\) 0 0
\(181\) −22051.8 −0.0500319 −0.0250160 0.999687i \(-0.507964\pi\)
−0.0250160 + 0.999687i \(0.507964\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −222873. −0.485303
\(185\) −84240.6 −0.180964
\(186\) 0 0
\(187\) 192441. 0.402432
\(188\) 177863. 0.367022
\(189\) 0 0
\(190\) 40478.5 0.0813469
\(191\) 558152. 1.10706 0.553528 0.832831i \(-0.313281\pi\)
0.553528 + 0.832831i \(0.313281\pi\)
\(192\) 0 0
\(193\) −49316.3 −0.0953009 −0.0476504 0.998864i \(-0.515173\pi\)
−0.0476504 + 0.998864i \(0.515173\pi\)
\(194\) −60019.8 −0.114496
\(195\) 0 0
\(196\) 0 0
\(197\) 941509. 1.72846 0.864229 0.503099i \(-0.167807\pi\)
0.864229 + 0.503099i \(0.167807\pi\)
\(198\) 0 0
\(199\) 640012. 1.14566 0.572830 0.819675i \(-0.305846\pi\)
0.572830 + 0.819675i \(0.305846\pi\)
\(200\) 116569. 0.206067
\(201\) 0 0
\(202\) 107505. 0.185374
\(203\) 0 0
\(204\) 0 0
\(205\) −137656. −0.228777
\(206\) 207661. 0.340947
\(207\) 0 0
\(208\) 296671. 0.475462
\(209\) 43565.1 0.0689879
\(210\) 0 0
\(211\) 921869. 1.42549 0.712743 0.701425i \(-0.247452\pi\)
0.712743 + 0.701425i \(0.247452\pi\)
\(212\) 178979. 0.273504
\(213\) 0 0
\(214\) −99899.1 −0.149117
\(215\) 141741. 0.209121
\(216\) 0 0
\(217\) 0 0
\(218\) 14544.6 0.0207281
\(219\) 0 0
\(220\) −89792.9 −0.125079
\(221\) −1.43477e6 −1.97607
\(222\) 0 0
\(223\) −837700. −1.12805 −0.564023 0.825759i \(-0.690747\pi\)
−0.564023 + 0.825759i \(0.690747\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 248700. 0.323895
\(227\) 1.33069e6 1.71400 0.857002 0.515313i \(-0.172324\pi\)
0.857002 + 0.515313i \(0.172324\pi\)
\(228\) 0 0
\(229\) 1.01063e6 1.27352 0.636759 0.771063i \(-0.280275\pi\)
0.636759 + 0.771063i \(0.280275\pi\)
\(230\) −502935. −0.626891
\(231\) 0 0
\(232\) −362034. −0.441600
\(233\) −1.48610e6 −1.79332 −0.896661 0.442718i \(-0.854014\pi\)
−0.896661 + 0.442718i \(0.854014\pi\)
\(234\) 0 0
\(235\) 401366. 0.474101
\(236\) 96165.6 0.112393
\(237\) 0 0
\(238\) 0 0
\(239\) −875637. −0.991584 −0.495792 0.868441i \(-0.665122\pi\)
−0.495792 + 0.868441i \(0.665122\pi\)
\(240\) 0 0
\(241\) 1.45294e6 1.61141 0.805706 0.592316i \(-0.201786\pi\)
0.805706 + 0.592316i \(0.201786\pi\)
\(242\) 547564. 0.601031
\(243\) 0 0
\(244\) −237419. −0.255295
\(245\) 0 0
\(246\) 0 0
\(247\) −324807. −0.338753
\(248\) 148141. 0.152949
\(249\) 0 0
\(250\) 714368. 0.722890
\(251\) 198384. 0.198757 0.0993786 0.995050i \(-0.468315\pi\)
0.0993786 + 0.995050i \(0.468315\pi\)
\(252\) 0 0
\(253\) −541284. −0.531648
\(254\) −254201. −0.247226
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) −479572. −0.452919 −0.226460 0.974021i \(-0.572715\pi\)
−0.226460 + 0.974021i \(0.572715\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 669466. 0.614179
\(261\) 0 0
\(262\) 545188. 0.490674
\(263\) −454943. −0.405572 −0.202786 0.979223i \(-0.565000\pi\)
−0.202786 + 0.979223i \(0.565000\pi\)
\(264\) 0 0
\(265\) 403884. 0.353299
\(266\) 0 0
\(267\) 0 0
\(268\) −687742. −0.584909
\(269\) 860136. 0.724747 0.362374 0.932033i \(-0.381966\pi\)
0.362374 + 0.932033i \(0.381966\pi\)
\(270\) 0 0
\(271\) 1.30558e6 1.07989 0.539946 0.841700i \(-0.318445\pi\)
0.539946 + 0.841700i \(0.318445\pi\)
\(272\) −316949. −0.259757
\(273\) 0 0
\(274\) 1.34121e6 1.07925
\(275\) 283107. 0.225745
\(276\) 0 0
\(277\) −543109. −0.425292 −0.212646 0.977129i \(-0.568208\pi\)
−0.212646 + 0.977129i \(0.568208\pi\)
\(278\) −232781. −0.180649
\(279\) 0 0
\(280\) 0 0
\(281\) −998089. −0.754055 −0.377028 0.926202i \(-0.623054\pi\)
