Properties

Label 882.6.a.b.1.1
Level $882$
Weight $6$
Character 882.1
Self dual yes
Analytic conductor $141.459$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,6,Mod(1,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 882.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.458529075\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 126)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 882.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} +16.0000 q^{4} -54.0000 q^{5} -64.0000 q^{8} +O(q^{10})\) \(q-4.00000 q^{2} +16.0000 q^{4} -54.0000 q^{5} -64.0000 q^{8} +216.000 q^{10} +594.000 q^{11} -26.0000 q^{13} +256.000 q^{16} +534.000 q^{17} +3004.00 q^{19} -864.000 q^{20} -2376.00 q^{22} +3510.00 q^{23} -209.000 q^{25} +104.000 q^{26} +4296.00 q^{29} -8036.00 q^{31} -1024.00 q^{32} -2136.00 q^{34} -502.000 q^{37} -12016.0 q^{38} +3456.00 q^{40} -9870.00 q^{41} +9068.00 q^{43} +9504.00 q^{44} -14040.0 q^{46} -1140.00 q^{47} +836.000 q^{50} -416.000 q^{52} +28356.0 q^{53} -32076.0 q^{55} -17184.0 q^{58} +8196.00 q^{59} -29822.0 q^{61} +32144.0 q^{62} +4096.00 q^{64} +1404.00 q^{65} -62884.0 q^{67} +8544.00 q^{68} -34398.0 q^{71} -56990.0 q^{73} +2008.00 q^{74} +48064.0 q^{76} +49496.0 q^{79} -13824.0 q^{80} +39480.0 q^{82} +52512.0 q^{83} -28836.0 q^{85} -36272.0 q^{86} -38016.0 q^{88} +48282.0 q^{89} +56160.0 q^{92} +4560.00 q^{94} -162216. q^{95} +83938.0 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) 0 0
\(4\) 16.0000 0.500000
\(5\) −54.0000 −0.965981 −0.482991 0.875625i \(-0.660450\pi\)
−0.482991 + 0.875625i \(0.660450\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −64.0000 −0.353553
\(9\) 0 0
\(10\) 216.000 0.683052
\(11\) 594.000 1.48015 0.740073 0.672526i \(-0.234791\pi\)
0.740073 + 0.672526i \(0.234791\pi\)
\(12\) 0 0
\(13\) −26.0000 −0.0426692 −0.0213346 0.999772i \(-0.506792\pi\)
−0.0213346 + 0.999772i \(0.506792\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) 534.000 0.448145 0.224073 0.974572i \(-0.428065\pi\)
0.224073 + 0.974572i \(0.428065\pi\)
\(18\) 0 0
\(19\) 3004.00 1.90904 0.954522 0.298141i \(-0.0963664\pi\)
0.954522 + 0.298141i \(0.0963664\pi\)
\(20\) −864.000 −0.482991
\(21\) 0 0
\(22\) −2376.00 −1.04662
\(23\) 3510.00 1.38353 0.691763 0.722124i \(-0.256834\pi\)
0.691763 + 0.722124i \(0.256834\pi\)
\(24\) 0 0
\(25\) −209.000 −0.0668800
\(26\) 104.000 0.0301717
\(27\) 0 0
\(28\) 0 0
\(29\) 4296.00 0.948570 0.474285 0.880371i \(-0.342707\pi\)
0.474285 + 0.880371i \(0.342707\pi\)
\(30\) 0 0
\(31\) −8036.00 −1.50188 −0.750941 0.660370i \(-0.770400\pi\)
−0.750941 + 0.660370i \(0.770400\pi\)
\(32\) −1024.00 −0.176777
\(33\) 0 0
\(34\) −2136.00 −0.316887
\(35\) 0 0
\(36\) 0 0
\(37\) −502.000 −0.0602836 −0.0301418 0.999546i \(-0.509596\pi\)
−0.0301418 + 0.999546i \(0.509596\pi\)
\(38\) −12016.0 −1.34990
\(39\) 0 0
\(40\) 3456.00 0.341526
\(41\) −9870.00 −0.916975 −0.458488 0.888701i \(-0.651609\pi\)
−0.458488 + 0.888701i \(0.651609\pi\)
\(42\) 0 0
\(43\) 9068.00 0.747895 0.373947 0.927450i \(-0.378004\pi\)
0.373947 + 0.927450i \(0.378004\pi\)
\(44\) 9504.00 0.740073
\(45\) 0 0
\(46\) −14040.0 −0.978301
\(47\) −1140.00 −0.0752766 −0.0376383 0.999291i \(-0.511983\pi\)
−0.0376383 + 0.999291i \(0.511983\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 836.000 0.0472913
\(51\) 0 0
\(52\) −416.000 −0.0213346
\(53\) 28356.0 1.38661 0.693307 0.720643i \(-0.256153\pi\)
0.693307 + 0.720643i \(0.256153\pi\)
\(54\) 0 0
\(55\) −32076.0 −1.42979
\(56\) 0 0
\(57\) 0 0
\(58\) −17184.0 −0.670740
\(59\) 8196.00 0.306529 0.153265 0.988185i \(-0.451021\pi\)
0.153265 + 0.988185i \(0.451021\pi\)
\(60\) 0 0
\(61\) −29822.0 −1.02615 −0.513077 0.858343i \(-0.671494\pi\)
−0.513077 + 0.858343i \(0.671494\pi\)
\(62\) 32144.0 1.06199
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) 1404.00 0.0412177
\(66\) 0 0
\(67\) −62884.0 −1.71141 −0.855703 0.517467i \(-0.826875\pi\)
−0.855703 + 0.517467i \(0.826875\pi\)
\(68\) 8544.00 0.224073
\(69\) 0 0
\(70\) 0 0
\(71\) −34398.0 −0.809818 −0.404909 0.914357i \(-0.632697\pi\)
−0.404909 + 0.914357i \(0.632697\pi\)
\(72\) 0 0
\(73\) −56990.0 −1.25167 −0.625837 0.779954i \(-0.715243\pi\)
−0.625837 + 0.779954i \(0.715243\pi\)
\(74\) 2008.00 0.0426270
\(75\) 0 0
\(76\) 48064.0 0.954522
\(77\) 0 0
\(78\) 0 0
\(79\) 49496.0 0.892282 0.446141 0.894963i \(-0.352798\pi\)
0.446141 + 0.894963i \(0.352798\pi\)
\(80\) −13824.0 −0.241495
\(81\) 0 0
