Properties

Label 882.4.a.t
Level $882$
Weight $4$
Character orbit 882.a
Self dual yes
Analytic conductor $52.040$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 882.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(52.0396846251\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
Defining polynomial: \(x^{2} - 2\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 294)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -2 q^{2} + 4 q^{4} + ( -6 + \beta ) q^{5} -8 q^{8} +O(q^{10})\) \( q -2 q^{2} + 4 q^{4} + ( -6 + \beta ) q^{5} -8 q^{8} + ( 12 - 2 \beta ) q^{10} + ( -2 + 6 \beta ) q^{11} + ( 24 + 15 \beta ) q^{13} + 16 q^{16} + ( -66 - 11 \beta ) q^{17} + ( 60 - 46 \beta ) q^{19} + ( -24 + 4 \beta ) q^{20} + ( 4 - 12 \beta ) q^{22} + ( 38 - 102 \beta ) q^{23} + ( -87 - 12 \beta ) q^{25} + ( -48 - 30 \beta ) q^{26} + ( 56 + 150 \beta ) q^{29} + ( 216 + 54 \beta ) q^{31} -32 q^{32} + ( 132 + 22 \beta ) q^{34} + ( -140 + 180 \beta ) q^{37} + ( -120 + 92 \beta ) q^{38} + ( 48 - 8 \beta ) q^{40} + ( -18 + 127 \beta ) q^{41} + ( -64 - 288 \beta ) q^{43} + ( -8 + 24 \beta ) q^{44} + ( -76 + 204 \beta ) q^{46} + ( 132 - 338 \beta ) q^{47} + ( 174 + 24 \beta ) q^{50} + ( 96 + 60 \beta ) q^{52} + ( -134 - 192 \beta ) q^{53} + ( 24 - 38 \beta ) q^{55} + ( -112 - 300 \beta ) q^{58} + ( -168 + 298 \beta ) q^{59} + ( -252 - 353 \beta ) q^{61} + ( -432 - 108 \beta ) q^{62} + 64 q^{64} + ( -114 - 66 \beta ) q^{65} + ( -192 + 144 \beta ) q^{67} + ( -264 - 44 \beta ) q^{68} + ( 198 + 342 \beta ) q^{71} + ( -156 + 595 \beta ) q^{73} + ( 280 - 360 \beta ) q^{74} + ( 240 - 184 \beta ) q^{76} + ( -424 + 300 \beta ) q^{79} + ( -96 + 16 \beta ) q^{80} + ( 36 - 254 \beta ) q^{82} + ( 324 + 80 \beta ) q^{83} + 374 q^{85} + ( 128 + 576 \beta ) q^{86} + ( 16 - 48 \beta ) q^{88} + ( 306 - 175 \beta ) q^{89} + ( 152 - 408 \beta ) q^{92} + ( -264 + 676 \beta ) q^{94} + ( -452 + 336 \beta ) q^{95} + ( -1092 - 133 \beta ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 4q^{2} + 8q^{4} - 12q^{5} - 16q^{8} + O(q^{10}) \) \( 2q - 4q^{2} + 8q^{4} - 12q^{5} - 16q^{8} + 24q^{10} - 4q^{11} + 48q^{13} + 32q^{16} - 132q^{17} + 120q^{19} - 48q^{20} + 8q^{22} + 76q^{23} - 174q^{25} - 96q^{26} + 112q^{29} + 432q^{31} - 64q^{32} + 264q^{34} - 280q^{37} - 240q^{38} + 96q^{40} - 36q^{41} - 128q^{43} - 16q^{44} - 152q^{46} + 264q^{47} + 348q^{50} + 192q^{52} - 268q^{53} + 48q^{55} - 224q^{58} - 336q^{59} - 504q^{61} - 864q^{62} + 128q^{64} - 228q^{65} - 384q^{67} - 528q^{68} + 396q^{71} - 312q^{73} + 560q^{74} + 480q^{76} - 848q^{79} - 192q^{80} + 72q^{82} + 648q^{83} + 748q^{85} + 256q^{86} + 32q^{88} + 612q^{89} + 304q^{92} - 528q^{94} - 904q^{95} - 2184q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
−2.00000 0 4.00000 −7.41421 0 0 −8.00000 0 14.8284
1.2 −2.00000 0 4.00000 −4.58579 0 0 −8.00000 0 9.17157
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(-1\)
\(7\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 882.4.a.t 2
3.b odd 2 1 294.4.a.o yes 2
7.b odd 2 1 882.4.a.bb 2
7.c even 3 2 882.4.g.bk 4
7.d odd 6 2 882.4.g.be 4
12.b even 2 1 2352.4.a.bu 2
21.c even 2 1 294.4.a.l 2
21.g even 6 2 294.4.e.m 4
21.h odd 6 2 294.4.e.k 4
84.h odd 2 1 2352.4.a.bw 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
294.4.a.l 2 21.c even 2 1
294.4.a.o yes 2 3.b odd 2 1
294.4.e.k 4 21.h odd 6 2
294.4.e.m 4 21.g even 6 2
882.4.a.t 2 1.a even 1 1 trivial
882.4.a.bb 2 7.b odd 2 1
882.4.g.be 4 7.d odd 6 2
882.4.g.bk 4 7.c even 3 2
2352.4.a.bu 2 12.b even 2 1
2352.4.a.bw 2 84.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(882))\):

\( T_{5}^{2} + 12 T_{5} + 34 \)
\( T_{11}^{2} + 4 T_{11} - 68 \)
\( T_{13}^{2} - 48 T_{13} + 126 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( 2 + T )^{2} \)
$3$ \( T^{2} \)
$5$ \( 34 + 12 T + T^{2} \)
$7$ \( T^{2} \)
$11$ \( -68 + 4 T + T^{2} \)
$13$ \( 126 - 48 T + T^{2} \)
$17$ \( 4114 + 132 T + T^{2} \)
$19$ \( -632 - 120 T + T^{2} \)
$23$ \( -19364 - 76 T + T^{2} \)
$29$ \( -41864 - 112 T + T^{2} \)
$31$ \( 40824 - 432 T + T^{2} \)
$37$ \( -45200 + 280 T + T^{2} \)
$41$ \( -31934 + 36 T + T^{2} \)
$43$ \( -161792 + 128 T + T^{2} \)
$47$ \( -211064 - 264 T + T^{2} \)
$53$ \( -55772 + 268 T + T^{2} \)
$59$ \( -149384 + 336 T + T^{2} \)
$61$ \( -185714 + 504 T + T^{2} \)
$67$ \( -4608 + 384 T + T^{2} \)
$71$ \( -194724 - 396 T + T^{2} \)
$73$ \( -683714 + 312 T + T^{2} \)
$79$ \( -224 + 848 T + T^{2} \)
$83$ \( 92176 - 648 T + T^{2} \)
$89$ \( 32386 - 612 T + T^{2} \)
$97$ \( 1157086 + 2184 T + T^{2} \)
show more
show less