Properties

Label 882.6.a.ba.1.1
Level $882$
Weight $6$
Character 882.1
Self dual yes
Analytic conductor $141.459$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [882,6,Mod(1,882)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("882.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(882, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 882.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-8,0,32,-70,0,0,-128,0,280,-62] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.458529075\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{79}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 79 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 14)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-8.88819\) of defining polynomial
Character \(\chi\) \(=\) 882.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} +16.0000 q^{4} -106.106 q^{5} -64.0000 q^{8} +424.422 q^{10} +93.4347 q^{11} +661.131 q^{13} +256.000 q^{16} -455.919 q^{17} +1106.28 q^{19} -1697.69 q^{20} -373.739 q^{22} -748.390 q^{23} +8133.39 q^{25} -2644.52 q^{26} -2804.78 q^{29} -359.299 q^{31} -1024.00 q^{32} +1823.68 q^{34} -6812.82 q^{37} -4425.12 q^{38} +6790.76 q^{40} -2319.39 q^{41} -19965.7 q^{43} +1494.96 q^{44} +2993.56 q^{46} +14209.5 q^{47} -32533.6 q^{50} +10578.1 q^{52} -26144.2 q^{53} -9913.94 q^{55} +11219.1 q^{58} -4904.35 q^{59} -13203.3 q^{61} +1437.19 q^{62} +4096.00 q^{64} -70149.6 q^{65} -59658.1 q^{67} -7294.71 q^{68} -8906.43 q^{71} -10480.6 q^{73} +27251.3 q^{74} +17700.5 q^{76} -7230.02 q^{79} -27163.0 q^{80} +9277.57 q^{82} +100461. q^{83} +48375.6 q^{85} +79862.9 q^{86} -5979.82 q^{88} -20071.8 q^{89} -11974.2 q^{92} -56838.2 q^{94} -117382. q^{95} -23320.9 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{2} + 32 q^{4} - 70 q^{5} - 128 q^{8} + 280 q^{10} - 62 q^{11} + 1820 q^{13} + 512 q^{16} - 1694 q^{17} + 826 q^{19} - 1120 q^{20} + 248 q^{22} + 2734 q^{23} + 6312 q^{25} - 7280 q^{26} + 2852 q^{29}+ \cdots - 8316 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) 0 0
\(4\) 16.0000 0.500000
\(5\) −106.106 −1.89807 −0.949037 0.315165i \(-0.897940\pi\)
−0.949037 + 0.315165i \(0.897940\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −64.0000 −0.353553
\(9\) 0 0
\(10\) 424.422 1.34214
\(11\) 93.4347 0.232823 0.116412 0.993201i \(-0.462861\pi\)
0.116412 + 0.993201i \(0.462861\pi\)
\(12\) 0 0
\(13\) 661.131 1.08500 0.542499 0.840057i \(-0.317478\pi\)
0.542499 + 0.840057i \(0.317478\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) −455.919 −0.382618 −0.191309 0.981530i \(-0.561273\pi\)
−0.191309 + 0.981530i \(0.561273\pi\)
\(18\) 0 0
\(19\) 1106.28 0.703041 0.351521 0.936180i \(-0.385665\pi\)
0.351521 + 0.936180i \(0.385665\pi\)
\(20\) −1697.69 −0.949037
\(21\) 0 0
\(22\) −373.739 −0.164631
\(23\) −748.390 −0.294991 −0.147495 0.989063i \(-0.547121\pi\)
−0.147495 + 0.989063i \(0.547121\pi\)
\(24\) 0 0
\(25\) 8133.39 2.60268
\(26\) −2644.52 −0.767209
\(27\) 0 0
\(28\) 0 0
\(29\) −2804.78 −0.619304 −0.309652 0.950850i \(-0.600213\pi\)
−0.309652 + 0.950850i \(0.600213\pi\)
\(30\) 0 0
\(31\) −359.299 −0.0671508 −0.0335754 0.999436i \(-0.510689\pi\)
−0.0335754 + 0.999436i \(0.510689\pi\)
\(32\) −1024.00 −0.176777
\(33\) 0 0
\(34\) 1823.68 0.270552
\(35\) 0 0
\(36\) 0 0
\(37\) −6812.82 −0.818131 −0.409066 0.912505i \(-0.634145\pi\)
−0.409066 + 0.912505i \(0.634145\pi\)
\(38\) −4425.12 −0.497125
\(39\) 0 0
\(40\) 6790.76 0.671070
\(41\) −2319.39 −0.215484 −0.107742 0.994179i \(-0.534362\pi\)
−0.107742 + 0.994179i \(0.534362\pi\)
\(42\) 0 0
\(43\) −19965.7 −1.64670 −0.823349 0.567535i \(-0.807897\pi\)
−0.823349 + 0.567535i \(0.807897\pi\)
\(44\) 1494.96 0.116412
\(45\) 0 0
\(46\) 2993.56 0.208590
\(47\) 14209.5 0.938287 0.469143 0.883122i \(-0.344563\pi\)
0.469143 + 0.883122i \(0.344563\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −32533.6 −1.84038
\(51\) 0 0
\(52\) 10578.1 0.542499
\(53\) −26144.2 −1.27846 −0.639228 0.769017i \(-0.720746\pi\)
−0.639228 + 0.769017i \(0.720746\pi\)
\(54\) 0 0
\(55\) −9913.94 −0.441916
\(56\) 0 0
\(57\) 0 0
\(58\) 11219.1 0.437914
\(59\) −4904.35 −0.183422 −0.0917110 0.995786i \(-0.529234\pi\)
−0.0917110 + 0.995786i \(0.529234\pi\)
\(60\) 0 0
\(61\) −13203.3 −0.454315 −0.227158 0.973858i \(-0.572943\pi\)
−0.227158 + 0.973858i \(0.572943\pi\)
\(62\) 1437.19 0.0474828
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) −70149.6 −2.05941
\(66\) 0 0
\(67\) −59658.1 −1.62361 −0.811807 0.583926i \(-0.801516\pi\)
−0.811807 + 0.583926i \(0.801516\pi\)
\(68\) −7294.71 −0.191309