\(82\) 39480.0 0.648399
\(83\) 52512.0 0.836688 0.418344 0.908289i \(-0.362611\pi\)
0.418344 + 0.908289i \(0.362611\pi\)
\(84\) 0 0
\(85\) −28836.0 −0.432900
\(86\) −36272.0 −0.528841
\(87\) 0 0
\(88\) −38016.0 −0.523311
\(89\) 48282.0 0.646116 0.323058 0.946379i \(-0.395289\pi\)
0.323058 + 0.946379i \(0.395289\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 56160.0 0.691763
\(93\) 0 0
\(94\) 4560.00 0.0532286
\(95\) −162216. −1.84410
\(96\) 0 0
\(97\) 83938.0 0.905794 0.452897 0.891563i \(-0.350391\pi\)
0.452897 + 0.891563i \(0.350391\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −3344.00 −0.0334400
\(101\) 62694.0 0.611537 0.305768 0.952106i \(-0.401087\pi\)
0.305768 + 0.952106i \(0.401087\pi\)
\(102\) 0 0
\(103\) 30988.0 0.287806 0.143903 0.989592i \(-0.454035\pi\)
0.143903 + 0.989592i \(0.454035\pi\)
\(104\) 1664.00 0.0150859
\(105\) 0 0
\(106\) −113424. −0.980484
\(107\) 118218. 0.998215 0.499108 0.866540i \(-0.333661\pi\)
0.499108 + 0.866540i \(0.333661\pi\)
\(108\) 0 0
\(109\) 207362. 1.67172 0.835859 0.548944i \(-0.184970\pi\)
0.835859 + 0.548944i \(0.184970\pi\)
\(110\) 128304. 1.01102
\(111\) 0 0
\(112\) 0 0
\(113\) −136416. −1.00501 −0.502504 0.864575i \(-0.667588\pi\)
−0.502504 + 0.864575i \(0.667588\pi\)
\(114\) 0 0
\(115\) −189540. −1.33646
\(116\) 68736.0 0.474285
\(117\) 0 0
\(118\) −32784.0 −0.216749
\(119\) 0 0
\(120\) 0 0
\(121\) 191785. 1.19083
\(122\) 119288. 0.725600
\(123\) 0 0
\(124\) −128576. −0.750941
\(125\) 180036. 1.03059
\(126\) 0 0
\(127\) −128248. −0.705572 −0.352786 0.935704i \(-0.614766\pi\)
−0.352786 + 0.935704i \(0.614766\pi\)
\(128\) −16384.0 −0.0883883
\(129\) 0 0
\(130\) −5616.00 −0.0291453
\(131\) −370296. −1.88526 −0.942629 0.333842i \(-0.891655\pi\)
−0.942629 + 0.333842i \(0.891655\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 251536. 1.21015
\(135\) 0 0
\(136\) −34176.0 −0.158443
\(137\) 12924.0 0.0588296 0.0294148 0.999567i \(-0.490636\pi\)
0.0294148 + 0.999567i \(0.490636\pi\)
\(138\) 0 0
\(139\) 177760. 0.780364 0.390182 0.920738i \(-0.372412\pi\)
0.390182 + 0.920738i \(0.372412\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 137592. 0.572628
\(143\) −15444.0 −0.0631567
\(144\) 0 0
\(145\) −231984. −0.916301
\(146\) 227960. 0.885068
\(147\) 0 0
\(148\) −8032.00 −0.0301418
\(149\) 309564. 1.14231 0.571156 0.820841i \(-0.306495\pi\)
0.571156 + 0.820841i \(0.306495\pi\)
\(150\) 0 0
\(151\) −300136. −1.07121 −0.535606 0.844468i \(-0.679917\pi\)
−0.535606 + 0.844468i \(0.679917\pi\)
\(152\) −192256. −0.674949
\(153\) 0 0
\(154\) 0 0
\(155\) 433944. 1.45079
\(156\) 0 0
\(157\) −11726.0 −0.0379665 −0.0189833 0.999820i \(-0.506043\pi\)
−0.0189833 + 0.999820i \(0.506043\pi\)
\(158\) −197984. −0.630939
\(159\) 0 0
\(160\) 55296.0 0.170763
\(161\) 0 0
\(162\) 0 0
\(163\) −269260. −0.793785 −0.396892 0.917865i \(-0.629911\pi\)
−0.396892 + 0.917865i \(0.629911\pi\)
\(164\) −157920. −0.458488
\(165\) 0 0
\(166\) −210048. −0.591627
\(167\) −41604.0 −0.115437 −0.0577184 0.998333i \(-0.518383\pi\)
−0.0577184 + 0.998333i \(0.518383\pi\)
\(168\) 0 0
\(169\) −370617. −0.998179
\(170\) 115344. 0.306107
\(171\) 0 0
\(172\) 145088. 0.373947
\(173\) −286962. −0.728969 −0.364485 0.931209i \(-0.618755\pi\)
−0.364485 + 0.931209i \(0.618755\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 152064. 0.370037
\(177\) 0 0
\(178\) −193128. −0.456873
\(179\) −420186. −0.980187 −0.490094 0.871670i \(-0.663037\pi\)
−0.490094 + 0.871670i \(0.663037\pi\)
\(180\) 0 0
\(181\) 16918.0 0.0383842 0.0191921 0.999816i \(-0.493891\pi\)
0.0191921 + 0.999816i \(0.493891\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −224640. −0.489151
\(185\) 27108.0 0.0582329
\(186\) 0 0
\(187\) 317196. 0.663321
\(188\) −18240.0 −0.0376383
\(189\) 0 0
\(190\) 648864. 1.30398
\(191\) −134742. −0.267251 −0.133626 0.991032i \(-0.542662\pi\)
−0.133626 + 0.991032i \(0.542662\pi\)
\(192\) 0 0
\(193\) −314650. −0.608043 −0.304022 0.952665i \(-0.598330\pi\)
−0.304022 + 0.952665i \(0.598330\pi\)
\(194\) −335752. −0.640493
\(195\) 0 0
\(196\) 0 0
\(197\) 596628. 1.09531 0.547656 0.836703i \(-0.315520\pi\)
0.547656 + 0.836703i \(0.315520\pi\)
\(198\) 0 0
\(199\) 10096.0 0.0180724 0.00903622 0.999959i \(-0.497124\pi\)
0.00903622 + 0.999959i \(0.497124\pi\)
\(200\) 13376.0 0.0236457
\(201\) 0 0
\(202\) −250776. −0.432422
\(203\) 0 0
\(204\) 0 0
\(205\) 532980. 0.885781
\(206\) −123952. −0.203510
\(207\) 0 0
