Properties

Label 882.3.s.e.557.4
Level $882$
Weight $3$
Character 882.557
Analytic conductor $24.033$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 882.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(24.0327593166\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.12745506816.5
Defining polynomial: \(x^{8} - 8 x^{6} + 55 x^{4} - 72 x^{2} + 81\)
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 557.4
Root \(1.00781 + 0.581861i\) of defining polynomial
Character \(\chi\) \(=\) 882.557
Dual form 882.3.s.e.863.4

$q$-expansion

\(f(q)\) \(=\) \(q+(1.22474 - 0.707107i) q^{2} +(1.00000 - 1.73205i) q^{4} +(5.25600 - 3.03455i) q^{5} -2.82843i q^{8} +O(q^{10})\) \(q+(1.22474 - 0.707107i) q^{2} +(1.00000 - 1.73205i) q^{4} +(5.25600 - 3.03455i) q^{5} -2.82843i q^{8} +(4.29150 - 7.43310i) q^{10} +(-10.5120 - 6.06910i) q^{11} -18.5830 q^{13} +(-2.00000 - 3.46410i) q^{16} +(-9.44094 - 5.45073i) q^{17} +(-10.0000 - 17.3205i) q^{19} -12.1382i q^{20} -17.1660 q^{22} +(10.5120 - 6.06910i) q^{23} +(5.91699 - 10.2485i) q^{25} +(-22.7594 + 13.1402i) q^{26} -41.8367i q^{29} +(-12.5830 + 21.7944i) q^{31} +(-4.89898 - 2.82843i) q^{32} -15.4170 q^{34} +(-19.0000 - 32.9090i) q^{37} +(-24.4949 - 14.1421i) q^{38} +(-8.58301 - 14.8662i) q^{40} +60.6337i q^{41} +83.4980 q^{43} +(-21.0240 + 12.1382i) q^{44} +(8.58301 - 14.8662i) q^{46} +(14.6969 - 8.48528i) q^{47} -16.7358i q^{50} +(-18.5830 + 32.1867i) q^{52} +(81.4431 + 47.0212i) q^{53} -73.6680 q^{55} +(-29.5830 - 51.2393i) q^{58} +(-50.4179 - 29.1088i) q^{59} +(-7.83399 - 13.5689i) q^{61} +35.5901i q^{62} -8.00000 q^{64} +(-97.6722 + 56.3911i) q^{65} +(66.3320 - 114.890i) q^{67} +(-18.8819 + 10.9015i) q^{68} +12.1382i q^{71} +(38.4575 - 66.6104i) q^{73} +(-46.5403 - 26.8701i) q^{74} -40.0000 q^{76} +(-16.8340 - 29.1573i) q^{79} +(-21.0240 - 12.1382i) q^{80} +(42.8745 + 74.2608i) q^{82} +60.5764i q^{83} -66.1621 q^{85} +(102.264 - 59.0420i) q^{86} +(-17.1660 + 29.7324i) q^{88} +(4.13532 - 2.38753i) q^{89} -24.2764i q^{92} +(12.0000 - 20.7846i) q^{94} +(-105.120 - 60.6910i) q^{95} -188.413 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{4} + O(q^{10}) \) \( 8 q + 8 q^{4} - 8 q^{10} - 64 q^{13} - 16 q^{16} - 80 q^{19} + 32 q^{22} + 132 q^{25} - 16 q^{31} - 208 q^{34} - 152 q^{37} + 16 q^{40} + 160 q^{43} - 16 q^{46} - 64 q^{52} - 928 q^{55} - 152 q^{58} - 232 q^{61} - 64 q^{64} + 192 q^{67} + 96 q^{73} - 320 q^{76} - 304 q^{79} + 216 q^{82} + 656 q^{85} + 32 q^{88} + 96 q^{94} - 576 q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.22474 0.707107i 0.612372 0.353553i