−0.377028 + 0.926202i \(0.623054\pi\)
\(282\) 0 0
\(283\) 1.77732e6 1.31917 0.659583 0.751632i \(-0.270733\pi\)
0.659583 + 0.751632i \(0.270733\pi\)
\(284\) 319399. 0.234984
\(285\) 0 0
\(286\) 720514. 0.520868
\(287\) 0 0
\(288\) 0 0
\(289\) 112986. 0.0795759
\(290\) −816965. −0.570438
\(291\) 0 0
\(292\) 728809. 0.500215
\(293\) 1.63987e6 1.11594 0.557969 0.829862i \(-0.311581\pi\)
0.557969 + 0.829862i \(0.311581\pi\)
\(294\) 0 0
\(295\) 217007. 0.145184
\(296\) 149323. 0.0990599
\(297\) 0 0
\(298\) 1.13223e6 0.738575
\(299\) 4.03564e6 2.61056
\(300\) 0 0
\(301\) 0 0
\(302\) 966231. 0.609626
\(303\) 0 0
\(304\) −71751.5 −0.0445294
\(305\) −535760. −0.329777
\(306\) 0 0
\(307\) 2.38130e6 1.44201 0.721006 0.692928i \(-0.243680\pi\)
0.721006 + 0.692928i \(0.243680\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 334294. 0.197572
\(311\) 1.24513e6 0.729983 0.364992 0.931011i \(-0.381072\pi\)
0.364992 + 0.931011i \(0.381072\pi\)
\(312\) 0 0
\(313\) 1.66299e6 0.959465 0.479732 0.877415i \(-0.340734\pi\)
0.479732 + 0.877415i \(0.340734\pi\)
\(314\) 856115. 0.490014
\(315\) 0 0
\(316\) 1.74387e6 0.982419
\(317\) 2.62486e6 1.46709 0.733547 0.679639i \(-0.237864\pi\)
0.733547 + 0.679639i \(0.237864\pi\)
\(318\) 0 0
\(319\) −879260. −0.483772
\(320\) 147888. 0.0807345
\(321\) 0 0
\(322\) 0 0
\(323\) 347008. 0.185069
\(324\) 0 0
\(325\) −2.11075e6 −1.10848
\(326\) −257864. −0.134384
\(327\) 0 0
\(328\) 244007. 0.125233
\(329\) 0 0
\(330\) 0 0
\(331\) 1.73886e6 0.872355 0.436178 0.899861i \(-0.356332\pi\)
0.436178 + 0.899861i \(0.356332\pi\)
\(332\) −893264. −0.444769
\(333\) 0 0
\(334\) −1.77078e6 −0.868556
\(335\) −1.55196e6 −0.755558
\(336\) 0 0
\(337\) 853564. 0.409413 0.204706 0.978823i \(-0.434376\pi\)
0.204706 + 0.978823i \(0.434376\pi\)
\(338\) −3.88674e6 −1.85052
\(339\) 0 0
\(340\) −715225. −0.335541
\(341\) 359785. 0.167555
\(342\) 0 0
\(343\) 0 0
\(344\) −251247. −0.114473
\(345\) 0 0
\(346\) −314396. −0.141184
\(347\) 2.98500e6 1.33082 0.665411 0.746477i \(-0.268256\pi\)
0.665411 + 0.746477i \(0.268256\pi\)
\(348\) 0 0
\(349\) 2.87467e6 1.26335 0.631676 0.775233i \(-0.282367\pi\)
0.631676 + 0.775233i \(0.282367\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 159165. 0.0684686
\(353\) −1.47109e6 −0.628352 −0.314176 0.949365i \(-0.601728\pi\)
−0.314176 + 0.949365i \(0.601728\pi\)
\(354\) 0 0
\(355\) 720755. 0.303540
\(356\) 1.52873e6 0.639303
\(357\) 0 0
\(358\) −2.04171e6 −0.841950
\(359\) −3.07799e6 −1.26047 −0.630233 0.776406i \(-0.717041\pi\)
−0.630233 + 0.776406i \(0.717041\pi\)
\(360\) 0 0
\(361\) −2.39754e6 −0.968274
\(362\) 88207.2 0.0353779
\(363\) 0 0
\(364\) 0 0
\(365\) 1.64463e6 0.646154
\(366\) 0 0
\(367\) 1.61670e6 0.626561 0.313281 0.949661i \(-0.398572\pi\)
0.313281 + 0.949661i \(0.398572\pi\)
\(368\) 891492. 0.343161
\(369\) 0 0
\(370\) 336962. 0.127961
\(371\) 0 0
\(372\) 0 0
\(373\) −4.76119e6 −1.77192 −0.885958 0.463766i \(-0.846498\pi\)
−0.885958 + 0.463766i \(0.846498\pi\)
\(374\) −769763. −0.284563
\(375\) 0 0
\(376\) −711453. −0.259523
\(377\) 6.55547e6 2.37548
\(378\) 0 0
\(379\) 1.00193e6 0.358294 0.179147 0.983822i \(-0.442666\pi\)
0.179147 + 0.983822i \(0.442666\pi\)
\(380\) −161914. −0.0575209
\(381\) 0 0
\(382\) −2.23261e6 −0.782806
\(383\) 2.82152e6 0.982849 0.491424 0.870920i \(-0.336476\pi\)
0.491424 + 0.870920i \(0.336476\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 197265. 0.0673879
\(387\) 0 0
\(388\) 240079. 0.0809609
