Properties

Label 882.6.a
Level $882$
Weight $6$
Character orbit 882.a
Rep. character $\chi_{882}(1,\cdot)$
Character field $\Q$
Dimension $85$
Newform subspaces $50$
Sturm bound $1008$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 882.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 50 \)
Sturm bound: \(1008\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(5\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(882))\).

Total New Old
Modular forms 872 85 787
Cusp forms 808 85 723
Eisenstein series 64 0 64

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(7\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(9\)
\(+\)\(+\)\(-\)\(-\)\(8\)
\(+\)\(-\)\(+\)\(-\)\(13\)
\(+\)\(-\)\(-\)\(+\)\(13\)
\(-\)\(+\)\(+\)\(-\)\(9\)
\(-\)\(+\)\(-\)\(+\)\(8\)
\(-\)\(-\)\(+\)\(+\)\(11\)
\(-\)\(-\)\(-\)\(-\)\(14\)
Plus space\(+\)\(41\)
Minus space\(-\)\(44\)

Trace form

\( 85 q - 4 q^{2} + 1360 q^{4} + 72 q^{5} - 64 q^{8} + O(q^{10}) \) \( 85 q - 4 q^{2} + 1360 q^{4} + 72 q^{5} - 64 q^{8} - 192 q^{10} - 404 q^{11} - 264 q^{13} + 21760 q^{16} + 822 q^{17} + 4494 q^{19} + 1152 q^{20} + 2384 q^{22} - 8416 q^{23} + 53783 q^{25} + 880 q^{26} - 4558 q^{29} - 12348 q^{31} - 1024 q^{32} - 4776 q^{34} - 46614 q^{37} + 5656 q^{38} - 3072 q^{40} + 12390 q^{41} + 47444 q^{43} - 6464 q^{44} - 9920 q^{46} - 15900 q^{47} + 29524 q^{50} - 4224 q^{52} + 5758 q^{53} - 4032 q^{55} - 66104 q^{58} + 87546 q^{59} - 43932 q^{61} - 41936 q^{62} + 348160 q^{64} + 52272 q^{65} + 188860 q^{67} + 13152 q^{68} - 141984 q^{71} + 10266 q^{73} - 226920 q^{74} + 71904 q^{76} - 82696 q^{79} + 18432 q^{80} + 6936 q^{82} - 174870 q^{83} + 111136 q^{85} + 165136 q^{86} + 38144 q^{88} + 139962 q^{89} - 134656 q^{92} - 157488 q^{94} - 112592 q^{95} + 221814 q^{97} + O(q^{100}) \)

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(882))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 7
882.6.a.a 882.a 1.a $1$ $141.459$ \(\Q\) None 6.6.a.a \(-4\) \(0\) \(-66\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-4q^{2}+2^{4}q^{4}-66q^{5}-2^{6}q^{8}+264q^{10}+\cdots\)
882.6.a.b 882.a 1.a $1$ $141.459$ \(\Q\) None 126.6.a.e \(-4\) \(0\) \(-54\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-4q^{2}+2^{4}q^{4}-54q^{5}-2^{6}q^{8}+6^{3}q^{10}+\cdots\)
882.6.a.c 882.a 1.a $1$ $141.459$ \(\Q\) None 126.6.a.d \(-4\) \(0\) \(-26\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-4q^{2}+2^{4}q^{4}-26q^{5}-2^{6}q^{8}+104q^{10}+\cdots\)
882.6.a.d 882.a 1.a $1$ $141.459$ \(\Q\) None 126.6.g.a \(-4\) \(0\) \(-12\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-4q^{2}+2^{4}q^{4}-12q^{5}-2^{6}q^{8}+48q^{10}+\cdots\)
882.6.a.e 882.a 1.a $1$ $141.459$ \(\Q\) None 42.6.e.a \(-4\) \(0\) \(-6\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-4q^{2}+2^{4}q^{4}-6q^{5}-2^{6}q^{8}+24q^{10}+\cdots\)
882.6.a.f 882.a 1.a $1$ $141.459$ \(\Q\) None 42.6.e.a \(-4\) \(0\) \(6\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-4q^{2}+2^{4}q^{4}+6q^{5}-2^{6}q^{8}-24q^{10}+\cdots\)