\(3\) 0 0
\(4\) 1.00000 1.73205i 0.250000 0.433013i
\(5\) 5.25600 3.03455i 1.05120 0.606910i 0.128214 0.991746i \(-0.459075\pi\)
0.922985 + 0.384836i \(0.125742\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 2.82843i 0.353553i
\(9\) 0 0
\(10\) 4.29150 7.43310i 0.429150 0.743310i
\(11\) −10.5120 6.06910i −0.955636 0.551736i −0.0608086 0.998149i \(-0.519368\pi\)
−0.894827 + 0.446413i \(0.852701\pi\)
\(12\) 0 0
\(13\) −18.5830 −1.42946 −0.714731 0.699399i \(-0.753451\pi\)
−0.714731 + 0.699399i \(0.753451\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −2.00000 3.46410i −0.125000 0.216506i
\(17\) −9.44094 5.45073i −0.555350 0.320631i 0.195927 0.980618i \(-0.437228\pi\)
−0.751277 + 0.659987i \(0.770562\pi\)
\(18\) 0 0
\(19\) −10.0000 17.3205i −0.526316 0.911606i −0.999530 0.0306583i \(-0.990240\pi\)
0.473214 0.880947i \(-0.343094\pi\)
\(20\) 12.1382i 0.606910i
\(21\) 0 0
\(22\) −17.1660 −0.780273
\(23\) 10.5120 6.06910i 0.457043 0.263874i −0.253757 0.967268i \(-0.581666\pi\)
0.710800 + 0.703394i \(0.248333\pi\)
\(24\) 0 0
\(25\) 5.91699 10.2485i 0.236680 0.409941i
\(26\) −22.7594 + 13.1402i −0.875363 + 0.505391i
\(27\) 0 0
\(28\) 0 0
\(29\) 41.8367i 1.44264i −0.692600 0.721322i \(-0.743535\pi\)
0.692600 0.721322i \(-0.256465\pi\)
\(30\) 0 0
\(31\) −12.5830 + 21.7944i −0.405903 + 0.703045i −0.994426 0.105435i \(-0.966376\pi\)
0.588523 + 0.808481i \(0.299710\pi\)
\(32\) −4.89898 2.82843i −0.153093 0.0883883i
\(33\) 0 0
\(34\) −15.4170 −0.453441
\(35\) 0 0
\(36\) 0 0
\(37\) −19.0000 32.9090i −0.513514 0.889431i −0.999877 0.0156750i \(-0.995010\pi\)
0.486364 0.873757i \(-0.338323\pi\)
\(38\) −24.4949 14.1421i −0.644603 0.372161i
\(39\) 0 0
\(40\) −8.58301 14.8662i −0.214575 0.371655i
\(41\) 60.6337i 1.47887i 0.673227 + 0.739435i \(0.264908\pi\)
−0.673227 + 0.739435i \(0.735092\pi\)
\(42\) 0 0
\(43\) 83.4980 1.94181 0.970907 0.239455i \(-0.0769689\pi\)
0.970907 + 0.239455i \(0.0769689\pi\)
\(44\) −21.0240 + 12.1382i −0.477818 + 0.275868i
\(45\) 0 0
\(46\) 8.58301 14.8662i 0.186587 0.323178i
\(47\) 14.6969 8.48528i 0.312701 0.180538i −0.335434 0.942064i \(-0.608883\pi\)
0.648134 + 0.761526i \(0.275549\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 16.7358i 0.334716i
\(51\) 0 0
\(52\) −18.5830 + 32.1867i −0.357365 + 0.618975i
\(53\) 81.4431 + 47.0212i 1.53666 + 0.887193i 0.999031 + 0.0440129i \(0.0140143\pi\)
0.537632 + 0.843180i \(0.319319\pi\)
\(54\) 0 0
\(55\) −73.6680 −1.33942
\(56\) 0 0
\(57\) 0 0
\(58\) −29.5830 51.2393i −0.510052 0.883436i