\(208\) −6656.00 −0.0106673
\(209\) 1.78438e6 2.82566
\(210\) 0 0
\(211\) −721324. −1.11538 −0.557692 0.830048i \(-0.688313\pi\)
−0.557692 + 0.830048i \(0.688313\pi\)
\(212\) 453696. 0.693307
\(213\) 0 0
\(214\) −472872. −0.705845
\(215\) −489672. −0.722452
\(216\) 0 0
\(217\) 0 0
\(218\) −829448. −1.18208
\(219\) 0 0
\(220\) −513216. −0.714897
\(221\) −13884.0 −0.0191220
\(222\) 0 0
\(223\) 536584. 0.722563 0.361281 0.932457i \(-0.382339\pi\)
0.361281 + 0.932457i \(0.382339\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 545664. 0.710647
\(227\) 1.48698e6 1.91532 0.957658 0.287908i \(-0.0929597\pi\)
0.957658 + 0.287908i \(0.0929597\pi\)
\(228\) 0 0
\(229\) 1.10957e6 1.39818 0.699092 0.715032i \(-0.253588\pi\)
0.699092 + 0.715032i \(0.253588\pi\)
\(230\) 758160. 0.945021
\(231\) 0 0
\(232\) −274944. −0.335370
\(233\) 1.38796e6 1.67489 0.837444 0.546523i \(-0.184049\pi\)
0.837444 + 0.546523i \(0.184049\pi\)
\(234\) 0 0
\(235\) 61560.0 0.0727158
\(236\) 131136. 0.153265
\(237\) 0 0
\(238\) 0 0
\(239\) 1.56406e6 1.77117 0.885583 0.464481i \(-0.153759\pi\)
0.885583 + 0.464481i \(0.153759\pi\)
\(240\) 0 0
\(241\) −1.36319e6 −1.51187 −0.755934 0.654648i \(-0.772817\pi\)
−0.755934 + 0.654648i \(0.772817\pi\)
\(242\) −767140. −0.842047
\(243\) 0 0
\(244\) −477152. −0.513077
\(245\) 0 0
\(246\) 0 0
\(247\) −78104.0 −0.0814575
\(248\) 514304. 0.530995
\(249\) 0 0
\(250\) −720144. −0.728734
\(251\) 1.54847e6 1.55138 0.775690 0.631115i \(-0.217402\pi\)
0.775690 + 0.631115i \(0.217402\pi\)
\(252\) 0 0
\(253\) 2.08494e6 2.04782
\(254\) 512992. 0.498915
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) 1.54147e6 1.45580 0.727899 0.685684i \(-0.240497\pi\)
0.727899 + 0.685684i \(0.240497\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 22464.0 0.0206088
\(261\) 0 0
\(262\) 1.48118e6 1.33308
\(263\) −2.13251e6 −1.90109 −0.950545 0.310588i \(-0.899474\pi\)
−0.950545 + 0.310588i \(0.899474\pi\)
\(264\) 0 0
\(265\) −1.53122e6 −1.33944
\(266\) 0 0
\(267\) 0 0
\(268\) −1.00614e6 −0.855703
\(269\) −386142. −0.325362 −0.162681 0.986679i \(-0.552014\pi\)
−0.162681 + 0.986679i \(0.552014\pi\)
\(270\) 0 0
\(271\) 1.17581e6 0.972556 0.486278 0.873804i \(-0.338354\pi\)
0.486278 + 0.873804i \(0.338354\pi\)
\(272\) 136704. 0.112036
\(273\) 0 0
\(274\) −51696.0 −0.0415988
\(275\) −124146. −0.0989922
\(276\) 0 0
\(277\) 417038. 0.326570 0.163285 0.986579i \(-0.447791\pi\)
0.163285 + 0.986579i \(0.447791\pi\)
\(278\) −711040. −0.551800
\(279\) 0 0
\(280\) 0 0
\(281\) −523932. −0.395830 −0.197915 0.980219i \(-0.563417\pi\)
−0.197915 + 0.980219i \(0.563417\pi\)
\(282\) 0 0
\(283\) 2.36724e6 1.75702 0.878510 0.477723i \(-0.158538\pi\)
0.878510 + 0.477723i \(0.158538\pi\)
\(284\) −550368. −0.404909
\(285\) 0 0
\(286\) 61776.0 0.0446586
\(287\) 0 0
\(288\) 0 0
\(289\) −1.13470e6 −0.799166
\(290\) 927936. 0.647922
\(291\) 0 0
\(292\) −911840. −0.625837
\(293\) 2.44630e6 1.66472 0.832360 0.554236i \(-0.186989\pi\)
0.832360 + 0.554236i \(0.186989\pi\)
\(294\) 0 0
\(295\) −442584. −0.296102
\(296\) 32128.0 0.0213135
\(297\) 0 0
\(298\) −1.23826e6 −0.807737
\(299\) −91260.0 −0.0590340
\(300\) 0 0
\(301\) 0 0
\(302\) 1.20054e6 0.757462
\(303\) 0 0
\(304\) 769024. 0.477261
\(305\) 1.61039e6 0.991245
\(306\) 0 0
\(307\) 969316. 0.586975 0.293487 0.955963i \(-0.405184\pi\)
0.293487 + 0.955963i \(0.405184\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −1.73578e6 −1.02586
\(311\) −2.44765e6 −1.43499 −0.717495 0.696564i \(-0.754711\pi\)
−0.717495 + 0.696564i \(0.754711\pi\)
\(312\) 0 0
\(313\) −2.02541e6 −1.16856 −0.584281 0.811551i \(-0.698624\pi\)
−0.584281 + 0.811551i \(0.698624\pi\)
\(314\) 46904.0 0.0268464
\(315\) 0 0
\(316\) 791936. 0.446141
\(317\) 2.50379e6 1.39942 0.699712 0.714425i \(-0.253312\pi\)
0.699712 + 0.714425i \(0.253312\pi\)
\(318\) 0 0
\(319\) 2.55182e6 1.40402
\(320\) −221184. −0.120748
\(321\) 0 0
\(322\) 0 0
\(323\) 1.60414e6 0.855529
\(324\) 0 0
\(325\) 5434.00 0.00285372
\(326\) 1.07704e6 0.561291
\(327\) 0 0
\(328\) 631680. 0.324200
\(329\) 0 0
\(330\) 0 0
\(331\) 1.28700e6 0.645665 0.322832 0.946456i \(-0.395365\pi\)
0.322832 + 0.946456i \(0.395365\pi\)
\(332\) 840192. 0.418344
\(333\) 0 0
\(334\) 166416. 0.0816261
\(335\) 3.39574e6 1.65319
\(336\) 0 0
\(337\) −1.40639e6 −0.674574 −0.337287 0.941402i \(-0.609509\pi\)
−0.337287 + 0.941402i \(0.609509\pi\)
\(338\) 1.48247e6 0.705819
\(339\) 0 0
\(340\) −461376. −0.216450