882.6.a.g 882.a 1.a $1$ $141.459$ \(\Q\) None 14.6.a.b \(-4\) \(0\) \(10\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-4q^{2}+2^{4}q^{4}+10q^{5}-2^{6}q^{8}-40q^{10}+\cdots\)
882.6.a.h 882.a 1.a $1$ $141.459$ \(\Q\) None 126.6.g.a \(-4\) \(0\) \(12\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-4q^{2}+2^{4}q^{4}+12q^{5}-2^{6}q^{8}-48q^{10}+\cdots\)
882.6.a.i 882.a 1.a $1$ $141.459$ \(\Q\) None 42.6.a.f \(-4\) \(0\) \(24\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-4q^{2}+2^{4}q^{4}+24q^{5}-2^{6}q^{8}-96q^{10}+\cdots\)
882.6.a.j 882.a 1.a $1$ $141.459$ \(\Q\) None 42.6.a.e \(-4\) \(0\) \(76\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-4q^{2}+2^{4}q^{4}+76q^{5}-2^{6}q^{8}-304q^{10}+\cdots\)
882.6.a.k 882.a 1.a $1$ $141.459$ \(\Q\) None 18.6.a.a \(-4\) \(0\) \(96\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-4q^{2}+2^{4}q^{4}+96q^{5}-2^{6}q^{8}-384q^{10}+\cdots\)
882.6.a.l 882.a 1.a $1$ $141.459$ \(\Q\) None 18.6.a.a \(4\) \(0\) \(-96\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+4q^{2}+2^{4}q^{4}-96q^{5}+2^{6}q^{8}-384q^{10}+\cdots\)
882.6.a.m 882.a 1.a $1$ $141.459$ \(\Q\) None 42.6.e.b \(4\) \(0\) \(-86\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+4q^{2}+2^{4}q^{4}-86q^{5}+2^{6}q^{8}-344q^{10}+\cdots\)
882.6.a.n 882.a 1.a $1$ $141.459$ \(\Q\) None 42.6.a.c \(4\) \(0\) \(-72\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+4q^{2}+2^{4}q^{4}-72q^{5}+2^{6}q^{8}-288q^{10}+\cdots\)
882.6.a.o 882.a 1.a $1$ $141.459$ \(\Q\) None 42.6.a.a \(4\) \(0\) \(-54\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+4q^{2}+2^{4}q^{4}-54q^{5}+2^{6}q^{8}-6^{3}q^{10}+\cdots\)
882.6.a.p 882.a 1.a $1$ $141.459$ \(\Q\) None 294.6.a.a \(4\) \(0\) \(-26\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+4q^{2}+2^{4}q^{4}-26q^{5}+2^{6}q^{8}-104q^{10}+\cdots\)
882.6.a.q 882.a 1.a $1$ $141.459$ \(\Q\) None 126.6.g.a \(4\) \(0\) \(-12\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+4q^{2}+2^{4}q^{4}-12q^{5}+2^{6}q^{8}-48q^{10}+\cdots\)
882.6.a.r 882.a 1.a $1$ $141.459$ \(\Q\) None 126.6.g.a \(4\) \(0\) \(12\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+4q^{2}+2^{4}q^{4}+12q^{5}+2^{6}q^{8}+48q^{10}+\cdots\)
882.6.a.s 882.a 1.a $1$ $141.459$ \(\Q\) None 42.6.a.d \(4\) \(0\) \(26\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+4q^{2}+2^{4}q^{4}+26q^{5}+2^{6}q^{8}+104q^{10}+\cdots\)
882.6.a.t 882.a 1.a $1$ $141.459$ \(\Q\) None 294.6.a.a \(4\) \(0\) \(26\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+4q^{2}+2^{4}q^{4}+26q^{5}+2^{6}q^{8}+104q^{10}+\cdots\)
882.6.a.u 882.a 1.a $1$ $141.459$ \(\Q\) None 126.6.a.d \(4\) \(0\) \(26\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+4q^{2}+2^{4}q^{4}+26q^{5}+2^{6}q^{8}+104q^{10}+\cdots\)
882.6.a.v 882.a 1.a $1$ $141.459$ \(\Q\) None 42.6.a.b \(4\) \(0\) \(44\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+4q^{2}+2^{4}q^{4}+44q^{5}+2^{6}q^{8}+176q^{10}+\cdots\)