\(59\) −50.4179 29.1088i −0.854540 0.493369i 0.00764008 0.999971i \(-0.497568\pi\)
−0.862180 + 0.506602i \(0.830901\pi\)
\(60\) 0 0
\(61\) −7.83399 13.5689i −0.128426 0.222440i 0.794641 0.607080i \(-0.207659\pi\)
−0.923067 + 0.384639i \(0.874326\pi\)
\(62\) 35.5901i 0.574034i
\(63\) 0 0
\(64\) −8.00000 −0.125000
\(65\) −97.6722 + 56.3911i −1.50265 + 0.867555i
\(66\) 0 0
\(67\) 66.3320 114.890i 0.990030 1.71478i 0.373031 0.927819i \(-0.378319\pi\)
0.617000 0.786964i \(-0.288348\pi\)
\(68\) −18.8819 + 10.9015i −0.277675 + 0.160316i
\(69\) 0 0
\(70\) 0 0
\(71\) 12.1382i 0.170961i 0.996340 + 0.0854803i \(0.0272425\pi\)
−0.996340 + 0.0854803i \(0.972758\pi\)
\(72\) 0 0
\(73\) 38.4575 66.6104i 0.526815 0.912471i −0.472696 0.881225i \(-0.656719\pi\)
0.999512 0.0312455i \(-0.00994736\pi\)
\(74\) −46.5403 26.8701i −0.628923 0.363109i
\(75\) 0 0
\(76\) −40.0000 −0.526316
\(77\) 0 0
\(78\) 0 0
\(79\) −16.8340 29.1573i −0.213088 0.369080i 0.739591 0.673056i \(-0.235019\pi\)
−0.952680 + 0.303976i \(0.901686\pi\)
\(80\) −21.0240 12.1382i −0.262800 0.151728i
\(81\) 0 0
\(82\) 42.8745 + 74.2608i 0.522860 + 0.905620i
\(83\) 60.5764i 0.729836i 0.931040 + 0.364918i \(0.118903\pi\)
−0.931040 + 0.364918i \(0.881097\pi\)
\(84\) 0 0
\(85\) −66.1621 −0.778377
\(86\) 102.264 59.0420i 1.18911 0.686535i
\(87\) 0 0
\(88\) −17.1660 + 29.7324i −0.195068 + 0.337868i
\(89\) 4.13532 2.38753i 0.0464643 0.0268262i −0.476588 0.879127i \(-0.658127\pi\)
0.523052 + 0.852301i \(0.324793\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 24.2764i 0.263874i
\(93\) 0 0
\(94\) 12.0000 20.7846i 0.127660 0.221113i
\(95\) −105.120 60.6910i −1.10653 0.638853i
\(96\) 0 0
\(97\) −188.413 −1.94240 −0.971201 0.238260i \(-0.923423\pi\)
−0.971201 + 0.238260i \(0.923423\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −11.8340 20.4971i −0.118340 0.204971i
\(101\) 92.4162 + 53.3565i 0.915012 + 0.528282i 0.882040 0.471174i \(-0.156170\pi\)
0.0329716 + 0.999456i \(0.489503\pi\)
\(102\) 0 0
\(103\) −65.7490 113.881i −0.638340 1.10564i −0.985797 0.167941i \(-0.946288\pi\)
0.347457 0.937696i \(-0.387045\pi\)
\(104\) 52.5607i 0.505391i
\(105\) 0 0
\(106\) 132.996 1.25468
\(107\) −71.3426 + 41.1897i −0.666753 + 0.384950i −0.794845 0.606812i \(-0.792448\pi\)
0.128092 + 0.991762i \(0.459115\pi\)
\(108\) 0 0
\(109\) −16.9150 + 29.2977i −0.155184 + 0.268786i −0.933126 0.359550i \(-0.882930\pi\)
0.777942 + 0.628336i \(0.216264\pi\)
\(110\) −90.2245 + 52.0911i −0.820223 + 0.473556i
\(111\) 0 0
\(112\) 0 0
\(113\) 28.5190i 0.252381i 0.992006 + 0.126190i \(0.0402750\pi\)