\(341\) −4.77338e6 −2.22300
\(342\) 0 0
\(343\) 0 0
\(344\) −580352. −0.264421
\(345\) 0 0
\(346\) 1.14785e6 0.515459
\(347\) −1.25313e6 −0.558692 −0.279346 0.960191i \(-0.590118\pi\)
−0.279346 + 0.960191i \(0.590118\pi\)
\(348\) 0 0
\(349\) −1.66876e6 −0.733381 −0.366691 0.930343i \(-0.619509\pi\)
−0.366691 + 0.930343i \(0.619509\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −608256. −0.261655
\(353\) 2.13687e6 0.912728 0.456364 0.889793i \(-0.349152\pi\)
0.456364 + 0.889793i \(0.349152\pi\)
\(354\) 0 0
\(355\) 1.85749e6 0.782269
\(356\) 772512. 0.323058
\(357\) 0 0
\(358\) 1.68074e6 0.693097
\(359\) 3.60907e6 1.47795 0.738973 0.673735i \(-0.235311\pi\)
0.738973 + 0.673735i \(0.235311\pi\)
\(360\) 0 0
\(361\) 6.54792e6 2.64445
\(362\) −67672.0 −0.0271417
\(363\) 0 0
\(364\) 0 0
\(365\) 3.07746e6 1.20909
\(366\) 0 0
\(367\) 1.88190e6 0.729344 0.364672 0.931136i \(-0.381181\pi\)
0.364672 + 0.931136i \(0.381181\pi\)
\(368\) 898560. 0.345882
\(369\) 0 0
\(370\) −108432. −0.0411769
\(371\) 0 0
\(372\) 0 0
\(373\) 4.86186e6 1.80938 0.904692 0.426067i \(-0.140101\pi\)
0.904692 + 0.426067i \(0.140101\pi\)
\(374\) −1.26878e6 −0.469039
\(375\) 0 0
\(376\) 72960.0 0.0266143
\(377\) −111696. −0.0404748
\(378\) 0 0
\(379\) 251300. 0.0898658 0.0449329 0.998990i \(-0.485693\pi\)
0.0449329 + 0.998990i \(0.485693\pi\)
\(380\) −2.59546e6 −0.922050
\(381\) 0 0
\(382\) 538968. 0.188975
\(383\) 567720. 0.197759 0.0988797 0.995099i \(-0.468474\pi\)
0.0988797 + 0.995099i \(0.468474\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 1.25860e6 0.429951
\(387\) 0 0
\(388\) 1.34301e6 0.452897
\(389\) −2.34547e6 −0.785880 −0.392940 0.919564i \(-0.628542\pi\)
−0.392940 + 0.919564i \(0.628542\pi\)
\(390\) 0 0
\(391\) 1.87434e6 0.620021
\(392\) 0 0
\(393\) 0 0
\(394\) −2.38651e6 −0.774503
\(395\) −2.67278e6 −0.861928
\(396\) 0 0
\(397\) 5.25719e6 1.67408 0.837042 0.547139i \(-0.184283\pi\)
0.837042 + 0.547139i \(0.184283\pi\)
\(398\) −40384.0 −0.0127791
\(399\) 0 0
\(400\) −53504.0 −0.0167200
\(401\) −2.34140e6 −0.727136 −0.363568 0.931568i \(-0.618442\pi\)
−0.363568 + 0.931568i \(0.618442\pi\)
\(402\) 0 0
\(403\) 208936. 0.0640842
\(404\) 1.00310e6 0.305768
\(405\) 0 0
\(406\) 0 0
\(407\) −298188. −0.0892286
\(408\) 0 0
\(409\) −662318. −0.195775 −0.0978877 0.995197i \(-0.531209\pi\)
−0.0978877 + 0.995197i \(0.531209\pi\)
\(410\) −2.13192e6 −0.626342
\(411\) 0 0
\(412\) 495808. 0.143903
\(413\) 0 0
\(414\) 0 0
\(415\) −2.83565e6 −0.808225
\(416\) 26624.0 0.00754293
\(417\) 0 0
\(418\) −7.13750e6 −1.99805
\(419\) −5.27752e6 −1.46857 −0.734285 0.678842i \(-0.762482\pi\)
−0.734285 + 0.678842i \(0.762482\pi\)
\(420\) 0 0
\(421\) 1.74817e6 0.480706 0.240353 0.970686i \(-0.422737\pi\)
0.240353 + 0.970686i \(0.422737\pi\)
\(422\) 2.88530e6 0.788695
\(423\) 0 0
\(424\) −1.81478e6 −0.490242
\(425\) −111606. −0.0299720
\(426\) 0 0
\(427\) 0 0
\(428\) 1.89149e6 0.499108
\(429\) 0 0
\(430\) 1.95869e6 0.510851
\(431\) −2.65575e6 −0.688643 −0.344321 0.938852i \(-0.611891\pi\)
−0.344321 + 0.938852i \(0.611891\pi\)
\(432\) 0 0
\(433\) 3.12026e6 0.799781 0.399891 0.916563i \(-0.369048\pi\)
0.399891 + 0.916563i \(0.369048\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 3.31779e6 0.835859
\(437\) 1.05440e7 2.64121
\(438\) 0 0
\(439\) 4.02131e6 0.995879 0.497939 0.867212i \(-0.334090\pi\)
0.497939 + 0.867212i \(0.334090\pi\)
\(440\) 2.05286e6 0.505509
\(441\) 0 0
\(442\) 55536.0 0.0135213
\(443\) −766146. −0.185482 −0.0927411 0.995690i \(-0.529563\pi\)
−0.0927411 + 0.995690i \(0.529563\pi\)
\(444\) 0 0
\(445\) −2.60723e6 −0.624136
\(446\) −2.14634e6 −0.510929
\(447\) 0 0
\(448\) 0 0
\(449\) −3.01961e6 −0.706862 −0.353431 0.935461i \(-0.614985\pi\)
−0.353431 + 0.935461i \(0.614985\pi\)
\(450\) 0 0
\(451\) −5.86278e6 −1.35726
\(452\) −2.18266e6 −0.502504
\(453\) 0 0
\(454\) −5.94792e6 −1.35433
\(455\) 0 0
\(456\) 0 0
\(457\) −223114. −0.0499731 −0.0249866 0.999688i \(-0.507954\pi\)
−0.0249866 + 0.999688i \(0.507954\pi\)
\(458\) −4.43826e6 −0.988666
\(459\) 0 0
\(460\) −3.03264e6 −0.668230
\(461\) 4.58050e6 1.00383 0.501916 0.864917i \(-0.332629\pi\)
0.501916 + 0.864917i \(0.332629\pi\)
\(462\) 0 0
\(463\) −4.23654e6 −0.918458 −0.459229 0.888318i \(-0.651874\pi\)
−0.459229 + 0.888318i \(0.651874\pi\)
\(464\) 1.09978e6 0.237142
\(465\) 0 0
\(466\) −5.55182e6 −1.18433
\(467\) 2.74499e6 0.582436 0.291218 0.956657i \(-0.405939\pi\)