\(69\) 0 0
\(70\) 0 0
\(71\) −8906.43 −0.209680 −0.104840 0.994489i \(-0.533433\pi\)
−0.104840 + 0.994489i \(0.533433\pi\)
\(72\) 0 0
\(73\) −10480.6 −0.230186 −0.115093 0.993355i \(-0.536717\pi\)
−0.115093 + 0.993355i \(0.536717\pi\)
\(74\) 27251.3 0.578506
\(75\) 0 0
\(76\) 17700.5 0.351521
\(77\) 0 0
\(78\) 0 0
\(79\) −7230.02 −0.130338 −0.0651691 0.997874i \(-0.520759\pi\)
−0.0651691 + 0.997874i \(0.520759\pi\)
\(80\) −27163.0 −0.474518
\(81\) 0 0
\(82\) 9277.57 0.152370
\(83\) 100461. 1.60067 0.800336 0.599552i \(-0.204655\pi\)
0.800336 + 0.599552i \(0.204655\pi\)
\(84\) 0 0
\(85\) 48375.6 0.726238
\(86\) 79862.9 1.16439
\(87\) 0 0
\(88\) −5979.82 −0.0823155
\(89\) −20071.8 −0.268603 −0.134302 0.990940i \(-0.542879\pi\)
−0.134302 + 0.990940i \(0.542879\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −11974.2 −0.147495
\(93\) 0 0
\(94\) −56838.2 −0.663469
\(95\) −117382. −1.33442
\(96\) 0 0
\(97\) −23320.9 −0.251662 −0.125831 0.992052i \(-0.540160\pi\)
−0.125831 + 0.992052i \(0.540160\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 130134. 1.30134
\(101\) 68974.1 0.672795 0.336398 0.941720i \(-0.390791\pi\)
0.336398 + 0.941720i \(0.390791\pi\)
\(102\) 0 0
\(103\) 113725. 1.05624 0.528121 0.849169i \(-0.322897\pi\)
0.528121 + 0.849169i \(0.322897\pi\)
\(104\) −42312.4 −0.383605
\(105\) 0 0
\(106\) 104577. 0.904005
\(107\) 121287. 1.02413 0.512066 0.858946i \(-0.328880\pi\)
0.512066 + 0.858946i \(0.328880\pi\)
\(108\) 0 0
\(109\) −61373.9 −0.494786 −0.247393 0.968915i \(-0.579574\pi\)
−0.247393 + 0.968915i \(0.579574\pi\)
\(110\) 39655.8 0.312482
\(111\) 0 0
\(112\) 0 0
\(113\) 242939. 1.78979 0.894893 0.446281i \(-0.147252\pi\)
0.894893 + 0.446281i \(0.147252\pi\)
\(114\) 0 0
\(115\) 79408.4 0.559914
\(116\) −44876.5 −0.309652
\(117\) 0 0
\(118\) 19617.4 0.129699
\(119\) 0 0
\(120\) 0 0
\(121\) −152321. −0.945793
\(122\) 52813.1 0.321249
\(123\) 0 0
\(124\) −5748.78 −0.0335754
\(125\) −531418. −3.04201
\(126\) 0 0
\(127\) 201922. 1.11090 0.555448 0.831551i \(-0.312547\pi\)
0.555448 + 0.831551i \(0.312547\pi\)
\(128\) −16384.0 −0.0883883
\(129\) 0 0
\(130\) 280598. 1.45622
\(131\) −283521. −1.44347 −0.721734 0.692171i \(-0.756655\pi\)
−0.721734 + 0.692171i \(0.756655\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 238633. 1.14807
\(135\) 0 0
\(136\) 29178.8 0.135276
\(137\) −188471. −0.857911 −0.428955 0.903326i \(-0.641118\pi\)
−0.428955 + 0.903326i \(0.641118\pi\)
\(138\) 0 0
\(139\) −211579. −0.928830 −0.464415 0.885618i \(-0.653735\pi\)
−0.464415 + 0.885618i \(0.653735\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 35625.7 0.148266
\(143\) 61772.5 0.252613
\(144\) 0 0
\(145\) 297603. 1.17548
\(146\) 41922.4 0.162766
\(147\) 0 0
\(148\) −109005. −0.409066
\(149\) 293324. 1.08238 0.541192 0.840899i \(-0.317973\pi\)
0.541192 + 0.840899i \(0.317973\pi\)
\(150\) 0 0
\(151\) −204476. −0.729794 −0.364897 0.931048i \(-0.618896\pi\)
−0.364897 + 0.931048i \(0.618896\pi\)
\(152\) −70801.9 −0.248563
\(153\) 0 0
\(154\) 0 0
\(155\) 38123.6 0.127457
\(156\) 0 0
\(157\) 505915. 1.63805 0.819027 0.573755i \(-0.194514\pi\)
0.819027 + 0.573755i \(0.194514\pi\)
\(158\) 28920.1 0.0921630
\(159\) 0 0
\(160\) 108652. 0.335535
\(161\) 0 0
\(162\) 0 0
\(163\) −284200. −0.837829 −0.418914 0.908026i \(-0.637589\pi\)
−0.418914 + 0.908026i \(0.637589\pi\)
\(164\) −37110.3 −0.107742
\(165\) 0 0
\(166\) −401844. −1.13185
\(167\) 13145.7 0.0364747 0.0182373 0.999834i \(-0.494195\pi\)
0.0182373 + 0.999834i \(0.494195\pi\)
\(168\) 0 0
\(169\) 65800.6 0.177220
\(170\) −193502. −0.513528
\(171\) 0 0
\(172\) −319452. −0.823349
\(173\) −51453.0 −0.130706 −0.0653530 0.997862i \(-0.520817\pi\)
−0.0653530 + 0.997862i \(0.520817\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 23919.3 0.0582058
\(177\) 0 0
\(178\) 80287.3 0.189931
\(179\) 497735. 1.16109 0.580544 0.814229i \(-0.302840\pi\)
0.580544 + 0.814229i \(0.302840\pi\)
\(180\) 0 0
\(181\) −227120. −0.515299 −0.257650 0.966238i \(-0.582948\pi\)
−0.257650 + 0.966238i \(0.582948\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 47897.0 0.104295
\(185\) 722879. 1.55287
\(186\) 0 0
\(187\) −42598.7 −0.0890825
\(188\) 227353. 0.469143
\(189\) 0 0
\(190\) 469529. 0.943580
\(191\) −502778. −0.997225 −0.498612 0.866825i \(-0.666157\pi\)
−0.498612 + 0.866825i \(0.666157\pi\)
\(192\) 0 0
\(193\) 140322. 0.271165 0.135582 0.990766i \(-0.456709\pi\)
0.135582 + 0.990766i \(0.456709\pi\)
\(194\) 93283.8 0.177952
\(195\) 0 0
\(196\) 0 0
\(197\) −378993. −0.695769 −0.347885 0.937537i \(-0.613100\pi\)