\(389\) 1.24240e6 0.416281 0.208140 0.978099i \(-0.433259\pi\)
0.208140 + 0.978099i \(0.433259\pi\)
\(390\) 0 0
\(391\) −4.31148e6 −1.42621
\(392\) 0 0
\(393\) 0 0
\(394\) −3.76603e6 −1.22220
\(395\) 3.93522e6 1.26904
\(396\) 0 0
\(397\) 2.74562e6 0.874308 0.437154 0.899387i \(-0.355986\pi\)
0.437154 + 0.899387i \(0.355986\pi\)
\(398\) −2.56005e6 −0.810103
\(399\) 0 0
\(400\) −466276. −0.145711
\(401\) 3.71335e6 1.15320 0.576601 0.817026i \(-0.304379\pi\)
0.576601 + 0.817026i \(0.304379\pi\)
\(402\) 0 0
\(403\) −2.68244e6 −0.822748
\(404\) −430018. −0.131079
\(405\) 0 0
\(406\) 0 0
\(407\) 362656. 0.108520
\(408\) 0 0
\(409\) 3.75940e6 1.11125 0.555623 0.831434i \(-0.312480\pi\)
0.555623 + 0.831434i \(0.312480\pi\)
\(410\) 550625. 0.161769
\(411\) 0 0
\(412\) −830643. −0.241086
\(413\) 0 0
\(414\) 0 0
\(415\) −2.01574e6 −0.574531
\(416\) −1.18668e6 −0.336203
\(417\) 0 0
\(418\) −174260. −0.0487818
\(419\) −4.60027e6 −1.28011 −0.640056 0.768328i \(-0.721089\pi\)
−0.640056 + 0.768328i \(0.721089\pi\)
\(420\) 0 0
\(421\) −404864. −0.111328 −0.0556639 0.998450i \(-0.517728\pi\)
−0.0556639 + 0.998450i \(0.517728\pi\)
\(422\) −3.68748e6 −1.00797
\(423\) 0 0
\(424\) −715917. −0.193396
\(425\) 2.25503e6 0.605591
\(426\) 0 0
\(427\) 0 0
\(428\) 399596. 0.105442
\(429\) 0 0
\(430\) −566963. −0.147871
\(431\) −94758.5 −0.0245711 −0.0122856 0.999925i \(-0.503911\pi\)
−0.0122856 + 0.999925i \(0.503911\pi\)
\(432\) 0 0
\(433\) 4.31727e6 1.10660 0.553298 0.832983i \(-0.313369\pi\)
0.553298 + 0.832983i \(0.313369\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −58178.3 −0.0146570
\(437\) −976041. −0.244492
\(438\) 0 0
\(439\) −2.22367e6 −0.550693 −0.275346 0.961345i \(-0.588793\pi\)
−0.275346 + 0.961345i \(0.588793\pi\)
\(440\) 359172. 0.0884444
\(441\) 0 0
\(442\) 5.73909e6 1.39729
\(443\) 4.68425e6 1.13405 0.567024 0.823701i \(-0.308095\pi\)
0.567024 + 0.823701i \(0.308095\pi\)
\(444\) 0 0
\(445\) 3.44973e6 0.825821
\(446\) 3.35080e6 0.797648
\(447\) 0 0
\(448\) 0 0
\(449\) −897932. −0.210198 −0.105099 0.994462i \(-0.533516\pi\)
−0.105099 + 0.994462i \(0.533516\pi\)
\(450\) 0 0
\(451\) 592612. 0.137192
\(452\) −994800. −0.229028
\(453\) 0 0
\(454\) −5.32276e6 −1.21198
\(455\) 0 0
\(456\) 0 0
\(457\) 5.98181e6 1.33981 0.669903 0.742448i \(-0.266336\pi\)
0.669903 + 0.742448i \(0.266336\pi\)
\(458\) −4.04253e6 −0.900513
\(459\) 0 0
\(460\) 2.01174e6 0.443279
\(461\) −1.62507e6 −0.356138 −0.178069 0.984018i \(-0.556985\pi\)
−0.178069 + 0.984018i \(0.556985\pi\)
\(462\) 0 0
\(463\) −8.46295e6 −1.83472 −0.917359 0.398060i \(-0.869683\pi\)
−0.917359 + 0.398060i \(0.869683\pi\)
\(464\) 1.44814e6 0.312259
\(465\) 0 0
\(466\) 5.94440e6 1.26807
\(467\) −7.66594e6 −1.62657 −0.813286 0.581864i \(-0.802324\pi\)
−0.813286 + 0.581864i \(0.802324\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −1.60546e6 −0.335240
\(471\) 0 0
\(472\) −384662. −0.0794740
\(473\) −610195. −0.125405
\(474\) 0 0
\(475\) 510497. 0.103815
\(476\) 0 0
\(477\) 0 0
\(478\) 3.50255e6 0.701156
\(479\) 2.40292e6 0.478521 0.239261 0.970955i \(-0.423095\pi\)
0.239261 + 0.970955i \(0.423095\pi\)
\(480\) 0 0
\(481\) −2.70385e6 −0.532867
\(482\) −5.81178e6 −1.13944
\(483\) 0 0
\(484\) −2.19026e6 −0.424993
\(485\) 541762. 0.104581
\(486\) 0 0
\(487\) −170302. −0.0325384 −0.0162692 0.999868i \(-0.505179\pi\)
−0.0162692 + 0.999868i \(0.505179\pi\)
\(488\) 949678. 0.180521
\(489\) 0 0
\(490\) 0 0
\(491\) 5.77628e6 1.08130 0.540648 0.841249i \(-0.318179\pi\)
0.540648 + 0.841249i \(0.318179\pi\)