0.291218 + 0.956657i \(0.405939\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −246240. −0.0514179
\(471\) 0 0
\(472\) −524544. −0.108374
\(473\) 5.38639e6 1.10699
\(474\) 0 0
\(475\) −627836. −0.127677
\(476\) 0 0
\(477\) 0 0
\(478\) −6.25625e6 −1.25240
\(479\) 2.67628e6 0.532957 0.266478 0.963841i \(-0.414140\pi\)
0.266478 + 0.963841i \(0.414140\pi\)
\(480\) 0 0
\(481\) 13052.0 0.00257226
\(482\) 5.45276e6 1.06905
\(483\) 0 0
\(484\) 3.06856e6 0.595417
\(485\) −4.53265e6 −0.874980
\(486\) 0 0
\(487\) −7.92959e6 −1.51506 −0.757528 0.652803i \(-0.773593\pi\)
−0.757528 + 0.652803i \(0.773593\pi\)
\(488\) 1.90861e6 0.362800
\(489\) 0 0
\(490\) 0 0
\(491\) −7.10567e6 −1.33015 −0.665076 0.746775i \(-0.731601\pi\)
−0.665076 + 0.746775i \(0.731601\pi\)
\(492\) 0 0
\(493\) 2.29406e6 0.425097
\(494\) 312416. 0.0575991
\(495\) 0 0
\(496\) −2.05722e6 −0.375470
\(497\) 0 0
\(498\) 0 0
\(499\) −1.31352e6 −0.236149 −0.118075 0.993005i \(-0.537672\pi\)
−0.118075 + 0.993005i \(0.537672\pi\)
\(500\) 2.88058e6 0.515293
\(501\) 0 0
\(502\) −6.19387e6 −1.09699
\(503\) −3.64608e6 −0.642549 −0.321274 0.946986i \(-0.604111\pi\)
−0.321274 + 0.946986i \(0.604111\pi\)
\(504\) 0 0
\(505\) −3.38548e6 −0.590733
\(506\) −8.33976e6 −1.44803
\(507\) 0 0
\(508\) −2.05197e6 −0.352786
\(509\) −9.65410e6 −1.65165 −0.825824 0.563928i \(-0.809289\pi\)
−0.825824 + 0.563928i \(0.809289\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −262144. −0.0441942
\(513\) 0 0
\(514\) −6.16586e6 −1.02940
\(515\) −1.67335e6 −0.278016
\(516\) 0 0
\(517\) −677160. −0.111420
\(518\) 0 0
\(519\) 0 0
\(520\) −89856.0 −0.0145727
\(521\) −7.67870e6 −1.23935 −0.619674 0.784859i \(-0.712735\pi\)
−0.619674 + 0.784859i \(0.712735\pi\)
\(522\) 0 0
\(523\) 9.06510e6 1.44917 0.724584 0.689187i \(-0.242032\pi\)
0.724584 + 0.689187i \(0.242032\pi\)
\(524\) −5.92474e6 −0.942629
\(525\) 0 0
\(526\) 8.53006e6 1.34427
\(527\) −4.29122e6 −0.673061
\(528\) 0 0
\(529\) 5.88376e6 0.914146
\(530\) 6.12490e6 0.947129
\(531\) 0 0
\(532\) 0 0
\(533\) 256620. 0.0391266
\(534\) 0 0
\(535\) −6.38377e6 −0.964257
\(536\) 4.02458e6 0.605074
\(537\) 0 0
\(538\) 1.54457e6 0.230065
\(539\) 0 0
\(540\) 0 0
\(541\) 7.33108e6 1.07690 0.538449 0.842658i \(-0.319010\pi\)
0.538449 + 0.842658i \(0.319010\pi\)
\(542\) −4.70325e6 −0.687701
\(543\) 0 0
\(544\) −546816. −0.0792217
\(545\) −1.11975e7 −1.61485
\(546\) 0 0
\(547\) −3.16498e6 −0.452275 −0.226138 0.974095i \(-0.572610\pi\)
−0.226138 + 0.974095i \(0.572610\pi\)
\(548\) 206784. 0.0294148
\(549\) 0 0
\(550\) 496584. 0.0699981
\(551\) 1.29052e7 1.81086
\(552\) 0 0
\(553\) 0 0
\(554\) −1.66815e6 −0.230920
\(555\) 0 0
\(556\) 2.84416e6 0.390182
\(557\) −118092. −0.0161281 −0.00806404 0.999967i \(-0.502567\pi\)
−0.00806404 + 0.999967i \(0.502567\pi\)
\(558\) 0 0
\(559\) −235768. −0.0319121
\(560\) 0 0
\(561\) 0 0
\(562\) 2.09573e6 0.279894
\(563\) −6.43544e6 −0.855672 −0.427836 0.903856i \(-0.640724\pi\)
−0.427836 + 0.903856i \(0.640724\pi\)
\(564\) 0 0
\(565\) 7.36646e6 0.970818
\(566\) −9.46898e6 −1.24240
\(567\) 0 0
\(568\) 2.20147e6 0.286314
\(569\) 3.22976e6 0.418206 0.209103 0.977894i \(-0.432946\pi\)
0.209103 + 0.977894i \(0.432946\pi\)
\(570\) 0 0
\(571\) −228556. −0.0293361 −0.0146680 0.999892i \(-0.504669\pi\)
−0.0146680 + 0.999892i \(0.504669\pi\)
\(572\) −247104. −0.0315784
\(573\) 0 0
\(574\) 0 0
\(575\) −733590. −0.0925303
\(576\) 0 0
\(577\) −1.50817e7 −1.88587 −0.942933 0.332983i \(-0.891945\pi\)
−0.942933 + 0.332983i \(0.891945\pi\)
\(578\) 4.53880e6 0.565095
\(579\) 0 0
\(580\) −3.71174e6 −0.458150
\(581\) 0 0
\(582\) 0 0
\(583\) 1.68435e7 2.05239
\(584\) 3.64736e6 0.442534
\(585\) 0 0
\(586\) −9.78521e6 −1.17713
\(587\) −8.90044e6 −1.06614 −0.533072 0.846070i \(-0.678963\pi\)
−0.533072 + 0.846070i \(0.678963\pi\)
\(588\) 0 0
\(589\) −2.41401e7 −2.86716
\(590\) 1.77034e6 0.209375
\(591\) 0 0
\(592\) −128512. −0.0150709
\(593\) −1.34870e6 −0.157499 −0.0787495 0.996894i \(-0.525093\pi\)
−0.0787495 + 0.996894i \(0.525093\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 4.95302e6 0.571156
\(597\) 0 0
\(598\) 365040. 0.0417434
\(599\) 1.18444e7 1.34879 0.674395 0.738371i \(-0.264405\pi\)
0.674395 + 0.738371i \(0.264405\pi\)
\(600\) 0 0
\(601\) 9.62671e6 1.08716 0.543578 0.839359i \(-0.317069\pi\)
0.543578 + 0.839359i \(0.317069\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −4.80218e6 −0.535606
\(605\) −1.03564e7 −1.15032
\(606\) 0 0