−0.992006 + 0.126190i \(0.959725\pi\)
\(114\) 0 0
\(115\) 36.8340 63.7983i 0.320296 0.554768i
\(116\) −72.4633 41.8367i −0.624683 0.360661i
\(117\) 0 0
\(118\) −82.3320 −0.697729
\(119\) 0 0
\(120\) 0 0
\(121\) 13.1680 + 22.8076i 0.108826 + 0.188493i
\(122\) −19.1893 11.0789i −0.157289 0.0908109i
\(123\) 0 0
\(124\) 25.1660 + 43.5888i 0.202952 + 0.351523i
\(125\) 79.9059i 0.639247i
\(126\) 0 0
\(127\) 129.668 1.02101 0.510504 0.859875i \(-0.329459\pi\)
0.510504 + 0.859875i \(0.329459\pi\)
\(128\) −9.79796 + 5.65685i −0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) −79.7490 + 138.129i −0.613454 + 1.06253i
\(131\) 128.187 74.0087i 0.978525 0.564952i 0.0767004 0.997054i \(-0.475562\pi\)
0.901824 + 0.432103i \(0.142228\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 187.615i 1.40011i
\(135\) 0 0
\(136\) −15.4170 + 26.7030i −0.113360 + 0.196346i
\(137\) −66.6469 38.4786i −0.486474 0.280866i 0.236637 0.971598i \(-0.423955\pi\)
−0.723111 + 0.690732i \(0.757288\pi\)
\(138\) 0 0
\(139\) 217.328 1.56351 0.781756 0.623585i \(-0.214324\pi\)
0.781756 + 0.623585i \(0.214324\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 8.58301 + 14.8662i 0.0604437 + 0.104692i
\(143\) 195.344 + 112.782i 1.36604 + 0.788686i
\(144\) 0 0
\(145\) −126.956 219.893i −0.875555 1.51651i
\(146\) 108.774i 0.745029i
\(147\) 0 0
\(148\) −76.0000 −0.513514
\(149\) −140.231 + 80.9623i −0.941147 + 0.543371i −0.890320 0.455336i \(-0.849519\pi\)
−0.0508272 + 0.998707i \(0.516186\pi\)
\(150\) 0 0
\(151\) 46.5830 80.6841i 0.308497 0.534332i −0.669537 0.742779i \(-0.733507\pi\)
0.978034 + 0.208447i \(0.0668408\pi\)
\(152\) −48.9898 + 28.2843i −0.322301 + 0.186081i
\(153\) 0 0
\(154\) 0 0
\(155\) 152.735i 0.985388i
\(156\) 0 0
\(157\) 92.4980 160.211i 0.589159 1.02045i −0.405183 0.914235i \(-0.632792\pi\)
0.994343 0.106219i \(-0.0338743\pi\)
\(158\) −41.2347 23.8069i −0.260979 0.150676i
\(159\) 0 0
\(160\) −34.3320 −0.214575
\(161\) 0 0
\(162\) 0 0
\(163\) −43.4980 75.3408i −0.266859 0.462214i 0.701190 0.712975i \(-0.252652\pi\)
−0.968049 + 0.250761i \(0.919319\pi\)
\(164\) 105.021 + 60.6337i 0.640370 + 0.369718i
\(165\) 0 0
\(166\) 42.8340 + 74.1906i 0.258036 + 0.446932i
\(167\) 60.5764i 0.362733i −0.983416 0.181366i \(-0.941948\pi\)
0.983416 0.181366i \(-0.0580520\pi\)
\(168\) 0 0
\(169\) 176.328 1.04336
\(170\) −81.0317 + 46.7837i −0.476657 + 0.275198i
\(171\) 0 0
\(172\) 83.4980 144.623i 0.485454 0.840830i
\(173\) −140.791 + 81.2858i −0.813822 + 0.469860i −0.848281 0.529546i \(-0.822362\pi\)