\(492\) 0 0
\(493\) −7.00355e6 −1.29778
\(494\) 1.29923e6 0.239534
\(495\) 0 0
\(496\) −592564. −0.108151
\(497\) 0 0
\(498\) 0 0
\(499\) 543602. 0.0977303 0.0488652 0.998805i \(-0.484440\pi\)
0.0488652 + 0.998805i \(0.484440\pi\)
\(500\) −2.85747e6 −0.511160
\(501\) 0 0
\(502\) −793537. −0.140543
\(503\) 5.40086e6 0.951794 0.475897 0.879501i \(-0.342124\pi\)
0.475897 + 0.879501i \(0.342124\pi\)
\(504\) 0 0
\(505\) −970378. −0.169322
\(506\) 2.16514e6 0.375932
\(507\) 0 0
\(508\) 1.01680e6 0.174815
\(509\) −8.34418e6 −1.42754 −0.713772 0.700378i \(-0.753015\pi\)
−0.713772 + 0.700378i \(0.753015\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −262144. −0.0441942
\(513\) 0 0
\(514\) 1.91829e6 0.320262
\(515\) −1.87443e6 −0.311423
\(516\) 0 0
\(517\) −1.72788e6 −0.284307
\(518\) 0 0
\(519\) 0 0
\(520\) −2.67786e6 −0.434290
\(521\) 1.14784e7 1.85262 0.926310 0.376762i \(-0.122963\pi\)
0.926310 + 0.376762i \(0.122963\pi\)
\(522\) 0 0
\(523\) −4.38734e6 −0.701370 −0.350685 0.936494i \(-0.614051\pi\)
−0.350685 + 0.936494i \(0.614051\pi\)
\(524\) −2.18075e6 −0.346959
\(525\) 0 0
\(526\) 1.81977e6 0.286782
\(527\) 2.86579e6 0.449487
\(528\) 0 0
\(529\) 5.69070e6 0.884151
\(530\) −1.61554e6 −0.249820
\(531\) 0 0
\(532\) 0 0
\(533\) −4.41832e6 −0.673657
\(534\) 0 0
\(535\) 901728. 0.136204
\(536\) 2.75097e6 0.413593
\(537\) 0 0
\(538\) −3.44055e6 −0.512474
\(539\) 0 0
\(540\) 0 0
\(541\) 7.22306e6 1.06103 0.530515 0.847675i \(-0.321998\pi\)
0.530515 + 0.847675i \(0.321998\pi\)
\(542\) −5.22232e6 −0.763599
\(543\) 0 0
\(544\) 1.26779e6 0.183676
\(545\) −131285. −0.0189332
\(546\) 0 0
\(547\) 3.54529e6 0.506622 0.253311 0.967385i \(-0.418480\pi\)
0.253311 + 0.967385i \(0.418480\pi\)
\(548\) −5.36486e6 −0.763144
\(549\) 0 0
\(550\) −1.13243e6 −0.159626
\(551\) −1.58548e6 −0.222475
\(552\) 0 0
\(553\) 0 0
\(554\) 2.17243e6 0.300727
\(555\) 0 0
\(556\) 931124. 0.127738
\(557\) −1.03663e7 −1.41575 −0.707873 0.706340i \(-0.750345\pi\)
−0.707873 + 0.706340i \(0.750345\pi\)
\(558\) 0 0
\(559\) 4.54941e6 0.615780
\(560\) 0 0
\(561\) 0 0
\(562\) 3.99235e6 0.533198
\(563\) 4.48282e6 0.596047 0.298023 0.954559i \(-0.403673\pi\)
0.298023 + 0.954559i \(0.403673\pi\)
\(564\) 0 0
\(565\) −2.24486e6 −0.295848
\(566\) −7.10928e6 −0.932792
\(567\) 0 0
\(568\) −1.27760e6 −0.166158
\(569\) −6.49335e6 −0.840792 −0.420396 0.907341i \(-0.638109\pi\)
−0.420396 + 0.907341i \(0.638109\pi\)
\(570\) 0 0
\(571\) −497508. −0.0638571 −0.0319286 0.999490i \(-0.510165\pi\)
−0.0319286 + 0.999490i \(0.510165\pi\)
\(572\) −2.88206e6 −0.368309
\(573\) 0 0
\(574\) 0 0
\(575\) −6.34279e6 −0.800038
\(576\) 0 0
\(577\) −6.55123e6 −0.819187 −0.409594 0.912268i \(-0.634330\pi\)
−0.409594 + 0.912268i \(0.634330\pi\)
\(578\) −451946. −0.0562687
\(579\) 0 0
\(580\) 3.26786e6 0.403360
\(581\) 0 0
\(582\) 0 0
\(583\) −1.73873e6 −0.211865
\(584\) −2.91524e6 −0.353706
\(585\) 0 0
\(586\) −6.55947e6 −0.789087
\(587\) 30793.5 0.00368862 0.00184431 0.999998i \(-0.499413\pi\)
0.00184431 + 0.999998i \(0.499413\pi\)
\(588\) 0 0
\(589\) 648763. 0.0770544
\(590\) −868028. −0.102661
\(591\) 0 0
\(592\) −597293. −0.0700459
\(593\) −570937. −0.0666732 −0.0333366 0.999444i \(-0.510613\pi\)
−0.0333366 + 0.999444i \(0.510613\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −4.52893e6 −0.522251
\(597\) 0 0
\(598\) −1.61425e7 −1.84595
\(599\) −9.07111e6 −1.03298 −0.516492 0.856292i \(-0.672762\pi\)
−0.516492 + 0.856292i \(0.672762\pi\)
\(600\) 0 0
