Properties

Label 882.4.g.c
Level $882$
Weight $4$
Character orbit 882.g
Analytic conductor $52.040$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 882.g (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(52.0396846251\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 294)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -2 \zeta_{6} q^{2} + ( -4 + 4 \zeta_{6} ) q^{4} -8 \zeta_{6} q^{5} + 8 q^{8} +O(q^{10})\) \( q -2 \zeta_{6} q^{2} + ( -4 + 4 \zeta_{6} ) q^{4} -8 \zeta_{6} q^{5} + 8 q^{8} + ( -16 + 16 \zeta_{6} ) q^{10} + ( 40 - 40 \zeta_{6} ) q^{11} -4 q^{13} -16 \zeta_{6} q^{16} + ( 84 - 84 \zeta_{6} ) q^{17} + 148 \zeta_{6} q^{19} + 32 q^{20} -80 q^{22} + 84 \zeta_{6} q^{23} + ( 61 - 61 \zeta_{6} ) q^{25} + 8 \zeta_{6} q^{26} -58 q^{29} + ( -136 + 136 \zeta_{6} ) q^{31} + ( -32 + 32 \zeta_{6} ) q^{32} -168 q^{34} + 222 \zeta_{6} q^{37} + ( 296 - 296 \zeta_{6} ) q^{38} -64 \zeta_{6} q^{40} + 420 q^{41} -164 q^{43} + 160 \zeta_{6} q^{44} + ( 168 - 168 \zeta_{6} ) q^{46} -488 \zeta_{6} q^{47} -122 q^{50} + ( 16 - 16 \zeta_{6} ) q^{52} + ( 478 - 478 \zeta_{6} ) q^{53} -320 q^{55} + 116 \zeta_{6} q^{58} + ( -548 + 548 \zeta_{6} ) q^{59} + 692 \zeta_{6} q^{61} + 272 q^{62} + 64 q^{64} + 32 \zeta_{6} q^{65} + ( 908 - 908 \zeta_{6} ) q^{67} + 336 \zeta_{6} q^{68} + 524 q^{71} + ( 440 - 440 \zeta_{6} ) q^{73} + ( 444 - 444 \zeta_{6} ) q^{74} -592 q^{76} -1216 \zeta_{6} q^{79} + ( -128 + 128 \zeta_{6} ) q^{80} -840 \zeta_{6} q^{82} -684 q^{83} -672 q^{85} + 328 \zeta_{6} q^{86} + ( 320 - 320 \zeta_{6} ) q^{88} -604 \zeta_{6} q^{89} -336 q^{92} + ( -976 + 976 \zeta_{6} ) q^{94} + ( 1184 - 1184 \zeta_{6} ) q^{95} + 832 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{2} - 4q^{4} - 8q^{5} + 16q^{8} + O(q^{10}) \) \( 2q - 2q^{2} - 4q^{4} - 8q^{5} + 16q^{8} - 16q^{10} + 40q^{11} - 8q^{13} - 16q^{16} + 84q^{17} + 148q^{19} + 64q^{20} - 160q^{22} + 84q^{23} + 61q^{25} + 8q^{26} - 116q^{29} - 136q^{31} - 32q^{32} - 336q^{34} + 222q^{37} + 296q^{38} - 64q^{40} + 840q^{41} - 328q^{43} + 160q^{44} + 168q^{46} - 488q^{47} - 244q^{50} + 16q^{52} + 478q^{53} - 640q^{55} + 116q^{58} - 548q^{59} + 692q^{61} + 544q^{62} + 128q^{64} + 32q^{65} + 908q^{67} + 336q^{68} + 1048q^{71} + 440q^{73} + 444q^{74} - 1184q^{76} - 1216q^{79} - 128q^{80} - 840q^{82} - 1368q^{83} - 1344q^{85} + 328q^{86} + 320q^{88} - 604q^{89} - 672q^{92} - 976q^{94} + 1184q^{95} + 1664q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
361.1
0.500000 + 0.866025i
0.500000 0.866025i
−1.00000 1.73205i 0 −2.00000 + 3.46410i −4.00000 6.92820i 0 0 8.00000 0 −8.00000 + 13.8564i
667.1 −1.00000 + 1.73205i 0 −2.00000 3.46410i −4.00000 + 6.92820i 0 0 8.00000 0 −8.00000 13.8564i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 882.4.g.c 2
3.b odd 2 1 294.4.e.j 2
7.b odd 2 1 882.4.g.j 2
7.c even 3 1 882.4.a.q 1
7.c even 3 1 inner 882.4.g.c 2
7.d odd 6 1 882.4.a.j 1
7.d odd 6 1 882.4.g.j 2
21.c even 2 1 294.4.e.f 2
21.g even 6 1 294.4.a.f yes 1
21.g even 6 1 294.4.e.f 2
21.h odd 6 1 294.4.a.b 1
21.h odd 6 1 294.4.e.j 2
84.j odd 6 1 2352.4.a.m 1
84.n even 6 1 2352.4.a.z 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
294.4.a.b 1 21.h odd 6 1
294.4.a.f yes 1 21.g even 6 1
294.4.e.f 2 21.c even 2 1
294.4.e.f 2 21.g even 6 1
294.4.e.j 2 3.b odd 2 1
294.4.e.j 2 21.h odd 6 1
882.4.a.j 1 7.d odd 6 1
882.4.a.q 1 7.c even 3 1
882.4.g.c 2 1.a even 1 1 trivial
882.4.g.c 2 7.c even 3 1 inner
882.4.g.j 2 7.b odd 2 1
882.4.g.j 2 7.d odd 6 1
2352.4.a.m 1 84.j odd 6 1
2352.4.a.z 1 84.n even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(882, [\chi])\):

\( T_{5}^{2} + 8 T_{5} + 64 \)
\( T_{11}^{2} - 40 T_{11} + 1600 \)
\( T_{13} + 4 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 4 + 2 T + T^{2} \)
$3$ \( T^{2} \)
$5$ \( 64 + 8 T + T^{2} \)
$7$ \( T^{2} \)
$11$ \( 1600 - 40 T + T^{2} \)
$13$ \( ( 4 + T )^{2} \)
$17$ \( 7056 - 84 T + T^{2} \)
$19$ \( 21904 - 148 T + T^{2} \)
$23$ \( 7056 - 84 T + T^{2} \)
$29$ \( ( 58 + T )^{2} \)
$31$ \( 18496 + 136 T + T^{2} \)
$37$ \( 49284 - 222 T + T^{2} \)
$41$ \( ( -420 + T )^{2} \)
$43$ \( ( 164 + T )^{2} \)
$47$ \( 238144 + 488 T + T^{2} \)
$53$ \( 228484 - 478 T + T^{2} \)
$59$ \( 300304 + 548 T + T^{2} \)
$61$ \( 478864 - 692 T + T^{2} \)
$67$ \( 824464 - 908 T + T^{2} \)
$71$ \( ( -524 + T )^{2} \)
$73$ \( 193600 - 440 T + T^{2} \)
$79$ \( 1478656 + 1216 T + T^{2} \)
$83$ \( ( 684 + T )^{2} \)
$89$ \( 364816 + 604 T + T^{2} \)
$97$ \( ( -832 + T )^{2} \)
show more
show less