−0.347885 + 0.937537i \(0.613100\pi\)
\(198\) 0 0
\(199\) −461022. −0.825256 −0.412628 0.910900i \(-0.635389\pi\)
−0.412628 + 0.910900i \(0.635389\pi\)
\(200\) −520537. −0.920188
\(201\) 0 0
\(202\) −275897. −0.475738
\(203\) 0 0
\(204\) 0 0
\(205\) 246100. 0.409004
\(206\) −454901. −0.746876
\(207\) 0 0
\(208\) 169249. 0.271249
\(209\) 103365. 0.163684
\(210\) 0 0
\(211\) 202139. 0.312567 0.156284 0.987712i \(-0.450049\pi\)
0.156284 + 0.987712i \(0.450049\pi\)
\(212\) −418307. −0.639228
\(213\) 0 0
\(214\) −485149. −0.724170
\(215\) 2.11848e6 3.12556
\(216\) 0 0
\(217\) 0 0
\(218\) 245495. 0.349866
\(219\) 0 0
\(220\) −158623. −0.220958
\(221\) −301422. −0.415140
\(222\) 0 0
\(223\) 694340. 0.934997 0.467498 0.883994i \(-0.345155\pi\)
0.467498 + 0.883994i \(0.345155\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −971756. −1.26557
\(227\) −1.26697e6 −1.63194 −0.815968 0.578096i \(-0.803796\pi\)
−0.815968 + 0.578096i \(0.803796\pi\)
\(228\) 0 0
\(229\) 856477. 1.07926 0.539631 0.841902i \(-0.318564\pi\)
0.539631 + 0.841902i \(0.318564\pi\)
\(230\) −317633. −0.395919
\(231\) 0 0
\(232\) 179506. 0.218957
\(233\) 284358. 0.343143 0.171571 0.985172i \(-0.445116\pi\)
0.171571 + 0.985172i \(0.445116\pi\)
\(234\) 0 0
\(235\) −1.50771e6 −1.78094
\(236\) −78469.6 −0.0917110
\(237\) 0 0
\(238\) 0 0
\(239\) 427941. 0.484606 0.242303 0.970201i \(-0.422097\pi\)
0.242303 + 0.970201i \(0.422097\pi\)
\(240\) 0 0
\(241\) 809581. 0.897879 0.448940 0.893562i \(-0.351802\pi\)
0.448940 + 0.893562i \(0.351802\pi\)
\(242\) 609284. 0.668777
\(243\) 0 0
\(244\) −211253. −0.227158
\(245\) 0 0
\(246\) 0 0
\(247\) 731395. 0.762798
\(248\) 22995.1 0.0237414
\(249\) 0 0
\(250\) 2.12567e6 2.15103
\(251\) 1.26305e6 1.26542 0.632711 0.774388i \(-0.281942\pi\)
0.632711 + 0.774388i \(0.281942\pi\)
\(252\) 0 0
\(253\) −69925.6 −0.0686808
\(254\) −807687. −0.785523
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) −56138.2 −0.0530183 −0.0265091 0.999649i \(-0.508439\pi\)
−0.0265091 + 0.999649i \(0.508439\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −1.12239e6 −1.02970
\(261\) 0 0
\(262\) 1.13408e6 1.02069
\(263\) −1.54275e6 −1.37533 −0.687664 0.726029i \(-0.741364\pi\)
−0.687664 + 0.726029i \(0.741364\pi\)
\(264\) 0 0
\(265\) 2.77405e6 2.42660
\(266\) 0 0
\(267\) 0 0
\(268\) −954530. −0.811807
\(269\) 1.20535e6 1.01563 0.507813 0.861467i \(-0.330454\pi\)
0.507813 + 0.861467i \(0.330454\pi\)
\(270\) 0 0
\(271\) 1.76489e6 1.45980 0.729900 0.683554i \(-0.239567\pi\)
0.729900 + 0.683554i \(0.239567\pi\)
\(272\) −116715. −0.0956546
\(273\) 0 0
\(274\) 753882. 0.606634
\(275\) 759941. 0.605966
\(276\) 0 0
\(277\) 1.48319e6 1.16144 0.580719 0.814104i \(-0.302771\pi\)
0.580719 + 0.814104i \(0.302771\pi\)
\(278\) 846317. 0.656782
\(279\) 0 0
\(280\) 0 0
\(281\) 1.26812e6 0.958061 0.479031 0.877798i \(-0.340988\pi\)
0.479031 + 0.877798i \(0.340988\pi\)
\(282\) 0 0
\(283\) −1.44657e6 −1.07368 −0.536838 0.843685i \(-0.680381\pi\)
−0.536838 + 0.843685i \(0.680381\pi\)
\(284\) −142503. −0.104840
\(285\) 0 0
\(286\) −247090. −0.178624
\(287\) 0 0
\(288\) 0 0
\(289\) −1.21199e6 −0.853603
\(290\) −1.19041e6 −0.831193
\(291\) 0 0
\(292\) −167689. −0.115093
\(293\) −367016. −0.249756 −0.124878 0.992172i \(-0.539854\pi\)
−0.124878 + 0.992172i \(0.539854\pi\)
\(294\) 0 0
\(295\) 520379. 0.348149
\(296\) 436021. 0.289253
\(297\) 0 0
\(298\) −1.17330e6 −0.765362
\(299\) −494784. −0.320064
\(300\) 0 0
\(301\) 0 0
\(302\) 817905. 0.516042
\(303\) 0 0
\(304\) 283207. 0.175760
\(305\) 1.40094e6 0.862324
\(306\) 0 0
\(307\) −131281. −0.0794979 −0.0397490 0.999210i \(-0.512656\pi\)
−0.0397490 + 0.999210i \(0.512656\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −152494. −0.0901259
\(311\) 2.33471e6 1.36878 0.684389 0.729118i \(-0.260069\pi\)
0.684389 + 0.729118i \(0.260069\pi\)
\(312\) 0 0
\(313\) −772801. −0.445869 −0.222934 0.974833i \(-0.571564\pi\)
−0.222934 + 0.974833i \(0.571564\pi\)
\(314\) −2.02366e6 −1.15828
\(315\) 0 0
\(316\) −115680. −0.0651691
\(317\) −524336. −0.293063 −0.146532 0.989206i \(-0.546811\pi\)
−0.146532 + 0.989206i \(0.546811\pi\)
\(318\) 0 0
\(319\) −262064. −0.144188
\(320\) −434608. −0.237259
\(321\) 0 0
\(322\) 0 0
\(323\) −504374. −0.268996
\(324\) 0 0
\(325\) 5.37723e6 2.82391
\(326\) 1.13680e6 0.592434
\(327\) 0 0
\(328\) 148441. 0.0761850
\(329\) 0 0
\(330\) 0 0
\(331\) 631635. 0.316881 0.158440 0.987369i \(-0.449353\pi\)
0.158440 + 0.987369i \(0.449353\pi\)
\(332\) 1.60738e6 0.800336
\(333\) 0 0
\(334\) −52582.7 −0.0257915