\(607\) 641512. 0.0706697 0.0353348 0.999376i \(-0.488750\pi\)
0.0353348 + 0.999376i \(0.488750\pi\)
\(608\) −3.07610e6 −0.337474
\(609\) 0 0
\(610\) −6.44155e6 −0.700916
\(611\) 29640.0 0.00321200
\(612\) 0 0
\(613\) 3.72964e6 0.400881 0.200441 0.979706i \(-0.435763\pi\)
0.200441 + 0.979706i \(0.435763\pi\)
\(614\) −3.87726e6 −0.415054
\(615\) 0 0
\(616\) 0 0
\(617\) −1.18580e7 −1.25400 −0.627000 0.779019i \(-0.715718\pi\)
−0.627000 + 0.779019i \(0.715718\pi\)
\(618\) 0 0
\(619\) −2.60636e6 −0.273406 −0.136703 0.990612i \(-0.543651\pi\)
−0.136703 + 0.990612i \(0.543651\pi\)
\(620\) 6.94310e6 0.725395
\(621\) 0 0
\(622\) 9.79061e6 1.01469
\(623\) 0 0
\(624\) 0 0
\(625\) −9.06882e6 −0.928647
\(626\) 8.10164e6 0.826299
\(627\) 0 0
\(628\) −187616. −0.0189833
\(629\) −268068. −0.0270158
\(630\) 0 0
\(631\) 5.15540e6 0.515453 0.257726 0.966218i \(-0.417027\pi\)
0.257726 + 0.966218i \(0.417027\pi\)
\(632\) −3.16774e6 −0.315470
\(633\) 0 0
\(634\) −1.00152e7 −0.989542
\(635\) 6.92539e6 0.681569
\(636\) 0 0
\(637\) 0 0
\(638\) −1.02073e7 −0.992794
\(639\) 0 0
\(640\) 884736. 0.0853815
\(641\) 1.42517e7 1.37000 0.685002 0.728541i \(-0.259801\pi\)
0.685002 + 0.728541i \(0.259801\pi\)
\(642\) 0 0
\(643\) 1.24310e7 1.18571 0.592857 0.805308i \(-0.298000\pi\)
0.592857 + 0.805308i \(0.298000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −6.41654e6 −0.604951
\(647\) −5.71643e6 −0.536864 −0.268432 0.963299i \(-0.586505\pi\)
−0.268432 + 0.963299i \(0.586505\pi\)
\(648\) 0 0
\(649\) 4.86842e6 0.453708
\(650\) −21736.0 −0.00201788
\(651\) 0 0
\(652\) −4.30816e6 −0.396892
\(653\) −2.48479e6 −0.228038 −0.114019 0.993479i \(-0.536372\pi\)
−0.114019 + 0.993479i \(0.536372\pi\)
\(654\) 0 0
\(655\) 1.99960e7 1.82112
\(656\) −2.52672e6 −0.229244
\(657\) 0 0
\(658\) 0 0
\(659\) 2.87481e6 0.257867 0.128933 0.991653i \(-0.458845\pi\)
0.128933 + 0.991653i \(0.458845\pi\)
\(660\) 0 0
\(661\) 8.18274e6 0.728442 0.364221 0.931313i \(-0.381335\pi\)
0.364221 + 0.931313i \(0.381335\pi\)
\(662\) −5.14798e6 −0.456554
\(663\) 0 0
\(664\) −3.36077e6 −0.295814
\(665\) 0 0
\(666\) 0 0
\(667\) 1.50790e7 1.31237
\(668\) −665664. −0.0577184
\(669\) 0 0
\(670\) −1.35829e7 −1.16898
\(671\) −1.77143e7 −1.51886
\(672\) 0 0
\(673\) 1.52187e7 1.29521 0.647603 0.761978i \(-0.275772\pi\)
0.647603 + 0.761978i \(0.275772\pi\)
\(674\) 5.62554e6 0.476996
\(675\) 0 0
\(676\) −5.92987e6 −0.499090
\(677\) 1.85942e7 1.55922 0.779609 0.626266i \(-0.215418\pi\)
0.779609 + 0.626266i \(0.215418\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 1.84550e6 0.153053
\(681\) 0 0
\(682\) 1.90935e7 1.57190
\(683\) −1362.00 −0.000111719 0 −5.58593e−5 1.00000i \(-0.500018\pi\)
−5.58593e−5 1.00000i \(0.500018\pi\)
\(684\) 0 0
\(685\) −697896. −0.0568282
\(686\) 0 0
\(687\) 0 0
\(688\) 2.32141e6 0.186974
\(689\) −737256. −0.0591657
\(690\) 0 0
\(691\) −1.83515e7 −1.46210 −0.731048 0.682327i \(-0.760968\pi\)
−0.731048 + 0.682327i \(0.760968\pi\)
\(692\) −4.59139e6 −0.364485
\(693\) 0 0
\(694\) 5.01252e6 0.395055
\(695\) −9.59904e6 −0.753817
\(696\) 0 0
\(697\) −5.27058e6 −0.410938
\(698\) 6.67503e6 0.518579
\(699\) 0 0
\(700\) 0 0
\(701\) −1.00448e7 −0.772051 −0.386025 0.922488i \(-0.626152\pi\)
−0.386025 + 0.922488i \(0.626152\pi\)
\(702\) 0 0
\(703\) −1.50801e6 −0.115084
\(704\) 2.43302e6 0.185018
\(705\) 0 0
\(706\) −8.54748e6 −0.645396
\(707\) 0 0
\(708\) 0 0
\(709\) −2.11149e6 −0.157752 −0.0788759 0.996884i \(-0.525133\pi\)
−0.0788759 + 0.996884i \(0.525133\pi\)
\(710\) −7.42997e6 −0.553148
\(711\) 0 0
\(712\) −3.09005e6 −0.228436
\(713\) −2.82064e7 −2.07789
\(714\) 0 0
\(715\) 833976. 0.0610082
\(716\) −6.72298e6 −0.490094
\(717\) 0 0
\(718\) −1.44363e7 −1.04507
\(719\) 296016. 0.0213547 0.0106773 0.999943i \(-0.496601\pi\)
0.0106773 + 0.999943i \(0.496601\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −2.61917e7 −1.86991
\(723\) 0 0
\(724\) 270688. 0.0191921
\(725\) −897864. −0.0634403
\(726\) 0 0
\(727\) 90220.0 0.00633092 0.00316546 0.999995i \(-0.498992\pi\)
0.00316546 + 0.999995i \(0.498992\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −1.23098e7 −0.854959
\(731\) 4.84231e6 0.335166
\(732\) 0 0
\(733\) 1.40664e7 0.966992 0.483496 0.875347i \(-0.339367\pi\)
0.483496 + 0.875347i \(0.339367\pi\)
\(734\) −7.52762e6 −0.515724
\(735\) 0 0
\(736\) −3.59424e6 −0.244575
\(737\) −3.73531e7 −2.53313
\(738\) 0 0
\(739\) 2.20018e7 1.48199 0.740997 0.671508i \(-0.234353\pi\)