0.0344594 + 0.999406i \(0.489029\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 48.5528i 0.275868i
\(177\) 0 0
\(178\) 3.37648 5.84823i 0.0189690 0.0328552i
\(179\) 193.202 + 111.545i 1.07934 + 0.623159i 0.930719 0.365735i \(-0.119182\pi\)
0.148623 + 0.988894i \(0.452516\pi\)
\(180\) 0 0
\(181\) 188.915 1.04373 0.521865 0.853028i \(-0.325237\pi\)
0.521865 + 0.853028i \(0.325237\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −17.1660 29.7324i −0.0932935 0.161589i
\(185\) −199.728 115.313i −1.07961 0.623313i
\(186\) 0 0
\(187\) 66.1621 + 114.596i 0.353808 + 0.612813i
\(188\) 33.9411i 0.180538i
\(189\) 0 0
\(190\) −171.660 −0.903474
\(191\) 197.486 114.019i 1.03396 0.596957i 0.115844 0.993267i \(-0.463043\pi\)
0.918117 + 0.396310i \(0.129709\pi\)
\(192\) 0 0
\(193\) −67.0000 + 116.047i −0.347150 + 0.601282i −0.985742 0.168264i \(-0.946184\pi\)
0.638592 + 0.769546i \(0.279517\pi\)
\(194\) −230.758 + 133.228i −1.18947 + 0.686743i
\(195\) 0 0
\(196\) 0 0
\(197\) 188.560i 0.957157i 0.878045 + 0.478579i \(0.158848\pi\)
−0.878045 + 0.478579i \(0.841152\pi\)
\(198\) 0 0
\(199\) −51.2470 + 88.7625i −0.257523 + 0.446043i −0.965578 0.260115i \(-0.916240\pi\)
0.708055 + 0.706157i \(0.249573\pi\)
\(200\) −28.9872 16.7358i −0.144936 0.0836789i
\(201\) 0 0
\(202\) 150.915 0.747104
\(203\) 0 0
\(204\) 0 0
\(205\) 183.996 + 318.691i 0.897542 + 1.55459i
\(206\) −161.052 92.9831i −0.781804 0.451375i
\(207\) 0 0
\(208\) 37.1660 + 64.3734i 0.178683 + 0.309488i
\(209\) 242.764i 1.16155i
\(210\) 0 0
\(211\) −84.5020 −0.400483 −0.200242 0.979747i \(-0.564173\pi\)
−0.200242 + 0.979747i \(0.564173\pi\)
\(212\) 162.886 94.0424i 0.768331 0.443596i
\(213\) 0 0
\(214\) −58.2510 + 100.894i −0.272201 + 0.471466i
\(215\) 438.865 253.379i 2.04123 1.17851i
\(216\) 0 0
\(217\) 0 0
\(218\) 47.8429i 0.219463i
\(219\) 0 0
\(220\) −73.6680 + 127.597i −0.334854 + 0.579985i
\(221\) 175.441 + 101.291i 0.793851 + 0.458330i
\(222\) 0 0
\(223\) −158.494 −0.710736 −0.355368 0.934727i \(-0.615644\pi\)
−0.355368 + 0.934727i \(0.615644\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 20.1660 + 34.9286i 0.0892301 + 0.154551i
\(227\) 88.1816 + 50.9117i 0.388465 + 0.224281i 0.681495 0.731823i \(-0.261330\pi\)
−0.293030 + 0.956103i \(0.594663\pi\)
\(228\) 0 0
\(229\) 134.458 + 232.887i 0.587151 + 1.01697i 0.994604 + 0.103749i \(0.0330837\pi\)
−0.407453 + 0.913226i \(0.633583\pi\)
\(230\) 104.182i 0.452966i
\(231\) 0 0
\(232\) −118.332 −0.510052
\(233\) 22.7546 13.1374i 0.0976593 0.0563836i −0.450375 0.892840i \(-0.648710\pi\)
0.548034 + 0.836456i \(0.315376\pi\)
\(234\) 0 0