\(601\) −1.36309e7 −1.53936 −0.769679 0.638431i \(-0.779584\pi\)
−0.769679 + 0.638431i \(0.779584\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −3.86492e6 −0.431071
\(605\) −4.94253e6 −0.548985
\(606\) 0 0
\(607\) −3.95651e6 −0.435853 −0.217927 0.975965i \(-0.569929\pi\)
−0.217927 + 0.975965i \(0.569929\pi\)
\(608\) 287006. 0.0314870
\(609\) 0 0
\(610\) 2.14304e6 0.233188
\(611\) 1.28825e7 1.39604
\(612\) 0 0
\(613\) 1.32310e6 0.142214 0.0711070 0.997469i \(-0.477347\pi\)
0.0711070 + 0.997469i \(0.477347\pi\)
\(614\) −9.52522e6 −1.01966
\(615\) 0 0
\(616\) 0 0
\(617\) −9.26370e6 −0.979651 −0.489826 0.871820i \(-0.662940\pi\)
−0.489826 + 0.871820i \(0.662940\pi\)
\(618\) 0 0
\(619\) 669385. 0.0702182 0.0351091 0.999383i \(-0.488822\pi\)
0.0351091 + 0.999383i \(0.488822\pi\)
\(620\) −1.33718e6 −0.139704
\(621\) 0 0
\(622\) −4.98051e6 −0.516176
\(623\) 0 0
\(624\) 0 0
\(625\) −756327. −0.0774479
\(626\) −6.65196e6 −0.678444
\(627\) 0 0
\(628\) −3.42446e6 −0.346492
\(629\) 2.88866e6 0.291118
\(630\) 0 0
\(631\) −666246. −0.0666133 −0.0333067 0.999445i \(-0.510604\pi\)
−0.0333067 + 0.999445i \(0.510604\pi\)
\(632\) −6.97549e6 −0.694675
\(633\) 0 0
\(634\) −1.04994e7 −1.03739
\(635\) 2.29452e6 0.225817
\(636\) 0 0
\(637\) 0 0
\(638\) 3.51704e6 0.342078
\(639\) 0 0
\(640\) −591553. −0.0570879
\(641\) 2.10877e6 0.202714 0.101357 0.994850i \(-0.467682\pi\)
0.101357 + 0.994850i \(0.467682\pi\)
\(642\) 0 0
\(643\) 1.25977e7 1.20161 0.600806 0.799395i \(-0.294846\pi\)
0.600806 + 0.799395i \(0.294846\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −1.38803e6 −0.130863
\(647\) −1.71299e7 −1.60877 −0.804386 0.594107i \(-0.797506\pi\)
−0.804386 + 0.594107i \(0.797506\pi\)
\(648\) 0 0
\(649\) −934217. −0.0870635
\(650\) 8.44301e6 0.783815
\(651\) 0 0
\(652\) 1.03146e6 0.0950237
\(653\) 8.25525e6 0.757613 0.378806 0.925476i \(-0.376335\pi\)
0.378806 + 0.925476i \(0.376335\pi\)
\(654\) 0 0
\(655\) −4.92108e6 −0.448185
\(656\) −976028. −0.0885529
\(657\) 0 0
\(658\) 0 0
\(659\) 1.05417e7 0.945581 0.472790 0.881175i \(-0.343247\pi\)
0.472790 + 0.881175i \(0.343247\pi\)
\(660\) 0 0
\(661\) 4.47640e6 0.398498 0.199249 0.979949i \(-0.436150\pi\)
0.199249 + 0.979949i \(0.436150\pi\)
\(662\) −6.95542e6 −0.616848
\(663\) 0 0
\(664\) 3.57306e6 0.314499
\(665\) 0 0
\(666\) 0 0
\(667\) 1.96991e7 1.71448
\(668\) 7.08311e6 0.614162
\(669\) 0 0
\(670\) 6.20783e6 0.534260
\(671\) 2.30645e6 0.197760
\(672\) 0 0
\(673\) −1.87165e7 −1.59289 −0.796447 0.604708i \(-0.793290\pi\)
−0.796447 + 0.604708i \(0.793290\pi\)
\(674\) −3.41426e6 −0.289498
\(675\) 0 0
\(676\) 1.55470e7 1.30852
\(677\) −4.16232e6 −0.349031 −0.174515 0.984654i \(-0.555836\pi\)
−0.174515 + 0.984654i \(0.555836\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 2.86090e6 0.237263
\(681\) 0 0
\(682\) −1.43914e6 −0.118479
\(683\) 1.28691e7 1.05559 0.527796 0.849371i \(-0.323019\pi\)
0.527796 + 0.849371i \(0.323019\pi\)
\(684\) 0 0
\(685\) −1.21063e7 −0.985793
\(686\) 0 0
\(687\) 0 0
\(688\) 1.00499e6 0.0809449
\(689\) 1.29634e7 1.04033
\(690\) 0 0
\(691\) −9.29037e6 −0.740181 −0.370090 0.928996i \(-0.620673\pi\)
−0.370090 + 0.928996i \(0.620673\pi\)
\(692\) 1.25758e6 0.0998325
\(693\) 0 0
\(694\) −1.19400e7 −0.941033
\(695\) 2.10117e6 0.165006
\(696\) 0 0
\(697\) 4.72032e6 0.368035
\(698\) −1.14987e7 −0.893325
\(699\) 0 0
\(700\) 0 0
\(701\) −2.50809e7 −1.92774 −0.963870 0.266375i \(-0.914174\pi\)
−0.963870 + 0.266375i \(0.914174\pi\)
\(702\) 0 0
\(703\) 653940. 0.0499057