882.6.a.w 882.a 1.a $1$ $141.459$ \(\Q\) None 126.6.a.e \(4\) \(0\) \(54\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+4q^{2}+2^{4}q^{4}+54q^{5}+2^{6}q^{8}+6^{3}q^{10}+\cdots\)
882.6.a.x 882.a 1.a $1$ $141.459$ \(\Q\) None 14.6.a.a \(4\) \(0\) \(84\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+4q^{2}+2^{4}q^{4}+84q^{5}+2^{6}q^{8}+336q^{10}+\cdots\)
882.6.a.y 882.a 1.a $1$ $141.459$ \(\Q\) None 42.6.e.b \(4\) \(0\) \(86\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+4q^{2}+2^{4}q^{4}+86q^{5}+2^{6}q^{8}+344q^{10}+\cdots\)
882.6.a.z 882.a 1.a $2$ $141.459$ \(\Q(\sqrt{2}) \) None 294.6.a.t \(-8\) \(0\) \(-108\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-4q^{2}+2^{4}q^{4}+(-54+5\beta )q^{5}-2^{6}q^{8}+\cdots\)
882.6.a.ba 882.a 1.a $2$ $141.459$ \(\Q(\sqrt{79}) \) None 14.6.c.a \(-8\) \(0\) \(-70\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-4q^{2}+2^{4}q^{4}+(-35+4\beta )q^{5}-2^{6}q^{8}+\cdots\)
882.6.a.bb 882.a 1.a $2$ $141.459$ \(\Q(\sqrt{9601}) \) None 42.6.e.c \(-8\) \(0\) \(-53\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-4q^{2}+2^{4}q^{4}+(-26-\beta )q^{5}-2^{6}q^{8}+\cdots\)
882.6.a.bc 882.a 1.a $2$ $141.459$ \(\Q(\sqrt{4705}) \) None 294.6.a.s \(-8\) \(0\) \(-18\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-4q^{2}+2^{4}q^{4}+(-9-\beta )q^{5}-2^{6}q^{8}+\cdots\)
882.6.a.bd 882.a 1.a $2$ $141.459$ \(\Q(\sqrt{697}) \) None 126.6.g.f \(-8\) \(0\) \(-7\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-4q^{2}+2^{4}q^{4}+(-1-5\beta )q^{5}-2^{6}q^{8}+\cdots\)
882.6.a.be 882.a 1.a $2$ $141.459$ \(\Q(\sqrt{274}) \) None 882.6.a.be \(-8\) \(0\) \(0\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-4q^{2}+2^{4}q^{4}+\beta q^{5}-2^{6}q^{8}-4\beta q^{10}+\cdots\)
882.6.a.bf 882.a 1.a $2$ $141.459$ \(\Q(\sqrt{697}) \) None 126.6.g.f \(-8\) \(0\) \(7\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-4q^{2}+2^{4}q^{4}+(1+5\beta )q^{5}-2^{6}q^{8}+\cdots\)
882.6.a.bg 882.a 1.a $2$ $141.459$ \(\Q(\sqrt{4705}) \) None 294.6.a.s \(-8\) \(0\) \(18\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-4q^{2}+2^{4}q^{4}+(9-\beta )q^{5}-2^{6}q^{8}+\cdots\)
882.6.a.bh 882.a 1.a $2$ $141.459$ \(\Q(\sqrt{9601}) \) None 42.6.e.c \(-8\) \(0\) \(53\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-4q^{2}+2^{4}q^{4}+(3^{3}-\beta )q^{5}-2^{6}q^{8}+\cdots\)
882.6.a.bi 882.a 1.a $2$ $141.459$ \(\Q(\sqrt{79}) \) None 14.6.c.a \(-8\) \(0\) \(70\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-4q^{2}+2^{4}q^{4}+(35+4\beta )q^{5}-2^{6}q^{8}+\cdots\)
882.6.a.bj 882.a 1.a $2$ $141.459$ \(\Q(\sqrt{2}) \) None 294.6.a.t \(-8\) \(0\) \(108\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-4q^{2}+2^{4}q^{4}+(54+5\beta )q^{5}-2^{6}q^{8}+\cdots\)
882.6.a.bk 882.a 1.a $2$ $141.459$ \(\Q(\sqrt{2}) \) None 294.6.a.n \(8\) \(0\) \(-108\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+4q^{2}+2^{4}q^{4}+(-54+5\beta )q^{5}+2^{6}q^{8}+\cdots\)
882.6.a.bl 882.a 1.a $2$ $141.459$ \(\Q(\sqrt{130}) \) None 14.6.c.b \(8\) \(0\) \(-42\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+4q^{2}+2^{4}q^{4}-21q^{5}+2^{6}q^{8}-84q^{10}+\cdots\)
