Properties

Label 882.4.g.z
Level $882$
Weight $4$
Character orbit 882.g
Analytic conductor $52.040$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 882.g (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(52.0396846251\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{193})\)
Defining polynomial: \( x^{4} - x^{3} + 49x^{2} + 48x + 2304 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 \beta_{2} q^{2} + (4 \beta_{2} - 4) q^{4} + ( - 3 \beta_{2} - \beta_1) q^{5} + 8 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q - 2 \beta_{2} q^{2} + (4 \beta_{2} - 4) q^{4} + ( - 3 \beta_{2} - \beta_1) q^{5} + 8 q^{8} + (2 \beta_{3} + 6 \beta_{2} + 2 \beta_1 - 8) q^{10} + (7 \beta_{3} + 9 \beta_{2} + 7 \beta_1 - 16) q^{11} + ( - 5 \beta_{3} + 27) q^{13} - 16 \beta_{2} q^{16} + ( - 10 \beta_{3} + 54 \beta_{2} - 10 \beta_1 - 44) q^{17} + ( - 58 \beta_{2} - 3 \beta_1) q^{19} + ( - 4 \beta_{3} + 16) q^{20} + ( - 14 \beta_{3} + 32) q^{22} + (54 \beta_{2} + 14 \beta_1) q^{23} + (7 \beta_{3} - 68 \beta_{2} + 7 \beta_1 + 61) q^{25} + ( - 44 \beta_{2} - 10 \beta_1) q^{26} + (7 \beta_{3} - 40) q^{29} + ( - 28 \beta_{3} - 35 \beta_{2} - 28 \beta_1 + 63) q^{31} + (32 \beta_{2} - 32) q^{32} + (20 \beta_{3} + 88) q^{34} + ( - 134 \beta_{2} - 21 \beta_1) q^{37} + (6 \beta_{3} + 116 \beta_{2} + 6 \beta_1 - 122) q^{38} + ( - 24 \beta_{2} - 8 \beta_1) q^{40} + 168 q^{41} + (21 \beta_{3} + 143) q^{43} + ( - 36 \beta_{2} - 28 \beta_1) q^{44} + ( - 28 \beta_{3} - 108 \beta_{2} - 28 \beta_1 + 136) q^{46} + ( - 348 \beta_{2} + 24 \beta_1) q^{47} + ( - 14 \beta_{3} - 122) q^{50} + (20 \beta_{3} + 88 \beta_{2} + 20 \beta_1 - 108) q^{52} + ( - 63 \beta_{3} + 219 \beta_{2} - 63 \beta_1 - 156) q^{53} + ( - 37 \beta_{3} + 400) q^{55} + (66 \beta_{2} + 14 \beta_1) q^{58} + (61 \beta_{3} + 351 \beta_{2} + 61 \beta_1 - 412) q^{59} + ( - 220 \beta_{2} + 34 \beta_1) q^{61} + (56 \beta_{3} - 126) q^{62} + 64 q^{64} + ( - 306 \beta_{2} - 42 \beta_1) q^{65} + (35 \beta_{3} - 538 \beta_{2} + 35 \beta_1 + 503) q^{67} + ( - 216 \beta_{2} + 40 \beta_1) q^{68} + ( - 28 \beta_{3} - 812) q^{71} + (97 \beta_{3} + 46 \beta_{2} + 97 \beta_1 - 143) q^{73} + (42 \beta_{3} + 268 \beta_{2} + 42 \beta_1 - 310) q^{74} + ( - 12 \beta_{3} + 244) q^{76} + ( - 311 \beta_{2} + 98 \beta_1) q^{79} + (16 \beta_{3} + 48 \beta_{2} + 16 \beta_1 - 64) q^{80} - 336 \beta_{2} q^{82} + ( - 89 \beta_{3} + 188) q^{83} + ( - 14 \beta_{3} - 304) q^{85} + ( - 328 \beta_{2} + 42 \beta_1) q^{86} + (56 \beta_{3} + 72 \beta_{2} + 56 \beta_1 - 128) q^{88} + ( - 1170 \beta_{2} - 54 \beta_1) q^{89} + (56 \beta_{3} - 272) q^{92} + ( - 48 \beta_{3} + 696 \beta_{2} - 48 \beta_1 - 648) q^{94} + (70 \beta_{3} + 318 \beta_{2} + 70 \beta_1 - 388) q^{95} + (155 \beta_{3} - 46) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} - 8 q^{4} - 7 q^{5} + 32 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{2} - 8 q^{4} - 7 q^{5} + 32 q^{8} - 14 q^{10} - 25 q^{11} + 98 q^{13} - 32 q^{16} - 98 q^{17} - 119 q^{19} + 56 q^{20} + 100 q^{22} + 122 q^{23} + 129 q^{25} - 98 q^{26} - 146 q^{29} + 98 q^{31} - 64 q^{32} + 392 q^{34} - 289 q^{37} - 238 q^{38} - 56 q^{40} + 672 q^{41} + 614 q^{43} - 100 q^{44} + 244 q^{46} - 672 q^{47} - 516 q^{50} - 196 q^{52} - 375 q^{53} + 1526 q^{55} + 146 q^{58} - 763 q^{59} - 406 q^{61} - 392 q^{62} + 256 q^{64} - 654 q^{65} + 1041 q^{67} - 392 q^{68} - 3304 q^{71} - 189 q^{73} - 578 q^{74} + 952 q^{76} - 524 q^{79} - 112 q^{80} - 672 q^{82} + 574 q^{83} - 1244 q^{85} - 614 q^{86} - 200 q^{88} - 2394 q^{89} - 976 q^{92} - 1344 q^{94} - 706 q^{95} + 126 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} + 49x^{2} + 48x + 2304 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{3} + 49\nu^{2} - 49\nu + 2304 ) / 2352 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} + 97 ) / 49 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 48\beta_{2} + \beta _1 - 49 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 49\beta_{3} - 97 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(-\beta_{2}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
