Properties

Label 882.4.a.m
Level $882$
Weight $4$
Character orbit 882.a
Self dual yes
Analytic conductor $52.040$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 882.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(52.0396846251\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 126)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + 2q^{2} + 4q^{4} - 6q^{5} + 8q^{8} + O(q^{10}) \) \( q + 2q^{2} + 4q^{4} - 6q^{5} + 8q^{8} - 12q^{10} + 30q^{11} - 2q^{13} + 16q^{16} - 66q^{17} + 52q^{19} - 24q^{20} + 60q^{22} + 114q^{23} - 89q^{25} - 4q^{26} + 72q^{29} + 196q^{31} + 32q^{32} - 132q^{34} - 286q^{37} + 104q^{38} - 48q^{40} + 378q^{41} + 164q^{43} + 120q^{44} + 228q^{46} + 228q^{47} - 178q^{50} - 8q^{52} - 348q^{53} - 180q^{55} + 144q^{58} + 348q^{59} + 106q^{61} + 392q^{62} + 64q^{64} + 12q^{65} + 596q^{67} - 264q^{68} + 630q^{71} + 1042q^{73} - 572q^{74} + 208q^{76} - 88q^{79} - 96q^{80} + 756q^{82} + 1440q^{83} + 396q^{85} + 328q^{86} + 240q^{88} - 1374q^{89} + 456q^{92} + 456q^{94} - 312q^{95} + 34q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
2.00000 0 4.00000 −6.00000 0 0 8.00000 0 −12.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(1\)
\(7\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 882.4.a.m 1
3.b odd 2 1 882.4.a.e 1
7.b odd 2 1 126.4.a.g yes 1
7.c even 3 2 882.4.g.h 2
7.d odd 6 2 882.4.g.e 2
21.c even 2 1 126.4.a.b 1
21.g even 6 2 882.4.g.t 2
21.h odd 6 2 882.4.g.q 2
28.d even 2 1 1008.4.a.n 1
84.h odd 2 1 1008.4.a.g 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
126.4.a.b 1 21.c even 2 1
126.4.a.g yes 1 7.b odd 2 1
882.4.a.e 1 3.b odd 2 1
882.4.a.m 1 1.a even 1 1 trivial
882.4.g.e 2 7.d odd 6 2
882.4.g.h 2 7.c even 3 2
882.4.g.q 2 21.h odd 6 2
882.4.g.t 2 21.g even 6 2
1008.4.a.g 1 84.h odd 2 1
1008.4.a.n 1 28.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(882))\):

\( T_{5} + 6 \)
\( T_{11} - 30 \)
\( T_{13} + 2 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -2 + T \)
$3$ \( T \)
$5$ \( 6 + T \)
$7$ \( T \)
$11$ \( -30 + T \)
$13$ \( 2 + T \)
$17$ \( 66 + T \)
$19$ \( -52 + T \)
$23$ \( -114 + T \)
$29$ \( -72 + T \)
$31$ \( -196 + T \)
$37$ \( 286 + T \)
$41$ \( -378 + T \)
$43$ \( -164 + T \)
$47$ \( -228 + T \)
$53$ \( 348 + T \)
$59$ \( -348 + T \)
$61$ \( -106 + T \)
$67$ \( -596 + T \)
$71$ \( -630 + T \)
$73$ \( -1042 + T \)
$79$ \( 88 + T \)
$83$ \( -1440 + T \)
$89$ \( 1374 + T \)
$97$ \( -34 + T \)
show more
show less