\(335\) 6.33006e6 3.08174
\(336\) 0 0
\(337\) 3.33479e6 1.59954 0.799768 0.600309i \(-0.204956\pi\)
0.799768 + 0.600309i \(0.204956\pi\)
\(338\) −263202. −0.125314
\(339\) 0 0
\(340\) 774009. 0.363119
\(341\) −33571.0 −0.0156343
\(342\) 0 0
\(343\) 0 0
\(344\) 1.27781e6 0.582196
\(345\) 0 0
\(346\) 205812. 0.0924231
\(347\) 650351. 0.289951 0.144975 0.989435i \(-0.453690\pi\)
0.144975 + 0.989435i \(0.453690\pi\)
\(348\) 0 0
\(349\) −601041. −0.264144 −0.132072 0.991240i \(-0.542163\pi\)
−0.132072 + 0.991240i \(0.542163\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −95677.2 −0.0411577
\(353\) 2.88889e6 1.23394 0.616970 0.786987i \(-0.288360\pi\)
0.616970 + 0.786987i \(0.288360\pi\)
\(354\) 0 0
\(355\) 945021. 0.397989
\(356\) −321149. −0.134302
\(357\) 0 0
\(358\) −1.99094e6 −0.821014
\(359\) 97830.5 0.0400625 0.0200313 0.999799i \(-0.493623\pi\)
0.0200313 + 0.999799i \(0.493623\pi\)
\(360\) 0 0
\(361\) −1.25225e6 −0.505733
\(362\) 908481. 0.364371
\(363\) 0 0
\(364\) 0 0
\(365\) 1.11205e6 0.436910
\(366\) 0 0
\(367\) 2.14775e6 0.832374 0.416187 0.909279i \(-0.363366\pi\)
0.416187 + 0.909279i \(0.363366\pi\)
\(368\) −191588. −0.0737477
\(369\) 0 0
\(370\) −2.89151e6 −1.09805
\(371\) 0 0
\(372\) 0 0
\(373\) 4.20458e6 1.56477 0.782386 0.622794i \(-0.214003\pi\)
0.782386 + 0.622794i \(0.214003\pi\)
\(374\) 170395. 0.0629908
\(375\) 0 0
\(376\) −909411. −0.331734
\(377\) −1.85433e6 −0.671943
\(378\) 0 0
\(379\) −535586. −0.191527 −0.0957637 0.995404i \(-0.530529\pi\)
−0.0957637 + 0.995404i \(0.530529\pi\)
\(380\) −1.87812e6 −0.667212
\(381\) 0 0
\(382\) 2.01111e6 0.705144
\(383\) 3.84697e6 1.34005 0.670027 0.742337i \(-0.266283\pi\)
0.670027 + 0.742337i \(0.266283\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −561289. −0.191742
\(387\) 0 0
\(388\) −373135. −0.125831
\(389\) 1.69833e6 0.569045 0.284523 0.958669i \(-0.408165\pi\)
0.284523 + 0.958669i \(0.408165\pi\)
\(390\) 0 0
\(391\) 341206. 0.112869
\(392\) 0 0
\(393\) 0 0
\(394\) 1.51597e6 0.491983
\(395\) 767145. 0.247391
\(396\) 0 0
\(397\) 3.62378e6 1.15394 0.576972 0.816764i \(-0.304234\pi\)
0.576972 + 0.816764i \(0.304234\pi\)
\(398\) 1.84409e6 0.583544
\(399\) 0 0
\(400\) 2.08215e6 0.650671
\(401\) 2.79801e6 0.868937 0.434469 0.900687i \(-0.356936\pi\)
0.434469 + 0.900687i \(0.356936\pi\)
\(402\) 0 0
\(403\) −237543. −0.0728585
\(404\) 1.10359e6 0.336398
\(405\) 0 0
\(406\) 0 0
\(407\) −636554. −0.190480
\(408\) 0 0
\(409\) −666281. −0.196947 −0.0984735 0.995140i \(-0.531396\pi\)
−0.0984735 + 0.995140i \(0.531396\pi\)
\(410\) −984401. −0.289210
\(411\) 0 0
\(412\) 1.81960e6 0.528121
\(413\) 0 0
\(414\) 0 0
\(415\) −1.06595e7 −3.03819
\(416\) −676998. −0.191802
\(417\) 0 0
\(418\) −413460. −0.115742
\(419\) −2.89203e6 −0.804762 −0.402381 0.915472i \(-0.631817\pi\)
−0.402381 + 0.915472i \(0.631817\pi\)
\(420\) 0 0
\(421\) 6.72027e6 1.84791 0.923956 0.382498i \(-0.124936\pi\)
0.923956 + 0.382498i \(0.124936\pi\)
\(422\) −808555. −0.221018
\(423\) 0 0
\(424\) 1.67323e6 0.452002
\(425\) −3.70817e6 −0.995835
\(426\) 0 0
\(427\) 0 0
\(428\) 1.94060e6 0.512066
\(429\) 0 0
\(430\) −8.47390e6 −2.21010
\(431\) −4.72298e6 −1.22468 −0.612341 0.790594i \(-0.709772\pi\)
−0.612341 + 0.790594i \(0.709772\pi\)
\(432\) 0 0
\(433\) −5.78136e6 −1.48187 −0.740935 0.671577i \(-0.765617\pi\)
−0.740935 + 0.671577i \(0.765617\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −981982. −0.247393
\(437\) −827929. −0.207391
\(438\) 0 0
\(439\) 5.36873e6 1.32957 0.664784 0.747036i \(-0.268524\pi\)
0.664784 + 0.747036i \(0.268524\pi\)
\(440\) 634492. 0.156241
\(441\) 0 0
\(442\) 1.20569e6 0.293548
\(443\) −4.31511e6 −1.04468 −0.522339 0.852738i \(-0.674941\pi\)
−0.522339 + 0.852738i \(0.674941\pi\)
\(444\) 0 0
\(445\) 2.12973e6 0.509829
\(446\) −2.77736e6 −0.661143
\(447\) 0 0
\(448\) 0 0
\(449\) −4.75292e6 −1.11261 −0.556307 0.830977i \(-0.687782\pi\)
−0.556307 + 0.830977i \(0.687782\pi\)
\(450\) 0 0
\(451\) −216712. −0.0501696
\(452\) 3.88702e6 0.894893
\(453\) 0 0
\(454\) 5.06790e6 1.15395
\(455\) 0 0
\(456\) 0 0
\(457\) 2.13728e6 0.478707 0.239354 0.970932i \(-0.423064\pi\)
0.239354 + 0.970932i \(0.423064\pi\)
\(458\) −3.42591e6 −0.763153
\(459\) 0 0
\(460\) 1.27053e6 0.279957
\(461\) 1.72920e6 0.378959 0.189479 0.981885i \(-0.439320\pi\)
0.189479 + 0.981885i \(0.439320\pi\)
\(462\) 0 0
\(463\) −6.54367e6 −1.41863 −0.709315 0.704892i \(-0.750996\pi\)
−0.709315 + 0.704892i \(0.750996\pi\)
\(464\) −718024. −0.154826
\(465\) 0 0
\(466\) −1.13743e6 −0.242639