361.1
3.72311 + 6.44862i
−3.22311 5.58259i
3.72311 6.44862i
−3.22311 + 5.58259i
−1.00000 1.73205i 0 −2.00000 + 3.46410i −5.22311 9.04669i 0 0 8.00000 0 −10.4462 + 18.0934i
361.2 −1.00000 1.73205i 0 −2.00000 + 3.46410i 1.72311 + 2.98452i 0 0 8.00000 0 3.44622 5.96903i
667.1 −1.00000 + 1.73205i 0 −2.00000 3.46410i −5.22311 + 9.04669i 0 0 8.00000 0 −10.4462 18.0934i
667.2 −1.00000 + 1.73205i 0 −2.00000 3.46410i 1.72311 2.98452i 0 0 8.00000 0 3.44622 + 5.96903i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 882.4.g.z 4
3.b odd 2 1 882.4.g.bj 4
7.b odd 2 1 126.4.g.e 4
7.c even 3 1 882.4.a.bh 2
7.c even 3 1 inner 882.4.g.z 4
7.d odd 6 1 126.4.g.e 4
7.d odd 6 1 882.4.a.bd 2
21.c even 2 1 126.4.g.f yes 4
21.g even 6 1 126.4.g.f yes 4
21.g even 6 1 882.4.a.ba 2
21.h odd 6 1 882.4.a.u 2
21.h odd 6 1 882.4.g.bj 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
126.4.g.e 4 7.b odd 2 1
126.4.g.e 4 7.d odd 6 1
126.4.g.f yes 4 21.c even 2 1
126.4.g.f yes 4 21.g even 6 1
882.4.a.u 2 21.h odd 6 1
882.4.a.ba 2 21.g even 6 1
882.4.a.bd 2 7.d odd 6 1
882.4.a.bh 2 7.c even 3 1
882.4.g.z 4 1.a even 1 1 trivial
882.4.g.z 4 7.c even 3 1 inner
882.4.g.bj 4 3.b odd 2 1
882.4.g.bj 4 21.h odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(882, [\chi])\):

\( T_{5}^{4} + 7T_{5}^{3} + 85T_{5}^{2} - 252T_{5} + 1296 \) Copy content Toggle raw display
\( T_{11}^{4} + 25T_{11}^{3} + 2833T_{11}^{2} - 55200T_{11} + 4875264 \) Copy content Toggle raw display
\( T_{13}^{2} - 49T_{13} - 606 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 2 T + 4)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 7 T^{3} + 85 T^{2} + \cdots + 1296 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + 25 T^{3} + 2833 T^{2} + \cdots + 4875264 \) Copy content Toggle raw display
$13$ \( (T^{2} - 49 T - 606)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + 98 T^{3} + 12028 T^{2} + \cdots + 5875776 \) Copy content Toggle raw display
$19$ \( T^{4} + 119 T^{3} + 11055 T^{2} + \cdots + 9647236 \) Copy content Toggle raw display
$23$ \( T^{4} - 122 T^{3} + \cdots + 32901696 \) Copy content Toggle raw display
$29$ \( (T^{2} + 73 T - 1032)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} - 98 T^{3} + \cdots + 1255072329 \) Copy content Toggle raw display
$37$ \( T^{4} + 289 T^{3} + 83919 T^{2} + \cdots + 158404 \) Copy content Toggle raw display
$41$ \( (T - 168)^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} - 307 T + 2284)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 672 T^{3} + \cdots + 7242690816 \) Copy content Toggle raw display
$53$ \( T^{4} + 375 T^{3} + \cdots + 24444697104 \) Copy content Toggle raw display
$59$ \( T^{4} + 763 T^{3} + \cdots + 1155728016 \) Copy content Toggle raw display
$61$ \( T^{4} + 406 T^{3} + \cdots + 212226624 \) Copy content Toggle raw display
$67$ \( T^{4} - 1041 T^{3} + \cdots + 44865170596 \) Copy content Toggle raw display
$71$ \( (T^{2} + 1652 T + 644448)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + 189 T^{3} + \cdots + 198073062916 \) Copy content Toggle raw display
$79$ \( T^{4} + 524 T^{3} + \cdots + 155826773001 \) Copy content Toggle raw display
$83$ \( (T^{2} - 287 T - 361596)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + 2394 T^{3} + \cdots + 1669553420544 \) Copy content Toggle raw display
$97$ \( (T^{2} - 63 T - 1158214)^{2} \) Copy content Toggle raw display
show more
show less