\(704\) −636661. −0.0484146
\(705\) 0 0
\(706\) 5.88437e6 0.444312
\(707\) 0 0
\(708\) 0 0
\(709\) 9.93780e6 0.742463 0.371231 0.928540i \(-0.378936\pi\)
0.371231 + 0.928540i \(0.378936\pi\)
\(710\) −2.88302e6 −0.214635
\(711\) 0 0
\(712\) −6.11493e6 −0.452055
\(713\) −8.06069e6 −0.593811
\(714\) 0 0
\(715\) −6.50364e6 −0.475764
\(716\) 8.16683e6 0.595348
\(717\) 0 0
\(718\) 1.23120e7 0.891285
\(719\) 1.40009e7 1.01003 0.505016 0.863110i \(-0.331487\pi\)
0.505016 + 0.863110i \(0.331487\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 9.59017e6 0.684673
\(723\) 0 0
\(724\) −352829. −0.0250160
\(725\) −1.03032e7 −0.727993
\(726\) 0 0
\(727\) 8.27315e6 0.580544 0.290272 0.956944i \(-0.406254\pi\)
0.290272 + 0.956944i \(0.406254\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −6.57852e6 −0.456900
\(731\) −4.86037e6 −0.336416
\(732\) 0 0
\(733\) −3.28591e6 −0.225889 −0.112945 0.993601i \(-0.536028\pi\)
−0.112945 + 0.993601i \(0.536028\pi\)
\(734\) −6.46679e6 −0.443046
\(735\) 0 0
\(736\) −3.56597e6 −0.242651
\(737\) 6.68119e6 0.453090
\(738\) 0 0
\(739\) 1.00913e7 0.679728 0.339864 0.940475i \(-0.389619\pi\)
0.339864 + 0.940475i \(0.389619\pi\)
\(740\) −1.34785e6 −0.0904820
\(741\) 0 0
\(742\) 0 0
\(743\) −1.73443e7 −1.15261 −0.576307 0.817233i \(-0.695507\pi\)
−0.576307 + 0.817233i \(0.695507\pi\)
\(744\) 0 0
\(745\) −1.02200e7 −0.674619
\(746\) 1.90447e7 1.25293
\(747\) 0 0
\(748\) 3.07905e6 0.201216
\(749\) 0 0
\(750\) 0 0
\(751\) −1.75971e7 −1.13852 −0.569262 0.822156i \(-0.692771\pi\)
−0.569262 + 0.822156i \(0.692771\pi\)
\(752\) 2.84581e6 0.183511
\(753\) 0 0
\(754\) −2.62219e7 −1.67971
\(755\) −8.72158e6 −0.556836
\(756\) 0 0
\(757\) −4.66480e6 −0.295865 −0.147932 0.988997i \(-0.547262\pi\)
−0.147932 + 0.988997i \(0.547262\pi\)
\(758\) −4.00772e6 −0.253352
\(759\) 0 0
\(760\) 647657. 0.0406734
\(761\) −1.82717e7 −1.14371 −0.571857 0.820353i \(-0.693777\pi\)
−0.571857 + 0.820353i \(0.693777\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 8.93044e6 0.553528
\(765\) 0 0
\(766\) −1.12861e7 −0.694979
\(767\) 6.96521e6 0.427510
\(768\) 0 0
\(769\) −2.31895e7 −1.41409 −0.707043 0.707171i \(-0.749971\pi\)
−0.707043 + 0.707171i \(0.749971\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −789060. −0.0476504
\(773\) −2.02149e6 −0.121681 −0.0608405 0.998148i \(-0.519378\pi\)
−0.0608405 + 0.998148i \(0.519378\pi\)
\(774\) 0 0
\(775\) 4.21597e6 0.252141
\(776\) −960317. −0.0572480
\(777\) 0 0
\(778\) −4.96959e6 −0.294355
\(779\) 1.06859e6 0.0630913
\(780\) 0 0
\(781\) −3.10285e6 −0.182026
\(782\) 1.72459e7 1.00849
\(783\) 0 0
\(784\) 0 0
\(785\) −7.72763e6 −0.447582
\(786\) 0 0
\(787\) 1.57744e7 0.907856 0.453928 0.891038i \(-0.350022\pi\)
0.453928 + 0.891038i \(0.350022\pi\)
\(788\) 1.50641e7 0.864229
\(789\) 0 0
\(790\) −1.57409e7 −0.897348
\(791\) 0 0
\(792\) 0 0
\(793\) −1.71961e7 −0.971064
\(794\) −1.09825e7 −0.618229
\(795\) 0 0
\(796\) 1.02402e7 0.572830
\(797\) −1.22436e6 −0.0682750 −0.0341375 0.999417i \(-0.510868\pi\)
−0.0341375 + 0.999417i \(0.510868\pi\)
\(798\) 0 0
\(799\) −1.37631e7 −0.762690
\(800\) 1.86510e6 0.103033
\(801\) 0 0
\(802\) −1.48534e7 −0.815437
\(803\) −7.08014e6 −0.387483
\(804\) 0 0
\(805\) 0 0
\(806\) 1.07297e7 0.581771
\(807\) 0 0
\(808\) 1.72007e6 0.0926869
\(809\) 2.77325e7 1.48976 0.744882 0.667196i \(-0.232506\pi\)
0.744882 + 0.667196i \(0.232506\pi\)
\(810\) 0 0
\(811\) −1.19246e7 −0.636636 −0.318318 0.947984i \(-0.603118\pi\)