\(467\) 1.79419e6 0.380694 0.190347 0.981717i \(-0.439039\pi\)
0.190347 + 0.981717i \(0.439039\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 6.03085e6 1.25931
\(471\) 0 0
\(472\) 313878. 0.0648495
\(473\) −1.86549e6 −0.383390
\(474\) 0 0
\(475\) 8.99780e6 1.82979
\(476\) 0 0
\(477\) 0 0
\(478\) −1.71176e6 −0.342669
\(479\) −4.09403e6 −0.815289 −0.407645 0.913141i \(-0.633650\pi\)
−0.407645 + 0.913141i \(0.633650\pi\)
\(480\) 0 0
\(481\) −4.50417e6 −0.887670
\(482\) −3.23833e6 −0.634897
\(483\) 0 0
\(484\) −2.43714e6 −0.472897
\(485\) 2.47448e6 0.477672
\(486\) 0 0
\(487\) −4.45210e6 −0.850634 −0.425317 0.905045i \(-0.639837\pi\)
−0.425317 + 0.905045i \(0.639837\pi\)
\(488\) 845010. 0.160625
\(489\) 0 0
\(490\) 0 0
\(491\) −7.09674e6 −1.32848 −0.664240 0.747519i \(-0.731245\pi\)
−0.664240 + 0.747519i \(0.731245\pi\)
\(492\) 0 0
\(493\) 1.27875e6 0.236957
\(494\) −2.92558e6 −0.539380
\(495\) 0 0
\(496\) −91980.4 −0.0167877
\(497\) 0 0
\(498\) 0 0
\(499\) 9.41903e6 1.69338 0.846691 0.532085i \(-0.178591\pi\)
0.846691 + 0.532085i \(0.178591\pi\)
\(500\) −8.50269e6 −1.52101
\(501\) 0 0
\(502\) −5.05219e6 −0.894789
\(503\) −957258. −0.168698 −0.0843489 0.996436i \(-0.526881\pi\)
−0.0843489 + 0.996436i \(0.526881\pi\)
\(504\) 0 0
\(505\) −7.31854e6 −1.27702
\(506\) 279703. 0.0485646
\(507\) 0 0
\(508\) 3.23075e6 0.555448
\(509\) 4.01453e6 0.686816 0.343408 0.939186i \(-0.388419\pi\)
0.343408 + 0.939186i \(0.388419\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −262144. −0.0441942
\(513\) 0 0
\(514\) 224553. 0.0374896
\(515\) −1.20669e7 −2.00483
\(516\) 0 0
\(517\) 1.32766e6 0.218455
\(518\) 0 0
\(519\) 0 0
\(520\) 4.48958e6 0.728110
\(521\) 4.31820e6 0.696960 0.348480 0.937316i \(-0.386698\pi\)
0.348480 + 0.937316i \(0.386698\pi\)
\(522\) 0 0
\(523\) 1.34501e6 0.215017 0.107508 0.994204i \(-0.465713\pi\)
0.107508 + 0.994204i \(0.465713\pi\)
\(524\) −4.53634e6 −0.721734
\(525\) 0 0
\(526\) 6.17100e6 0.972504
\(527\) 163811. 0.0256931
\(528\) 0 0
\(529\) −5.87626e6 −0.912980
\(530\) −1.10962e7 −1.71587
\(531\) 0 0
\(532\) 0 0
\(533\) −1.53342e6 −0.233799
\(534\) 0 0
\(535\) −1.28692e7 −1.94388
\(536\) 3.81812e6 0.574034
\(537\) 0 0
\(538\) −4.82141e6 −0.718156
\(539\) 0 0
\(540\) 0 0
\(541\) −7.06006e6 −1.03709 −0.518543 0.855051i \(-0.673526\pi\)
−0.518543 + 0.855051i \(0.673526\pi\)
\(542\) −7.05954e6 −1.03223
\(543\) 0 0
\(544\) 466862. 0.0676380
\(545\) 6.51211e6 0.939140
\(546\) 0 0
\(547\) −1.23520e7 −1.76510 −0.882549 0.470221i \(-0.844174\pi\)
−0.882549 + 0.470221i \(0.844174\pi\)
\(548\) −3.01553e6 −0.428955
\(549\) 0 0
\(550\) −3.03976e6 −0.428483
\(551\) −3.10287e6 −0.435396
\(552\) 0 0
\(553\) 0 0
\(554\) −5.93275e6 −0.821261
\(555\) 0 0
\(556\) −3.38527e6 −0.464415
\(557\) 1.22251e7 1.66961 0.834803 0.550549i \(-0.185582\pi\)
0.834803 + 0.550549i \(0.185582\pi\)
\(558\) 0 0
\(559\) −1.32000e7 −1.78666
\(560\) 0 0
\(561\) 0 0
\(562\) −5.07247e6 −0.677452
\(563\) 812527. 0.108036 0.0540178 0.998540i \(-0.482797\pi\)
0.0540178 + 0.998540i \(0.482797\pi\)
\(564\) 0 0
\(565\) −2.57772e7 −3.39715
\(566\) 5.78628e6 0.759204
\(567\) 0 0
\(568\) 570011. 0.0741332
\(569\) 8.43881e6 1.09270 0.546350 0.837557i \(-0.316017\pi\)
0.546350 + 0.837557i \(0.316017\pi\)
\(570\) 0 0
\(571\) 3.71511e6 0.476849 0.238425 0.971161i \(-0.423369\pi\)
0.238425 + 0.971161i \(0.423369\pi\)
\(572\) 988361. 0.126306
\(573\) 0 0
\(574\) 0 0
\(575\) −6.08695e6 −0.767768
\(576\) 0 0
\(577\) 1.30375e7 1.63025 0.815126 0.579284i \(-0.196668\pi\)
0.815126 + 0.579284i \(0.196668\pi\)
\(578\) 4.84798e6 0.603589
\(579\) 0 0
\(580\) 4.76164e6 0.587742
\(581\) 0 0
\(582\) 0 0
\(583\) −2.44278e6 −0.297654
\(584\) 670758. 0.0813830
\(585\) 0 0
\(586\) 1.46806e6 0.176604
\(587\) −1.15227e7 −1.38026 −0.690128 0.723687i \(-0.742446\pi\)
−0.690128 + 0.723687i \(0.742446\pi\)
\(588\) 0 0
\(589\) −397485. −0.0472098
\(590\) −2.08152e6 −0.246178
\(591\) 0 0
\(592\) −1.74408e6 −0.204533
\(593\) 1.20103e7 1.40254 0.701271 0.712895i \(-0.252616\pi\)
0.701271 + 0.712895i \(0.252616\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 4.69318e6 0.541192
\(597\) 0 0
\(598\) 1.97913e6 0.226320
\(599\) 1.17460e6 0.133759 0.0668794 0.997761i \(-0.478696\pi\)
0.0668794 + 0.997761i \(0.478696\pi\)
\(600\) 0 0
\(601\) −1.62934e7 −1.84003 −0.920014 0.391886i \(-0.871823\pi\)
−0.920014 + 0.391886i \(0.871823\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −3.27162e6 −0.364897
\(605\) 1.61621e7 1.79519
\(606\) 0 0
\(607\) −1.82629e6 −0.201186 −0.100593 0.994928i \(-0.532074\pi\)