\(235\) 51.4980 89.1972i 0.219141 0.379563i
\(236\) −100.836 + 58.2175i −0.427270 + 0.246684i
\(237\) 0 0
\(238\) 0 0
\(239\) 92.2733i 0.386081i −0.981191 0.193040i \(-0.938165\pi\)
0.981191 0.193040i \(-0.0618348\pi\)
\(240\) 0 0
\(241\) −171.624 + 297.261i −0.712131 + 1.23345i 0.251925 + 0.967747i \(0.418936\pi\)
−0.964056 + 0.265700i \(0.914397\pi\)
\(242\) 32.2548 + 18.6223i 0.133284 + 0.0769518i
\(243\) 0 0
\(244\) −31.3360 −0.128426
\(245\) 0 0
\(246\) 0 0
\(247\) 185.830 + 321.867i 0.752348 + 1.30311i
\(248\) 61.6439 + 35.5901i 0.248564 + 0.143509i
\(249\) 0 0
\(250\) 56.5020 + 97.8643i 0.226008 + 0.391457i
\(251\) 356.382i 1.41985i −0.704278 0.709924i \(-0.748729\pi\)
0.704278 0.709924i \(-0.251271\pi\)
\(252\) 0 0
\(253\) −147.336 −0.582356
\(254\) 158.810 91.6891i 0.625237 0.360981i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) 220.603 127.365i 0.858377 0.495584i −0.00509129 0.999987i \(-0.501621\pi\)
0.863469 + 0.504403i \(0.168287\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 225.564i 0.867555i
\(261\) 0 0
\(262\) 104.664 181.283i 0.399481 0.691922i
\(263\) 226.880 + 130.989i 0.862663 + 0.498059i 0.864903 0.501939i \(-0.167380\pi\)
−0.00224015 + 0.999997i \(0.500713\pi\)
\(264\) 0 0
\(265\) 570.753 2.15378
\(266\) 0 0
\(267\) 0 0
\(268\) −132.664 229.781i −0.495015 0.857391i
\(269\) 81.0813 + 46.8123i 0.301417 + 0.174023i 0.643079 0.765799i \(-0.277656\pi\)
−0.341662 + 0.939823i \(0.610990\pi\)
\(270\) 0 0
\(271\) −0.583005 1.00979i −0.00215131 0.00372618i 0.864948 0.501862i \(-0.167351\pi\)
−0.867099 + 0.498136i \(0.834018\pi\)
\(272\) 43.6058i 0.160316i
\(273\) 0 0
\(274\) −108.834 −0.397204
\(275\) −124.399 + 71.8217i −0.452359 + 0.261170i
\(276\) 0 0
\(277\) −16.0000 + 27.7128i −0.0577617 + 0.100046i −0.893460 0.449142i \(-0.851730\pi\)
0.835699 + 0.549188i \(0.185063\pi\)
\(278\) 266.171 153.674i 0.957451 0.552785i
\(279\) 0 0
\(280\) 0 0
\(281\) 166.757i 0.593441i −0.954964 0.296721i \(-0.904107\pi\)
0.954964 0.296721i \(-0.0958930\pi\)
\(282\) 0 0
\(283\) −8.16995 + 14.1508i −0.0288691 + 0.0500027i −0.880099 0.474790i \(-0.842524\pi\)
0.851230 + 0.524793i \(0.175857\pi\)
\(284\) 21.0240 + 12.1382i 0.0740281 + 0.0427401i
\(285\) 0 0
\(286\) 318.996 1.11537
\(287\) 0 0
\(288\) 0 0
\(289\) −85.0791 147.361i −0.294391 0.509901i
\(290\) −310.976 179.542i −1.07233 0.619111i
\(291\) 0 0
\(292\) −76.9150 133.221i −0.263408 0.456235i
\(293\) 368.921i 1.25912i −0.776953 0.629558i \(-0.783236\pi\)
0.776953 0.629558i \(-0.216764\pi\)
\(294\) 0 0
\(295\) −353.328 −1.19772