−0.318318 + 0.947984i \(0.603118\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −1.45063e6 −0.0767351
\(815\) 2.32758e6 0.122747
\(816\) 0 0
\(817\) −1.10030e6 −0.0576709
\(818\) −1.50376e7 −0.785770
\(819\) 0 0
\(820\) −2.20250e6 −0.114388
\(821\) −1.60462e7 −0.830836 −0.415418 0.909631i \(-0.636365\pi\)
−0.415418 + 0.909631i \(0.636365\pi\)
\(822\) 0 0
\(823\) −1.12307e7 −0.577970 −0.288985 0.957334i \(-0.593318\pi\)
−0.288985 + 0.957334i \(0.593318\pi\)
\(824\) 3.32257e6 0.170473
\(825\) 0 0
\(826\) 0 0
\(827\) 2.68427e7 1.36478 0.682389 0.730989i \(-0.260941\pi\)
0.682389 + 0.730989i \(0.260941\pi\)
\(828\) 0 0
\(829\) 2.80419e7 1.41717 0.708584 0.705626i \(-0.249334\pi\)
0.708584 + 0.705626i \(0.249334\pi\)
\(830\) 8.06295e6 0.406255
\(831\) 0 0
\(832\) 4.74673e6 0.237731
\(833\) 0 0
\(834\) 0 0
\(835\) 1.59837e7 0.793344
\(836\) 697042. 0.0344940
\(837\) 0 0
\(838\) 1.84011e7 0.905176
\(839\) 3.30603e7 1.62145 0.810723 0.585430i \(-0.199074\pi\)
0.810723 + 0.585430i \(0.199074\pi\)
\(840\) 0 0
\(841\) 1.14880e7 0.560086
\(842\) 1.61946e6 0.0787207
\(843\) 0 0
\(844\) 1.47499e7 0.712743
\(845\) 3.50832e7 1.69028
\(846\) 0 0
\(847\) 0 0
\(848\) 2.86367e6 0.136752
\(849\) 0 0
\(850\) −9.02010e6 −0.428217
\(851\) −8.12503e6 −0.384593
\(852\) 0 0
\(853\) 2.73897e7 1.28889 0.644444 0.764652i \(-0.277089\pi\)
0.644444 + 0.764652i \(0.277089\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −1.59838e6 −0.0745585
\(857\) 2.96721e6 0.138005 0.0690027 0.997616i \(-0.478018\pi\)
0.0690027 + 0.997616i \(0.478018\pi\)
\(858\) 0 0
\(859\) −3.97960e7 −1.84016 −0.920081 0.391729i \(-0.871877\pi\)
−0.920081 + 0.391729i \(0.871877\pi\)
\(860\) 2.26785e6 0.104561
\(861\) 0 0
\(862\) 379034. 0.0173744
\(863\) −7.19597e6 −0.328899 −0.164450 0.986385i \(-0.552585\pi\)
−0.164450 + 0.986385i \(0.552585\pi\)
\(864\) 0 0
\(865\) 2.83786e6 0.128959
\(866\) −1.72691e7 −0.782482
\(867\) 0 0
\(868\) 0 0
\(869\) −1.69411e7 −0.761015
\(870\) 0 0
\(871\) −4.98127e7 −2.22482
\(872\) 232713. 0.0103641
\(873\) 0 0
\(874\) 3.90417e6 0.172882
\(875\) 0 0
\(876\) 0 0
\(877\) 2.51242e7 1.10305 0.551523 0.834160i \(-0.314047\pi\)
0.551523 + 0.834160i \(0.314047\pi\)
\(878\) 8.89469e6 0.389399
\(879\) 0 0
\(880\) −1.43669e6 −0.0625396
\(881\) −120262. −0.00522022 −0.00261011 0.999997i \(-0.500831\pi\)
−0.00261011 + 0.999997i \(0.500831\pi\)
\(882\) 0 0
\(883\) 2.43497e7 1.05097 0.525487 0.850802i \(-0.323883\pi\)
0.525487 + 0.850802i \(0.323883\pi\)
\(884\) −2.29564e7 −0.988036
\(885\) 0 0
\(886\) −1.87370e7 −0.801893
\(887\) 2.82766e7 1.20675 0.603377 0.797456i \(-0.293821\pi\)
0.603377 + 0.797456i \(0.293821\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −1.37989e7 −0.583943
\(891\) 0 0
\(892\) −1.34032e7 −0.564023
\(893\) −3.11571e6 −0.130746
\(894\) 0 0
\(895\) 1.84293e7 0.769042
\(896\) 0 0
\(897\) 0 0
\(898\) 3.59173e6 0.148632
\(899\) −1.30938e7 −0.540337
\(900\) 0 0
\(901\) −1.38494e7 −0.568355
\(902\) −2.37045e6 −0.0970094
\(903\) 0 0
\(904\) 3.97920e6 0.161948
\(905\) −796192. −0.0323144
\(906\) 0 0
\(907\) −2.43168e7 −0.981496 −0.490748 0.871302i \(-0.663276\pi\)
−0.490748 + 0.871302i \(0.663276\pi\)
\(908\) 2.12910e7 0.857002
\(909\) 0 0
\(910\) 0 0
\(911\) 3.36224e7 1.34225 0.671123 0.741346i \(-0.265812\pi\)
0.671123 + 0.741346i \(0.265812\pi\)
\(912\) 0 0
\(913\) 8.67777e6 0.344533
\(914\) −2.39272e7 −0.947386
\(915\) 0 0
\(916\) 1.61701e7 0.636759
\(917\) 0 0
\(918\) 0 0
\(919\) −8.13749e6 −0.317835 −0.158917 0.987292i \(-0.550800\pi\)