882.6.a.bm 882.a 1.a $2$ $141.459$ \(\Q(\sqrt{505}) \) None 42.6.e.d \(8\) \(0\) \(-17\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+4q^{2}+2^{4}q^{4}+(-9-\beta )q^{5}+2^{6}q^{8}+\cdots\)
882.6.a.bn 882.a 1.a $2$ $141.459$ \(\Q(\sqrt{697}) \) None 126.6.g.f \(8\) \(0\) \(-7\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+4q^{2}+2^{4}q^{4}+(-1-5\beta )q^{5}+2^{6}q^{8}+\cdots\)
882.6.a.bo 882.a 1.a $2$ $141.459$ \(\Q(\sqrt{46}) \) None 98.6.a.e \(8\) \(0\) \(0\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+4q^{2}+2^{4}q^{4}+7\beta q^{5}+2^{6}q^{8}+28\beta q^{10}+\cdots\)
882.6.a.bp 882.a 1.a $2$ $141.459$ \(\Q(\sqrt{2}) \) None 98.6.a.d \(8\) \(0\) \(0\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+4q^{2}+2^{4}q^{4}+7\beta q^{5}+2^{6}q^{8}+28\beta q^{10}+\cdots\)
882.6.a.bq 882.a 1.a $2$ $141.459$ \(\Q(\sqrt{274}) \) None 882.6.a.be \(8\) \(0\) \(0\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+4q^{2}+2^{4}q^{4}+\beta q^{5}+2^{6}q^{8}+4\beta q^{10}+\cdots\)
882.6.a.br 882.a 1.a $2$ $141.459$ \(\Q(\sqrt{697}) \) None 126.6.g.f \(8\) \(0\) \(7\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+4q^{2}+2^{4}q^{4}+(1+5\beta )q^{5}+2^{6}q^{8}+\cdots\)
882.6.a.bs 882.a 1.a $2$ $141.459$ \(\Q(\sqrt{505}) \) None 42.6.e.d \(8\) \(0\) \(17\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+4q^{2}+2^{4}q^{4}+(9+\beta )q^{5}+2^{6}q^{8}+\cdots\)
882.6.a.bt 882.a 1.a $2$ $141.459$ \(\Q(\sqrt{130}) \) None 14.6.c.b \(8\) \(0\) \(42\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+4q^{2}+2^{4}q^{4}+21q^{5}+2^{6}q^{8}+84q^{10}+\cdots\)
882.6.a.bu 882.a 1.a $2$ $141.459$ \(\Q(\sqrt{2}) \) None 294.6.a.n \(8\) \(0\) \(108\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+4q^{2}+2^{4}q^{4}+(54+5\beta )q^{5}+2^{6}q^{8}+\cdots\)
882.6.a.bv 882.a 1.a $4$ $141.459$ \(\Q(\sqrt{2}, \sqrt{793})\) None 98.6.a.i \(-16\) \(0\) \(0\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-4q^{2}+2^{4}q^{4}+(3\beta _{1}+\beta _{3})q^{5}-2^{6}q^{8}+\cdots\)
882.6.a.bw 882.a 1.a $6$ $141.459$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 882.6.a.bw \(-24\) \(0\) \(0\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-4q^{2}+2^{4}q^{4}+(\beta _{1}+2\beta _{2})q^{5}-2^{6}q^{8}+\cdots\)
882.6.a.bx 882.a 1.a $6$ $141.459$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 882.6.a.bw \(24\) \(0\) \(0\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+4q^{2}+2^{4}q^{4}+(\beta _{1}+2\beta _{2})q^{5}+2^{6}q^{8}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(882))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_0(882)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(63))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(98))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(126))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(147))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(294))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(441))\)\(^{\oplus 2}\)