−0.100593 + 0.994928i \(0.532074\pi\)
\(608\) −1.13283e6 −0.124281
\(609\) 0 0
\(610\) −5.60377e6 −0.609755
\(611\) 9.39436e6 1.01804
\(612\) 0 0
\(613\) −5.10271e6 −0.548466 −0.274233 0.961663i \(-0.588424\pi\)
−0.274233 + 0.961663i \(0.588424\pi\)
\(614\) 525124. 0.0562135
\(615\) 0 0
\(616\) 0 0
\(617\) 8.03920e6 0.850158 0.425079 0.905156i \(-0.360246\pi\)
0.425079 + 0.905156i \(0.360246\pi\)
\(618\) 0 0
\(619\) 8.60132e6 0.902274 0.451137 0.892455i \(-0.351019\pi\)
0.451137 + 0.892455i \(0.351019\pi\)
\(620\) 609977. 0.0637286
\(621\) 0 0
\(622\) −9.33886e6 −0.967872
\(623\) 0 0
\(624\) 0 0
\(625\) 3.09695e7 3.17128
\(626\) 3.09120e6 0.315277
\(627\) 0 0
\(628\) 8.09464e6 0.819027
\(629\) 3.10610e6 0.313032
\(630\) 0 0
\(631\) 6.21151e6 0.621046 0.310523 0.950566i \(-0.399496\pi\)
0.310523 + 0.950566i \(0.399496\pi\)
\(632\) 462721. 0.0460815
\(633\) 0 0
\(634\) 2.09734e6 0.207227
\(635\) −2.14250e7 −2.10856
\(636\) 0 0
\(637\) 0 0
\(638\) 1.04826e6 0.101957
\(639\) 0 0
\(640\) 1.73843e6 0.167768
\(641\) −4.45143e6 −0.427912 −0.213956 0.976843i \(-0.568635\pi\)
−0.213956 + 0.976843i \(0.568635\pi\)
\(642\) 0 0
\(643\) 1.58708e7 1.51381 0.756907 0.653523i \(-0.226710\pi\)
0.756907 + 0.653523i \(0.226710\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 2.01750e6 0.190209
\(647\) 3.65619e6 0.343375 0.171687 0.985151i \(-0.445078\pi\)
0.171687 + 0.985151i \(0.445078\pi\)
\(648\) 0 0
\(649\) −458237. −0.0427049
\(650\) −2.15089e7 −1.99680
\(651\) 0 0
\(652\) −4.54720e6 −0.418914
\(653\) 4.15039e6 0.380896 0.190448 0.981697i \(-0.439006\pi\)
0.190448 + 0.981697i \(0.439006\pi\)
\(654\) 0 0
\(655\) 3.00832e7 2.73981
\(656\) −593764. −0.0538709
\(657\) 0 0
\(658\) 0 0
\(659\) 1.33739e7 1.19962 0.599810 0.800143i \(-0.295243\pi\)
0.599810 + 0.800143i \(0.295243\pi\)
\(660\) 0 0
\(661\) −9.82641e6 −0.874764 −0.437382 0.899276i \(-0.644094\pi\)
−0.437382 + 0.899276i \(0.644094\pi\)
\(662\) −2.52654e6 −0.224069
\(663\) 0 0
\(664\) −6.42950e6 −0.565923
\(665\) 0 0
\(666\) 0 0
\(667\) 2.09907e6 0.182689
\(668\) 210331. 0.0182373
\(669\) 0 0
\(670\) −2.53202e7 −2.17912
\(671\) −1.23365e6 −0.105775
\(672\) 0 0
\(673\) 401148. 0.0341403 0.0170702 0.999854i \(-0.494566\pi\)
0.0170702 + 0.999854i \(0.494566\pi\)
\(674\) −1.33392e7 −1.13104
\(675\) 0 0
\(676\) 1.05281e6 0.0886101
\(677\) −2.07302e7 −1.73833 −0.869164 0.494524i \(-0.835343\pi\)
−0.869164 + 0.494524i \(0.835343\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −3.09604e6 −0.256764
\(681\) 0 0
\(682\) 134284. 0.0110551
\(683\) 1.91996e7 1.57485 0.787427 0.616409i \(-0.211413\pi\)
0.787427 + 0.616409i \(0.211413\pi\)
\(684\) 0 0
\(685\) 1.99978e7 1.62838
\(686\) 0 0
\(687\) 0 0
\(688\) −5.11123e6 −0.411675
\(689\) −1.72847e7 −1.38712
\(690\) 0 0
\(691\) −1.13093e7 −0.901033 −0.450517 0.892768i \(-0.648760\pi\)
−0.450517 + 0.892768i \(0.648760\pi\)
\(692\) −823248. −0.0653530
\(693\) 0 0
\(694\) −2.60140e6 −0.205026
\(695\) 2.24497e7 1.76299
\(696\) 0 0
\(697\) 1.05746e6 0.0824480
\(698\) 2.40417e6 0.186778
\(699\) 0 0
\(700\) 0 0
\(701\) 1.92159e7 1.47695 0.738473 0.674283i \(-0.235547\pi\)
0.738473 + 0.674283i \(0.235547\pi\)
\(702\) 0 0
\(703\) −7.53689e6 −0.575180
\(704\) 382709. 0.0291029
\(705\) 0 0
\(706\) −1.15555e7 −0.872527
\(707\) 0 0
\(708\) 0 0
\(709\) 5.64480e6 0.421729 0.210864 0.977515i \(-0.432372\pi\)
0.210864 + 0.977515i \(0.432372\pi\)
\(710\) −3.78009e6 −0.281421
\(711\) 0 0
\(712\) 1.28460e6 0.0949657
\(713\) 268896. 0.0198089
\(714\) 0 0
\(715\) −6.55441e6 −0.479478
\(716\) 7.96376e6 0.580544
\(717\) 0 0
\(718\) −391322. −0.0283285
\(719\) −4.42077e6 −0.318916 −0.159458 0.987205i \(-0.550975\pi\)
−0.159458 + 0.987205i \(0.550975\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 5.00898e6 0.357607
\(723\) 0 0
\(724\) −3.63392e6 −0.257650
\(725\) −2.28124e7 −1.61185
\(726\) 0 0
\(727\) 1.92503e7 1.35083 0.675416 0.737437i \(-0.263964\pi\)
0.675416 + 0.737437i \(0.263964\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −4.44819e6 −0.308942
\(731\) 9.10277e6 0.630057
\(732\) 0 0
\(733\) 1.30187e7 0.894966 0.447483 0.894292i \(-0.352320\pi\)
0.447483 + 0.894292i \(0.352320\pi\)
\(734\) −8.59100e6 −0.588577
\(735\) 0 0
\(736\) 766352. 0.0521475
\(737\) −5.57414e6 −0.378015
\(738\) 0 0
\(739\) −1.70955e7 −1.15152 −0.575758 0.817620i \(-0.695293\pi\)
−0.575758 + 0.817620i \(0.695293\pi\)
\(740\) 1.15661e7 0.776437
\(741\) 0 0
\(742\) 0 0
\(743\) −2.36546e7 −1.57197 −0.785984 0.618247i \(-0.787843\pi\)
−0.785984 + 0.618247i \(0.787843\pi\)
\(744\) 0 0