\(296\) −93.0806 + 53.7401i −0.314462 + 0.181554i
\(297\) 0 0
\(298\) −114.498 + 198.316i −0.384222 + 0.665491i
\(299\) −195.344 + 112.782i −0.653326 + 0.377198i
\(300\) 0 0
\(301\) 0 0
\(302\) 131.757i 0.436280i
\(303\) 0 0
\(304\) −40.0000 + 69.2820i −0.131579 + 0.227901i
\(305\) −82.3508 47.5453i −0.270003 0.155886i
\(306\) 0 0
\(307\) −192.664 −0.627570 −0.313785 0.949494i \(-0.601597\pi\)
−0.313785 + 0.949494i \(0.601597\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 108.000 + 187.061i 0.348387 + 0.603424i
\(311\) 113.688 + 65.6380i 0.365557 + 0.211055i 0.671516 0.740990i \(-0.265644\pi\)
−0.305959 + 0.952045i \(0.598977\pi\)
\(312\) 0 0
\(313\) −21.6640 37.5232i −0.0692142 0.119882i 0.829341 0.558742i \(-0.188716\pi\)
−0.898556 + 0.438860i \(0.855383\pi\)
\(314\) 261.624i 0.833197i
\(315\) 0 0
\(316\) −67.3360 −0.213088
\(317\) 218.000 125.862i 0.687696 0.397042i −0.115052 0.993359i \(-0.536703\pi\)
0.802748 + 0.596318i \(0.203370\pi\)
\(318\) 0 0
\(319\) −253.911 + 439.787i −0.795960 + 1.37864i
\(320\) −42.0480 + 24.2764i −0.131400 + 0.0758638i
\(321\) 0 0
\(322\) 0 0
\(323\) 218.029i 0.675013i
\(324\) 0 0
\(325\) −109.956 + 190.449i −0.338325 + 0.585996i
\(326\) −106.548 61.5155i −0.326834 0.188698i
\(327\) 0 0
\(328\) 171.498 0.522860
\(329\) 0 0
\(330\) 0 0
\(331\) −180.745 313.060i −0.546058 0.945800i −0.998540 0.0540260i \(-0.982795\pi\)
0.452482 0.891774i \(-0.350539\pi\)
\(332\) 104.921 + 60.5764i 0.316028 + 0.182459i
\(333\) 0 0
\(334\) −42.8340 74.1906i −0.128245 0.222128i
\(335\) 805.151i 2.40344i
\(336\) 0 0
\(337\) −298.834 −0.886748 −0.443374 0.896337i \(-0.646219\pi\)
−0.443374 + 0.896337i \(0.646219\pi\)
\(338\) 215.957 124.683i 0.638926 0.368884i
\(339\) 0 0
\(340\) −66.1621 + 114.596i −0.194594 + 0.337047i
\(341\) 264.545 152.735i 0.775791 0.447903i
\(342\) 0 0
\(343\) 0 0
\(344\) 236.168i 0.686535i
\(345\) 0 0
\(346\) −114.956 + 199.109i −0.332241 + 0.575459i
\(347\) 178.505 + 103.060i 0.514425 + 0.297003i 0.734651 0.678446i \(-0.237346\pi\)
−0.220226 + 0.975449i \(0.570679\pi\)
\(348\) 0 0
\(349\) 434.324 1.24448 0.622241 0.782826i \(-0.286222\pi\)
0.622241 + 0.782826i \(0.286222\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 34.3320 + 59.4648i 0.0975342 + 0.168934i
\(353\) −160.595 92.7197i −0.454944 0.262662i 0.254972 0.966948i \(-0.417934\pi\)
−0.709916 + 0.704286i \(0.751267\pi\)
\(354\) 0 0
\(355\) 36.8340 + 63.7983i 0.103758 + 0.179714i
\(356\) 9.55012i 0.0268262i
\(357\) 0 0
\(358\) 315.498 0.881279
\(359\) 447.533 258.383i 1.24661 0.719731i 0.276178 0.961106i \(-0.410932\pi\)
