Properties

Label 882.4.g.x
Level $882$
Weight $4$
Character orbit 882.g
Analytic conductor $52.040$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 882.g (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(52.0396846251\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 \zeta_{6} q^{2} + ( -4 + 4 \zeta_{6} ) q^{4} + 22 \zeta_{6} q^{5} -8 q^{8} +O(q^{10})\) \( q + 2 \zeta_{6} q^{2} + ( -4 + 4 \zeta_{6} ) q^{4} + 22 \zeta_{6} q^{5} -8 q^{8} + ( -44 + 44 \zeta_{6} ) q^{10} + ( -26 + 26 \zeta_{6} ) q^{11} + 54 q^{13} -16 \zeta_{6} q^{16} + ( 74 - 74 \zeta_{6} ) q^{17} + 116 \zeta_{6} q^{19} -88 q^{20} -52 q^{22} + 58 \zeta_{6} q^{23} + ( -359 + 359 \zeta_{6} ) q^{25} + 108 \zeta_{6} q^{26} + 208 q^{29} + ( -252 + 252 \zeta_{6} ) q^{31} + ( 32 - 32 \zeta_{6} ) q^{32} + 148 q^{34} -50 \zeta_{6} q^{37} + ( -232 + 232 \zeta_{6} ) q^{38} -176 \zeta_{6} q^{40} -126 q^{41} + 164 q^{43} -104 \zeta_{6} q^{44} + ( -116 + 116 \zeta_{6} ) q^{46} -444 \zeta_{6} q^{47} -718 q^{50} + ( -216 + 216 \zeta_{6} ) q^{52} + ( -12 + 12 \zeta_{6} ) q^{53} -572 q^{55} + 416 \zeta_{6} q^{58} + ( 124 - 124 \zeta_{6} ) q^{59} -162 \zeta_{6} q^{61} -504 q^{62} + 64 q^{64} + 1188 \zeta_{6} q^{65} + ( 860 - 860 \zeta_{6} ) q^{67} + 296 \zeta_{6} q^{68} -238 q^{71} + ( -146 + 146 \zeta_{6} ) q^{73} + ( 100 - 100 \zeta_{6} ) q^{74} -464 q^{76} + 984 \zeta_{6} q^{79} + ( 352 - 352 \zeta_{6} ) q^{80} -252 \zeta_{6} q^{82} -656 q^{83} + 1628 q^{85} + 328 \zeta_{6} q^{86} + ( 208 - 208 \zeta_{6} ) q^{88} -954 \zeta_{6} q^{89} -232 q^{92} + ( 888 - 888 \zeta_{6} ) q^{94} + ( -2552 + 2552 \zeta_{6} ) q^{95} -526 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 2q^{2} - 4q^{4} + 22q^{5} - 16q^{8} + O(q^{10}) \) \( 2q + 2q^{2} - 4q^{4} + 22q^{5} - 16q^{8} - 44q^{10} - 26q^{11} + 108q^{13} - 16q^{16} + 74q^{17} + 116q^{19} - 176q^{20} - 104q^{22} + 58q^{23} - 359q^{25} + 108q^{26} + 416q^{29} - 252q^{31} + 32q^{32} + 296q^{34} - 50q^{37} - 232q^{38} - 176q^{40} - 252q^{41} + 328q^{43} - 104q^{44} - 116q^{46} - 444q^{47} - 1436q^{50} - 216q^{52} - 12q^{53} - 1144q^{55} + 416q^{58} + 124q^{59} - 162q^{61} - 1008q^{62} + 128q^{64} + 1188q^{65} + 860q^{67} + 296q^{68} - 476q^{71} - 146q^{73} + 100q^{74} - 928q^{76} + 984q^{79} + 352q^{80} - 252q^{82} - 1312q^{83} + 3256q^{85} + 328q^{86} + 208q^{88} - 954q^{89} - 464q^{92} + 888q^{94} - 2552q^{95} - 1052q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
361.1
0.500000 + 0.866025i
0.500000 0.866025i
1.00000 + 1.73205i 0 −2.00000 + 3.46410i 11.0000 + 19.0526i 0 0 −8.00000 0 −22.0000 + 38.1051i
667.1 1.00000 1.73205i 0 −2.00000 3.46410i 11.0000 19.0526i 0 0 −8.00000 0 −22.0000 38.1051i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 882.4.g.x 2
3.b odd 2 1 882.4.g.a 2
7.b odd 2 1 882.4.g.n 2
7.c even 3 1 882.4.a.a 1
7.c even 3 1 inner 882.4.g.x 2
7.d odd 6 1 126.4.a.e 1
7.d odd 6 1 882.4.g.n 2
21.c even 2 1 882.4.g.m 2
21.g even 6 1 126.4.a.f yes 1
21.g even 6 1 882.4.g.m 2
21.h odd 6 1 882.4.a.s 1
21.h odd 6 1 882.4.g.a 2
28.f even 6 1 1008.4.a.w 1
84.j odd 6 1 1008.4.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
126.4.a.e 1 7.d odd 6 1
126.4.a.f yes 1 21.g even 6 1
882.4.a.a 1 7.c even 3 1
882.4.a.s 1 21.h odd 6 1
882.4.g.a 2 3.b odd 2 1
882.4.g.a 2 21.h odd 6 1
882.4.g.m 2 21.c even 2 1
882.4.g.m 2 21.g even 6 1
882.4.g.n 2 7.b odd 2 1
882.4.g.n 2 7.d odd 6 1
882.4.g.x 2 1.a even 1 1 trivial
882.4.g.x 2 7.c even 3 1 inner
1008.4.a.a 1 84.j odd 6 1
1008.4.a.w 1 28.f even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(882, [\chi])\):

\( T_{5}^{2} - 22 T_{5} + 484 \)
\( T_{11}^{2} + 26 T_{11} + 676 \)
\( T_{13} - 54 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 4 - 2 T + T^{2} \)
$3$ \( T^{2} \)
$5$ \( 484 - 22 T + T^{2} \)
$7$ \( T^{2} \)
$11$ \( 676 + 26 T + T^{2} \)
$13$ \( ( -54 + T )^{2} \)
$17$ \( 5476 - 74 T + T^{2} \)
$19$ \( 13456 - 116 T + T^{2} \)
$23$ \( 3364 - 58 T + T^{2} \)
$29$ \( ( -208 + T )^{2} \)
$31$ \( 63504 + 252 T + T^{2} \)
$37$ \( 2500 + 50 T + T^{2} \)
$41$ \( ( 126 + T )^{2} \)
$43$ \( ( -164 + T )^{2} \)
$47$ \( 197136 + 444 T + T^{2} \)
$53$ \( 144 + 12 T + T^{2} \)
$59$ \( 15376 - 124 T + T^{2} \)
$61$ \( 26244 + 162 T + T^{2} \)
$67$ \( 739600 - 860 T + T^{2} \)
$71$ \( ( 238 + T )^{2} \)
$73$ \( 21316 + 146 T + T^{2} \)
$79$ \( 968256 - 984 T + T^{2} \)
$83$ \( ( 656 + T )^{2} \)
$89$ \( 910116 + 954 T + T^{2} \)
$97$ \( ( 526 + T )^{2} \)
show more
show less