0.740997 + 0.671508i \(0.234353\pi\)
\(740\) 433728. 0.0291164
\(741\) 0 0
\(742\) 0 0
\(743\) 9.42981e6 0.626658 0.313329 0.949645i \(-0.398556\pi\)
0.313329 + 0.949645i \(0.398556\pi\)
\(744\) 0 0
\(745\) −1.67165e7 −1.10345
\(746\) −1.94474e7 −1.27943
\(747\) 0 0
\(748\) 5.07514e6 0.331660
\(749\) 0 0
\(750\) 0 0
\(751\) 5.06420e6 0.327651 0.163825 0.986489i \(-0.447617\pi\)
0.163825 + 0.986489i \(0.447617\pi\)
\(752\) −291840. −0.0188192
\(753\) 0 0
\(754\) 446784. 0.0286200
\(755\) 1.62073e7 1.03477
\(756\) 0 0
\(757\) −9.41479e6 −0.597133 −0.298566 0.954389i \(-0.596508\pi\)
−0.298566 + 0.954389i \(0.596508\pi\)
\(758\) −1.00520e6 −0.0635447
\(759\) 0 0
\(760\) 1.03818e7 0.651988
\(761\) 1.81025e7 1.13313 0.566563 0.824019i \(-0.308273\pi\)
0.566563 + 0.824019i \(0.308273\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −2.15587e6 −0.133626
\(765\) 0 0
\(766\) −2.27088e6 −0.139837
\(767\) −213096. −0.0130794
\(768\) 0 0
\(769\) −2.37970e7 −1.45113 −0.725566 0.688152i \(-0.758422\pi\)
−0.725566 + 0.688152i \(0.758422\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −5.03440e6 −0.304022
\(773\) 9.76453e6 0.587763 0.293882 0.955842i \(-0.405053\pi\)
0.293882 + 0.955842i \(0.405053\pi\)
\(774\) 0 0
\(775\) 1.67952e6 0.100446
\(776\) −5.37203e6 −0.320246
\(777\) 0 0
\(778\) 9.38189e6 0.555701
\(779\) −2.96495e7 −1.75055
\(780\) 0 0
\(781\) −2.04324e7 −1.19865
\(782\) −7.49736e6 −0.438421
\(783\) 0 0
\(784\) 0 0
\(785\) 633204. 0.0366749
\(786\) 0 0
\(787\) 2.69301e6 0.154989 0.0774945 0.996993i \(-0.475308\pi\)
0.0774945 + 0.996993i \(0.475308\pi\)
\(788\) 9.54605e6 0.547656
\(789\) 0 0
\(790\) 1.06911e7 0.609475
\(791\) 0 0
\(792\) 0 0
\(793\) 775372. 0.0437852
\(794\) −2.10287e7 −1.18376
\(795\) 0 0
\(796\) 161536. 0.00903622
\(797\) 2.69834e7 1.50470 0.752352 0.658762i \(-0.228919\pi\)
0.752352 + 0.658762i \(0.228919\pi\)
\(798\) 0 0
\(799\) −608760. −0.0337349
\(800\) 214016. 0.0118228
\(801\) 0 0
\(802\) 9.36562e6 0.514163
\(803\) −3.38521e7 −1.85266
\(804\) 0 0
\(805\) 0 0
\(806\) −835744. −0.0453143
\(807\) 0 0
\(808\) −4.01242e6 −0.216211
\(809\) 1.30813e7 0.702718 0.351359 0.936241i \(-0.385720\pi\)
0.351359 + 0.936241i \(0.385720\pi\)
\(810\) 0 0
\(811\) −2.12063e7 −1.13217 −0.566086 0.824346i \(-0.691543\pi\)
−0.566086 + 0.824346i \(0.691543\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 1.19275e6 0.0630942
\(815\) 1.45400e7 0.766781
\(816\) 0 0
\(817\) 2.72403e7 1.42776
\(818\) 2.64927e6 0.138434
\(819\) 0 0
\(820\) 8.52768e6 0.442890
\(821\) 3.76237e7 1.94806 0.974032 0.226411i \(-0.0726993\pi\)
0.974032 + 0.226411i \(0.0726993\pi\)
\(822\) 0 0
\(823\) 4.75582e6 0.244752 0.122376 0.992484i \(-0.460949\pi\)
0.122376 + 0.992484i \(0.460949\pi\)
\(824\) −1.98323e6 −0.101755
\(825\) 0 0
\(826\) 0 0
\(827\) −2.26167e7 −1.14991 −0.574957 0.818184i \(-0.694981\pi\)
−0.574957 + 0.818184i \(0.694981\pi\)
\(828\) 0 0
\(829\) 2.44896e7 1.23764 0.618821 0.785532i \(-0.287611\pi\)
0.618821 + 0.785532i \(0.287611\pi\)
\(830\) 1.13426e7 0.571501
\(831\) 0 0
\(832\) −106496. −0.00533366
\(833\) 0 0
\(834\) 0 0
\(835\) 2.24662e6 0.111510
\(836\) 2.85500e7 1.41283
\(837\) 0 0
\(838\) 2.11101e7 1.03844
\(839\) −3.13107e7 −1.53563 −0.767816 0.640670i \(-0.778657\pi\)
−0.767816 + 0.640670i \(0.778657\pi\)
\(840\) 0 0
\(841\) −2.05553e6 −0.100215
\(842\) −6.99270e6 −0.339910
\(843\) 0 0
\(844\) −1.15412e7 −0.557692
\(845\) 2.00133e7 0.964223
\(846\) 0 0
\(847\) 0 0
\(848\) 7.25914e6 0.346653
\(849\) 0 0
\(850\) 446424. 0.0211934
\(851\) −1.76202e6 −0.0834040
\(852\) 0 0
\(853\) 1.59565e7 0.750870 0.375435 0.926849i \(-0.377493\pi\)
0.375435 + 0.926849i \(0.377493\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −7.56595e6 −0.352922
\(857\) −6.51800e6 −0.303153 −0.151577 0.988446i \(-0.548435\pi\)
−0.151577 + 0.988446i \(0.548435\pi\)
\(858\) 0 0
\(859\) 1.77405e7 0.820321 0.410161 0.912013i \(-0.365473\pi\)
0.410161 + 0.912013i \(0.365473\pi\)
\(860\) −7.83475e6 −0.361226
\(861\) 0 0
\(862\) 1.06230e7 0.486944
\(863\) 8.57437e6 0.391900 0.195950 0.980614i \(-0.437221\pi\)
0.195950 + 0.980614i \(0.437221\pi\)
\(864\) 0 0
\(865\) 1.54959e7 0.704171
\(866\) −1.24810e7 −0.565531
\(867\) 0 0
\(868\) 0 0
\(869\) 2.94006e7 1.32071
\(870\) 0 0
\(871\) 1.63498e6 0.0730244
\(872\) −1.32712e7 −0.591041
\(873\) 0 0
\(874\) −4.21762e7 −1.86762
\(875\) 0 0
\(876\) 0 0
\(877\) −3.83551e7 −1.68393 −0.841964 0.539533i \(-0.818601\pi\)