−0.158917 + 0.987292i \(0.550800\pi\)
\(920\) −8.04695e6 −0.313445
\(921\) 0 0
\(922\) 6.50026e6 0.251828
\(923\) 2.31338e7 0.893807
\(924\) 0 0
\(925\) 4.24962e6 0.163304
\(926\) 3.38518e7 1.29734
\(927\) 0 0
\(928\) −5.79254e6 −0.220800
\(929\) −3.58054e7 −1.36116 −0.680580 0.732674i \(-0.738272\pi\)
−0.680580 + 0.732674i \(0.738272\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −2.37776e7 −0.896661
\(933\) 0 0
\(934\) 3.06638e7 1.15016
\(935\) 6.94818e6 0.259921
\(936\) 0 0
\(937\) 4.65849e7 1.73339 0.866694 0.498840i \(-0.166241\pi\)
0.866694 + 0.498840i \(0.166241\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 6.42185e6 0.237050
\(941\) 2.06725e6 0.0761059 0.0380529 0.999276i \(-0.487884\pi\)
0.0380529 + 0.999276i \(0.487884\pi\)
\(942\) 0 0
\(943\) −1.32770e7 −0.486206
\(944\) 1.53865e6 0.0561966
\(945\) 0 0
\(946\) 2.44078e6 0.0886750
\(947\) −2.36773e7 −0.857940 −0.428970 0.903319i \(-0.641123\pi\)
−0.428970 + 0.903319i \(0.641123\pi\)
\(948\) 0 0
\(949\) 5.27872e7 1.90267
\(950\) −2.04199e6 −0.0734082
\(951\) 0 0
\(952\) 0 0
\(953\) 3.40521e6 0.121454 0.0607270 0.998154i \(-0.480658\pi\)
0.0607270 + 0.998154i \(0.480658\pi\)
\(954\) 0 0
\(955\) 2.01524e7 0.715020
\(956\) −1.40102e7 −0.495792
\(957\) 0 0
\(958\) −9.61170e6 −0.338366
\(959\) 0 0
\(960\) 0 0
\(961\) −2.32713e7 −0.812854
\(962\) 1.08154e7 0.376794
\(963\) 0 0
\(964\) 2.32471e7 0.805706
\(965\) −1.78059e6 −0.0615525
\(966\) 0 0
\(967\) 1.44238e6 0.0496036 0.0248018 0.999692i \(-0.492105\pi\)
0.0248018 + 0.999692i \(0.492105\pi\)
\(968\) 8.76103e6 0.300515
\(969\) 0 0
\(970\) −2.16705e6 −0.0739502
\(971\) 5.15954e6 0.175616 0.0878078 0.996137i \(-0.472014\pi\)
0.0878078 + 0.996137i \(0.472014\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 681206. 0.0230081
\(975\) 0 0
\(976\) −3.79871e6 −0.127647
\(977\) 6.97650e6 0.233831 0.116915 0.993142i \(-0.462699\pi\)
0.116915 + 0.993142i \(0.462699\pi\)
\(978\) 0 0
\(979\) −1.48511e7 −0.495225
\(980\) 0 0
\(981\) 0 0
\(982\) −2.31051e7 −0.764592
\(983\) 2.81568e7 0.929393 0.464696 0.885470i \(-0.346163\pi\)
0.464696 + 0.885470i \(0.346163\pi\)
\(984\) 0 0
\(985\) 3.39937e7 1.11637
\(986\) 2.80142e7 0.917669
\(987\) 0 0
\(988\) −5.19691e6 −0.169376
\(989\) 1.36709e7 0.444434
\(990\) 0 0
\(991\) −2.34043e7 −0.757028 −0.378514 0.925596i \(-0.623565\pi\)
−0.378514 + 0.925596i \(0.623565\pi\)
\(992\) 2.37025e6 0.0764743
\(993\) 0 0
\(994\) 0 0
\(995\) 2.31080e7 0.739954
\(996\) 0 0
\(997\) −4.30284e7 −1.37094 −0.685468 0.728103i \(-0.740402\pi\)
−0.685468 + 0.728103i \(0.740402\pi\)
\(998\) −2.17441e6 −0.0691058
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.6.a.ba.1.2 2
3.2 odd 2 98.6.a.h.1.2 2
7.2 even 3 126.6.g.j.109.1 4
7.4 even 3 126.6.g.j.37.1 4
7.6 odd 2 882.6.a.bi.1.1 2
12.11 even 2 784.6.a.s.1.1 2
21.2 odd 6 14.6.c.a.11.1 yes 4
21.5 even 6 98.6.c.e.67.2 4
21.11 odd 6 14.6.c.a.9.1 4
21.17 even 6 98.6.c.e.79.2 4
21.20 even 2 98.6.a.g.1.1 2
84.11 even 6 112.6.i.d.65.2 4
84.23 even 6 112.6.i.d.81.2 4
84.83 odd 2 784.6.a.bb.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.6.c.a.9.1 4 21.11 odd 6
14.6.c.a.11.1 yes 4 21.2 odd 6
98.6.a.g.1.1 2 21.20 even 2
98.6.a.h.1.2 2 3.2 odd 2
98.6.c.e.67.2 4 21.5 even 6
98.6.c.e.79.2 4 21.17 even 6
112.6.i.d.65.2 4 84.11 even 6
112.6.i.d.81.2 4 84.23 even 6
126.6.g.j.37.1 4 7.4 even 3
126.6.g.j.109.1 4 7.2 even 3
784.6.a.s.1.1 2 12.11 even 2
784.6.a.bb.1.2 2 84.83 odd 2
882.6.a.ba.1.2 2 1.1 even 1 trivial
882.6.a.bi.1.1 2 7.6 odd 2