Properties

Label 882.4.a.n
Level $882$
Weight $4$
Character orbit 882.a
Self dual yes
Analytic conductor $52.040$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,4,Mod(1,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 882.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.0396846251\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 6)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 2 q^{2} + 4 q^{4} + 6 q^{5} + 8 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + 2 q^{2} + 4 q^{4} + 6 q^{5} + 8 q^{8} + 12 q^{10} - 12 q^{11} - 38 q^{13} + 16 q^{16} - 126 q^{17} - 20 q^{19} + 24 q^{20} - 24 q^{22} - 168 q^{23} - 89 q^{25} - 76 q^{26} - 30 q^{29} + 88 q^{31} + 32 q^{32} - 252 q^{34} + 254 q^{37} - 40 q^{38} + 48 q^{40} + 42 q^{41} - 52 q^{43} - 48 q^{44} - 336 q^{46} - 96 q^{47} - 178 q^{50} - 152 q^{52} - 198 q^{53} - 72 q^{55} - 60 q^{58} - 660 q^{59} + 538 q^{61} + 176 q^{62} + 64 q^{64} - 228 q^{65} + 884 q^{67} - 504 q^{68} - 792 q^{71} - 218 q^{73} + 508 q^{74} - 80 q^{76} - 520 q^{79} + 96 q^{80} + 84 q^{82} - 492 q^{83} - 756 q^{85} - 104 q^{86} - 96 q^{88} + 810 q^{89} - 672 q^{92} - 192 q^{94} - 120 q^{95} - 1154 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
2.00000 0 4.00000 6.00000 0 0 8.00000 0 12.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(7\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 882.4.a.n 1
3.b odd 2 1 294.4.a.e 1
7.b odd 2 1 18.4.a.a 1
7.c even 3 2 882.4.g.f 2
7.d odd 6 2 882.4.g.i 2
12.b even 2 1 2352.4.a.e 1
21.c even 2 1 6.4.a.a 1
21.g even 6 2 294.4.e.h 2
21.h odd 6 2 294.4.e.g 2
28.d even 2 1 144.4.a.c 1
35.c odd 2 1 450.4.a.h 1
35.f even 4 2 450.4.c.e 2
56.e even 2 1 576.4.a.r 1
56.h odd 2 1 576.4.a.q 1
63.l odd 6 2 162.4.c.c 2
63.o even 6 2 162.4.c.f 2
77.b even 2 1 2178.4.a.e 1
84.h odd 2 1 48.4.a.c 1
105.g even 2 1 150.4.a.i 1
105.k odd 4 2 150.4.c.d 2
168.e odd 2 1 192.4.a.c 1
168.i even 2 1 192.4.a.i 1
231.h odd 2 1 726.4.a.f 1
273.g even 2 1 1014.4.a.g 1
273.o odd 4 2 1014.4.b.d 2
336.v odd 4 2 768.4.d.c 2
336.y even 4 2 768.4.d.n 2
357.c even 2 1 1734.4.a.d 1
399.h odd 2 1 2166.4.a.i 1
420.o odd 2 1 1200.4.a.b 1
420.w even 4 2 1200.4.f.j 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6.4.a.a 1 21.c even 2 1
18.4.a.a 1 7.b odd 2 1
48.4.a.c 1 84.h odd 2 1
144.4.a.c 1 28.d even 2 1
150.4.a.i 1 105.g even 2 1
150.4.c.d 2 105.k odd 4 2
162.4.c.c 2 63.l odd 6 2
162.4.c.f 2 63.o even 6 2
192.4.a.c 1 168.e odd 2 1
192.4.a.i 1 168.i even 2 1
294.4.a.e 1 3.b odd 2 1
294.4.e.g 2 21.h odd 6 2
294.4.e.h 2 21.g even 6 2
450.4.a.h 1 35.c odd 2 1
450.4.c.e 2 35.f even 4 2
576.4.a.q 1 56.h odd 2 1
576.4.a.r 1 56.e even 2 1
726.4.a.f 1 231.h odd 2 1
768.4.d.c 2 336.v odd 4 2
768.4.d.n 2 336.y even 4 2
882.4.a.n 1 1.a even 1 1 trivial
882.4.g.f 2 7.c even 3 2
882.4.g.i 2 7.d odd 6 2
1014.4.a.g 1 273.g even 2 1
1014.4.b.d 2 273.o odd 4 2
1200.4.a.b 1 420.o odd 2 1
1200.4.f.j 2 420.w even 4 2
1734.4.a.d 1 357.c even 2 1
2166.4.a.i 1 399.h odd 2 1
2178.4.a.e 1 77.b even 2 1
2352.4.a.e 1 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(882))\):

\( T_{5} - 6 \) Copy content Toggle raw display
\( T_{11} + 12 \) Copy content Toggle raw display
\( T_{13} + 38 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 2 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 6 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T + 12 \) Copy content Toggle raw display
$13$ \( T + 38 \) Copy content Toggle raw display
$17$ \( T + 126 \) Copy content Toggle raw display
$19$ \( T + 20 \) Copy content Toggle raw display
$23$ \( T + 168 \) Copy content Toggle raw display
$29$ \( T + 30 \) Copy content Toggle raw display
$31$ \( T - 88 \) Copy content Toggle raw display
$37$ \( T - 254 \) Copy content Toggle raw display
$41$ \( T - 42 \) Copy content Toggle raw display
$43$ \( T + 52 \) Copy content Toggle raw display
$47$ \( T + 96 \) Copy content Toggle raw display
$53$ \( T + 198 \) Copy content Toggle raw display
$59$ \( T + 660 \) Copy content Toggle raw display
$61$ \( T - 538 \) Copy content Toggle raw display
$67$ \( T - 884 \) Copy content Toggle raw display
$71$ \( T + 792 \) Copy content Toggle raw display
$73$ \( T + 218 \) Copy content Toggle raw display
$79$ \( T + 520 \) Copy content Toggle raw display
$83$ \( T + 492 \) Copy content Toggle raw display
$89$ \( T - 810 \) Copy content Toggle raw display
$97$ \( T + 1154 \) Copy content Toggle raw display
show more
show less