−0.841964 + 0.539533i \(0.818601\pi\)
\(878\) −1.60852e7 −0.704193
\(879\) 0 0
\(880\) −8.21146e6 −0.357449
\(881\) −3.91651e7 −1.70004 −0.850020 0.526751i \(-0.823410\pi\)
−0.850020 + 0.526751i \(0.823410\pi\)
\(882\) 0 0
\(883\) 1.72766e7 0.745688 0.372844 0.927894i \(-0.378383\pi\)
0.372844 + 0.927894i \(0.378383\pi\)
\(884\) −222144. −0.00956101
\(885\) 0 0
\(886\) 3.06458e6 0.131156
\(887\) −2.33351e7 −0.995865 −0.497932 0.867216i \(-0.665907\pi\)
−0.497932 + 0.867216i \(0.665907\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 1.04289e7 0.441331
\(891\) 0 0
\(892\) 8.58534e6 0.361281
\(893\) −3.42456e6 −0.143706
\(894\) 0 0
\(895\) 2.26900e7 0.946843
\(896\) 0 0
\(897\) 0 0
\(898\) 1.20784e7 0.499827
\(899\) −3.45227e7 −1.42464
\(900\) 0 0
\(901\) 1.51421e7 0.621404
\(902\) 2.34511e7 0.959726
\(903\) 0 0
\(904\) 8.73062e6 0.355324
\(905\) −913572. −0.0370784
\(906\) 0 0
\(907\) −3.16449e7 −1.27728 −0.638640 0.769506i \(-0.720503\pi\)
−0.638640 + 0.769506i \(0.720503\pi\)
\(908\) 2.37917e7 0.957658
\(909\) 0 0
\(910\) 0 0
\(911\) −2.29551e6 −0.0916396 −0.0458198 0.998950i \(-0.514590\pi\)
−0.0458198 + 0.998950i \(0.514590\pi\)
\(912\) 0 0
\(913\) 3.11921e7 1.23842
\(914\) 892456. 0.0353363
\(915\) 0 0
\(916\) 1.77531e7 0.699092
\(917\) 0 0
\(918\) 0 0
\(919\) −2.80612e7 −1.09602 −0.548008 0.836473i \(-0.684614\pi\)
−0.548008 + 0.836473i \(0.684614\pi\)
\(920\) 1.21306e7 0.472510
\(921\) 0 0
\(922\) −1.83220e7 −0.709816
\(923\) 894348. 0.0345543
\(924\) 0 0
\(925\) 104918. 0.00403177
\(926\) 1.69462e7 0.649448
\(927\) 0 0
\(928\) −4.39910e6 −0.167685
\(929\) −6.79025e6 −0.258135 −0.129067 0.991636i \(-0.541198\pi\)
−0.129067 + 0.991636i \(0.541198\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 2.22073e7 0.837444
\(933\) 0 0
\(934\) −1.09800e7 −0.411844
\(935\) −1.71286e7 −0.640756
\(936\) 0 0
\(937\) −3.83161e7 −1.42571 −0.712857 0.701310i \(-0.752599\pi\)
−0.712857 + 0.701310i \(0.752599\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 984960. 0.0363579
\(941\) −1.16868e7 −0.430250 −0.215125 0.976587i \(-0.569016\pi\)
−0.215125 + 0.976587i \(0.569016\pi\)
\(942\) 0 0
\(943\) −3.46437e7 −1.26866
\(944\) 2.09818e6 0.0766323
\(945\) 0 0
\(946\) −2.15456e7 −0.782763
\(947\) 2.08201e7 0.754410 0.377205 0.926130i \(-0.376885\pi\)
0.377205 + 0.926130i \(0.376885\pi\)
\(948\) 0 0
\(949\) 1.48174e6 0.0534080
\(950\) 2.51134e6 0.0902812
\(951\) 0 0
\(952\) 0 0
\(953\) −1.41556e7 −0.504888 −0.252444 0.967612i \(-0.581234\pi\)
−0.252444 + 0.967612i \(0.581234\pi\)
\(954\) 0 0
\(955\) 7.27607e6 0.258160
\(956\) 2.50250e7 0.885583
\(957\) 0 0
\(958\) −1.07051e7 −0.376857
\(959\) 0 0
\(960\) 0 0
\(961\) 3.59481e7 1.25565
\(962\) −52208.0 −0.00181886
\(963\) 0 0
\(964\) −2.18110e7 −0.755934
\(965\) 1.69911e7 0.587358
\(966\) 0 0
\(967\) 5.29558e7 1.82116 0.910578 0.413337i \(-0.135637\pi\)
0.910578 + 0.413337i \(0.135637\pi\)
\(968\) −1.22742e7 −0.421023
\(969\) 0 0
\(970\) 1.81306e7 0.618704
\(971\) −1.07845e7 −0.367072 −0.183536 0.983013i \(-0.558754\pi\)
−0.183536 + 0.983013i \(0.558754\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 3.17184e7 1.07131
\(975\) 0 0
\(976\) −7.63443e6 −0.256538
\(977\) −4.78226e7 −1.60286 −0.801432 0.598086i \(-0.795928\pi\)
−0.801432 + 0.598086i \(0.795928\pi\)
\(978\) 0 0
\(979\) 2.86795e7 0.956346
\(980\) 0 0
\(981\) 0 0
\(982\) 2.84227e7 0.940560
\(983\) 2.96662e7 0.979216 0.489608 0.871943i \(-0.337140\pi\)
0.489608 + 0.871943i \(0.337140\pi\)
\(984\) 0 0
\(985\) −3.22179e7 −1.05805
\(986\) −9.17626e6 −0.300589
\(987\) 0 0
\(988\) −1.24966e6 −0.0407287
\(989\) 3.18287e7 1.03473
\(990\) 0 0
\(991\) −1.39263e7 −0.450456 −0.225228 0.974306i \(-0.572313\pi\)
−0.225228 + 0.974306i \(0.572313\pi\)
\(992\) 8.22886e6 0.265498
\(993\) 0 0
\(994\) 0 0
\(995\) −545184. −0.0174576
\(996\) 0 0
\(997\) 3.59999e6 0.114700 0.0573499 0.998354i \(-0.481735\pi\)
0.0573499 + 0.998354i \(0.481735\pi\)
\(998\) 5.25410e6 0.166983
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.6.a.b.1.1 1
3.2 odd 2 882.6.a.w.1.1 1
7.6 odd 2 126.6.a.e.1.1 1
21.20 even 2 126.6.a.g.1.1 yes 1
28.27 even 2 1008.6.a.w.1.1 1
84.83 odd 2 1008.6.a.f.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.6.a.e.1.1 1 7.6 odd 2
126.6.a.g.1.1 yes 1 21.20 even 2
882.6.a.b.1.1 1 1.1 even 1 trivial
882.6.a.w.1.1 1 3.2 odd 2
1008.6.a.f.1.1 1 84.83 odd 2
1008.6.a.w.1.1 1 28.27 even 2