\(745\) −3.11233e7 −2.05445
\(746\) −1.68183e7 −1.10646
\(747\) 0 0
\(748\) −681579. −0.0445413
\(749\) 0 0
\(750\) 0 0
\(751\) −166564. −0.0107766 −0.00538828 0.999985i \(-0.501715\pi\)
−0.00538828 + 0.999985i \(0.501715\pi\)
\(752\) 3.63764e6 0.234572
\(753\) 0 0
\(754\) 7.41730e6 0.475136
\(755\) 2.16961e7 1.38520
\(756\) 0 0
\(757\) −4.63842e6 −0.294192 −0.147096 0.989122i \(-0.546993\pi\)
−0.147096 + 0.989122i \(0.546993\pi\)
\(758\) 2.14234e6 0.135430
\(759\) 0 0
\(760\) 7.51247e6 0.471790
\(761\) 6.96999e6 0.436285 0.218143 0.975917i \(-0.430000\pi\)
0.218143 + 0.975917i \(0.430000\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −8.04445e6 −0.498612
\(765\) 0 0
\(766\) −1.53879e7 −0.947561
\(767\) −3.24242e6 −0.199013
\(768\) 0 0
\(769\) 3.02590e6 0.184518 0.0922590 0.995735i \(-0.470591\pi\)
0.0922590 + 0.995735i \(0.470591\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 2.24516e6 0.135582
\(773\) −2.78539e7 −1.67663 −0.838314 0.545188i \(-0.816458\pi\)
−0.838314 + 0.545188i \(0.816458\pi\)
\(774\) 0 0
\(775\) −2.92232e6 −0.174772
\(776\) 1.49254e6 0.0889758
\(777\) 0 0
\(778\) −6.79330e6 −0.402376
\(779\) −2.56589e6 −0.151494
\(780\) 0 0
\(781\) −832170. −0.0488185
\(782\) −1.36482e6 −0.0798104
\(783\) 0 0
\(784\) 0 0
\(785\) −5.36804e7 −3.10915
\(786\) 0 0
\(787\) 2.87913e7 1.65701 0.828503 0.559985i \(-0.189193\pi\)
0.828503 + 0.559985i \(0.189193\pi\)
\(788\) −6.06388e6 −0.347885
\(789\) 0 0
\(790\) −3.06858e6 −0.174932
\(791\) 0 0
\(792\) 0 0
\(793\) −8.72910e6 −0.492931
\(794\) −1.44951e7 −0.815962
\(795\) 0 0
\(796\) −7.37635e6 −0.412628
\(797\) 3.67489e6 0.204927 0.102463 0.994737i \(-0.467328\pi\)
0.102463 + 0.994737i \(0.467328\pi\)
\(798\) 0 0
\(799\) −6.47841e6 −0.359006
\(800\) −8.32859e6 −0.460094
\(801\) 0 0
\(802\) −1.11920e7 −0.614431
\(803\) −979251. −0.0535926
\(804\) 0 0
\(805\) 0 0
\(806\) 950173. 0.0515187
\(807\) 0 0
\(808\) −4.41435e6 −0.237869
\(809\) 1.04012e7 0.558744 0.279372 0.960183i \(-0.409874\pi\)
0.279372 + 0.960183i \(0.409874\pi\)
\(810\) 0 0
\(811\) −1.53749e7 −0.820844 −0.410422 0.911896i \(-0.634619\pi\)
−0.410422 + 0.911896i \(0.634619\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 2.54622e6 0.134690
\(815\) 3.01552e7 1.59026
\(816\) 0 0
\(817\) −2.20877e7 −1.15770
\(818\) 2.66513e6 0.139263
\(819\) 0 0
\(820\) 3.93761e6 0.204502
\(821\) −1.91243e7 −0.990209 −0.495104 0.868834i \(-0.664870\pi\)
−0.495104 + 0.868834i \(0.664870\pi\)
\(822\) 0 0
\(823\) 2.88895e6 0.148676 0.0743381 0.997233i \(-0.476316\pi\)
0.0743381 + 0.997233i \(0.476316\pi\)
\(824\) −7.27841e6 −0.373438
\(825\) 0 0
\(826\) 0 0
\(827\) 1.99201e7 1.01281 0.506406 0.862295i \(-0.330974\pi\)
0.506406 + 0.862295i \(0.330974\pi\)
\(828\) 0 0
\(829\) −1.19726e7 −0.605065 −0.302532 0.953139i \(-0.597832\pi\)
−0.302532 + 0.953139i \(0.597832\pi\)
\(830\) 4.26379e7 2.14833
\(831\) 0 0
\(832\) 2.70799e6 0.135625
\(833\) 0 0
\(834\) 0 0
\(835\) −1.39483e6 −0.0692316
\(836\) 1.65384e6 0.0818422
\(837\) 0 0
\(838\) 1.15681e7 0.569053
\(839\) 1.43453e7 0.703568 0.351784 0.936081i \(-0.385575\pi\)
0.351784 + 0.936081i \(0.385575\pi\)
\(840\) 0 0
\(841\) −1.26444e7 −0.616463
\(842\) −2.68811e7 −1.30667
\(843\) 0 0
\(844\) 3.23422e6 0.156284
\(845\) −6.98181e6 −0.336377
\(846\) 0 0
\(847\) 0 0
\(848\) −6.69292e6 −0.319614
\(849\) 0 0
\(850\) 1.48327e7 0.704162
\(851\) 5.09865e6 0.241341
\(852\) 0 0
\(853\) −1.41859e7 −0.667551 −0.333776 0.942653i \(-0.608323\pi\)
−0.333776 + 0.942653i \(0.608323\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −7.76238e6 −0.362085
\(857\) −2.41394e7 −1.12273 −0.561363 0.827570i \(-0.689723\pi\)
−0.561363 + 0.827570i \(0.689723\pi\)
\(858\) 0 0
\(859\) 1.37343e7 0.635071 0.317536 0.948246i \(-0.397145\pi\)
0.317536 + 0.948246i \(0.397145\pi\)
\(860\) 3.38956e7 1.56278
\(861\) 0 0
\(862\) 1.88919e7 0.865981
\(863\) −1.74905e7 −0.799419 −0.399709 0.916642i \(-0.630889\pi\)
−0.399709 + 0.916642i \(0.630889\pi\)
\(864\) 0 0
\(865\) 5.45945e6 0.248090
\(866\) 2.31254e7 1.04784
\(867\) 0 0
\(868\) 0 0
\(869\) −675534. −0.0303458
\(870\) 0 0
\(871\) −3.94418e7 −1.76162
\(872\) 3.92793e6 0.174933
\(873\) 0 0
\(874\) 3.31171e6 0.146647
\(875\) 0 0
\(876\) 0 0
\(877\) −3.51221e7 −1.54199 −0.770995 0.636842i \(-0.780241\pi\)
−0.770995 + 0.636842i \(0.780241\pi\)
\(878\) −2.14749e7 −0.940146
\(879\) 0 0
\(880\) −2.53797e6 −0.110479
\(881\) 8.78528e6 0.381343 0.190672 0.981654i \(-0.438933\pi\)
0.190672 + 0.981654i \(0.438933\pi\)
\(882\) 0 0
\(883\) 1.87501e7 0.809287 0.404643 0.914475i \(-0.367396\pi\)
0.404643 + 0.914475i \(0.367396\pi\)
\(884\) −4.82276e6 −0.207570
\(885\) 0 0
\(886\) 1.72605e7 0.738700
\(887\) 2.72434e7 1.16266 0.581330 0.813668i \(-0.302532\pi\)
0.581330 + 0.813668i \(0.302532\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −8.51892e6 −0.360504
\(891\) 0 0
\(892\) 1.11094e7 0.467498
\(893\) 1.57197e7 0.659654
\(894\) 0 0
\(895\) −5.28124e7 −2.20383
\(896\) 0 0
\(897\) 0 0
\(898\) 1.90117e7 0.786737
\(899\) 1.00775e6 0.0415868
\(900\) 0 0
\(901\) 1.19197e7 0.489161
\(902\) 866847. 0.0354753
\(903\) 0 0
\(904\) −1.55481e7 −0.632785
\(905\) 2.40987e7 0.978076
\(906\) 0 0
\(907\) 2.90420e7 1.17222 0.586110 0.810232i \(-0.300659\pi\)
0.586110 + 0.810232i \(0.300659\pi\)
\(908\) −2.02716e7 −0.815968
\(909\) 0 0
\(910\) 0 0
\(911\) −4.12057e7 −1.64498 −0.822491 0.568778i \(-0.807417\pi\)
−0.822491 + 0.568778i \(0.807417\pi\)
\(912\) 0 0
\(913\) 9.38655e6 0.372674
\(914\) −8.54910e6 −0.338497
\(915\) 0 0
\(916\) 1.37036e7 0.539631
\(917\) 0 0
\(918\) 0 0
\(919\) 3.04768e7 1.19037 0.595184 0.803589i \(-0.297079\pi\)
0.595184 + 0.803589i \(0.297079\pi\)
\(920\) −5.08214e6 −0.197960
\(921\) 0 0
\(922\) −6.91679e6 −0.267964
\(923\) −5.88831e6 −0.227503
\(924\) 0 0
\(925\) −5.54114e7 −2.12934
\(926\) 2.61747e7 1.00312
\(927\) 0 0
\(928\) 2.87210e6 0.109479
\(929\) 3.60640e7 1.37099 0.685495 0.728077i \(-0.259586\pi\)
0.685495 + 0.728077i \(0.259586\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 4.54972e6 0.171571
\(933\) 0 0
\(934\) −7.17676e6 −0.269191
\(935\) 4.51996e6 0.169085
\(936\) 0 0
\(937\) 4.80602e7 1.78828 0.894141 0.447785i \(-0.147787\pi\)
0.894141 + 0.447785i \(0.147787\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −2.41234e7 −0.890469
\(941\) 4.28577e7 1.57781 0.788906 0.614514i \(-0.210648\pi\)
0.788906 + 0.614514i \(0.210648\pi\)
\(942\) 0 0
\(943\) 1.73581e6 0.0635657
\(944\) −1.25551e6 −0.0458555
\(945\) 0 0
\(946\) 7.46197e6 0.271098
\(947\) −4.32432e7 −1.56690 −0.783452 0.621452i \(-0.786543\pi\)
−0.783452 + 0.621452i \(0.786543\pi\)
\(948\) 0 0
\(949\) −6.92904e6 −0.249751
\(950\) −3.59912e7 −1.29386
\(951\) 0 0
\(952\) 0 0
\(953\) 2.81115e7 1.00265 0.501327 0.865258i \(-0.332845\pi\)
0.501327 + 0.865258i \(0.332845\pi\)
\(954\) 0 0
\(955\) 5.33476e7 1.89281
\(956\) 6.84706e6 0.242303
\(957\) 0 0
\(958\) 1.63761e7 0.576497
\(959\) 0 0
\(960\) 0 0
\(961\) −2.85001e7 −0.995491
\(962\) 1.80167e7 0.627678
\(963\) 0 0
\(964\) 1.29533e7 0.448940
\(965\) −1.48890e7 −0.514691
\(966\) 0 0
\(967\) 3.70437e7 1.27394 0.636968 0.770890i \(-0.280188\pi\)
0.636968 + 0.770890i \(0.280188\pi\)
\(968\) 9.74854e6 0.334388
\(969\) 0 0
\(970\) −9.89793e6 −0.337765
\(971\) 4.58140e7 1.55937 0.779686 0.626170i \(-0.215379\pi\)
0.779686 + 0.626170i \(0.215379\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 1.78084e7 0.601489
\(975\) 0 0
\(976\) −3.38004e6 −0.113579
\(977\) −1.17497e6 −0.0393812 −0.0196906 0.999806i \(-0.506268\pi\)
−0.0196906 + 0.999806i \(0.506268\pi\)
\(978\) 0 0
\(979\) −1.87540e6 −0.0625372
\(980\) 0 0
\(981\) 0 0
\(982\) 2.83870e7 0.939377
\(983\) 2.63520e7 0.869822 0.434911 0.900474i \(-0.356780\pi\)
0.434911 + 0.900474i \(0.356780\pi\)
\(984\) 0 0
\(985\) 4.02132e7 1.32062
\(986\) −5.11502e6 −0.167554
\(987\) 0 0
\(988\) 1.17023e7 0.381399
\(989\) 1.49422e7 0.485761
\(990\) 0 0
\(991\) 3.82424e7 1.23697 0.618487 0.785795i \(-0.287746\pi\)
0.618487 + 0.785795i \(0.287746\pi\)
\(992\) 367922. 0.0118707
\(993\) 0 0
\(994\) 0 0
\(995\) 4.89170e7 1.56640
\(996\) 0 0
\(997\) 4.36919e7 1.39208 0.696038 0.718005i \(-0.254945\pi\)
0.696038 + 0.718005i \(0.254945\pi\)
\(998\) −3.76761e7 −1.19740
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.6.a.ba.1.1 2
3.2 odd 2 98.6.a.h.1.1 2
7.2 even 3 126.6.g.j.109.2 4
7.4 even 3 126.6.g.j.37.2 4
7.6 odd 2 882.6.a.bi.1.2 2
12.11 even 2 784.6.a.s.1.2 2
21.2 odd 6 14.6.c.a.11.2 yes 4
21.5 even 6 98.6.c.e.67.1 4
21.11 odd 6 14.6.c.a.9.2 4
21.17 even 6 98.6.c.e.79.1 4
21.20 even 2 98.6.a.g.1.2 2
84.11 even 6 112.6.i.d.65.1 4
84.23 even 6 112.6.i.d.81.1 4
84.83 odd 2 784.6.a.bb.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.6.c.a.9.2 4 21.11 odd 6
14.6.c.a.11.2 yes 4 21.2 odd 6
98.6.a.g.1.2 2 21.20 even 2
98.6.a.h.1.1 2 3.2 odd 2
98.6.c.e.67.1 4 21.5 even 6
98.6.c.e.79.1 4 21.17 even 6
112.6.i.d.65.1 4 84.11 even 6
112.6.i.d.81.1 4 84.23 even 6
126.6.g.j.37.2 4 7.4 even 3
126.6.g.j.109.2 4 7.2 even 3
784.6.a.s.1.2 2 12.11 even 2
784.6.a.bb.1.1 2 84.83 odd 2
882.6.a.ba.1.1 2 1.1 even 1 trivial
882.6.a.bi.1.2 2 7.6 odd 2