0.970432 + 0.241376i \(0.0775987\pi\)
\(360\) 0 0
\(361\) −19.5000 + 33.7750i −0.0540166 + 0.0935595i
\(362\) 231.373 133.583i 0.639151 0.369014i
\(363\) 0 0
\(364\) 0 0
\(365\) 466.805i 1.27892i
\(366\) 0 0
\(367\) 58.7451 101.749i 0.160068 0.277246i −0.774825 0.632176i \(-0.782162\pi\)
0.934893 + 0.354930i \(0.115495\pi\)
\(368\) −42.0480 24.2764i −0.114261 0.0659685i
\(369\) 0 0
\(370\) −326.154 −0.881498
\(371\) 0 0
\(372\) 0 0
\(373\) 201.332 + 348.717i 0.539764 + 0.934899i 0.998916 + 0.0465413i \(0.0148199\pi\)
−0.459152 + 0.888358i \(0.651847\pi\)
\(374\) 162.063 + 93.5673i 0.433324 + 0.250180i
\(375\) 0 0
\(376\) −24.0000 41.5692i −0.0638298 0.110556i
\(377\) 777.451i 2.06221i
\(378\) 0 0
\(379\) 398.834 1.05233 0.526166 0.850382i \(-0.323629\pi\)
0.526166 + 0.850382i \(0.323629\pi\)
\(380\) −210.240 + 121.382i −0.553263 + 0.319426i
\(381\) 0 0
\(382\) 161.247 279.288i 0.422113 0.731121i
\(383\) −645.019 + 372.402i −1.68412 + 0.972329i −0.725255 + 0.688481i \(0.758278\pi\)
−0.958869 + 0.283849i \(0.908389\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 189.505i 0.490945i
\(387\) 0 0
\(388\) −188.413 + 326.341i −0.485601 + 0.841085i
\(389\) −463.464 267.581i −1.19142 0.687869i −0.232795 0.972526i \(-0.574787\pi\)
−0.958630 + 0.284656i \(0.908121\pi\)
\(390\) 0 0
\(391\) −132.324 −0.338425
\(392\) 0 0
\(393\) 0 0
\(394\) 133.332 + 230.938i 0.338406 + 0.586137i
\(395\) −176.959 102.167i −0.447997 0.258651i
\(396\) 0 0
\(397\) 47.1621 + 81.6871i 0.118796 + 0.205761i 0.919291 0.393579i \(-0.128763\pi\)
−0.800495 + 0.599340i \(0.795430\pi\)
\(398\) 144.949i 0.364192i
\(399\) 0 0
\(400\) −47.3360 −0.118340
\(401\) 89.7138 51.7963i 0.223725 0.129168i −0.383949 0.923354i \(-0.625436\pi\)
0.607674 + 0.794187i \(0.292103\pi\)
\(402\) 0 0
\(403\) 233.830 405.006i 0.580223 1.00498i
\(404\) 184.832 106.713i 0.457506 0.264141i
\(405\) 0 0
\(406\) 0 0
\(407\) 461.252i 1.13330i
\(408\) 0 0
\(409\) 4.87844 8.44971i 0.0119277 0.0206594i −0.860000 0.510294i \(-0.829537\pi\)
0.871928 + 0.489635i \(0.162870\pi\)
\(410\) 450.696 + 260.210i 1.09926 + 0.634658i
\(411\) 0 0
\(412\) −262.996 −0.638340
\(413\) 0 0
\(414\) 0 0
\(415\) 183.822 + 318.389i 0.442945 + 0.767203i
\(416\) 91.0378 + 52.5607i 0.218841 + 0.126348i
\(417\) 0 0
\(418\) 171.660 + 297.324i 0.410670 + 0.711301i
\(419\) 339.411i 0.810051i −0.914305 0.405025i \(-0.867263\pi\)
0.914305 0.405025i \(-0.132737\pi\)
\(420\) 0 0
\(421\) −599.320 −1.42356 −0.711782 0.702401i \(-0.752111\pi\)
−0.711782 + 0.702401i \(0.752111\pi\)
\(422\) −103.493 + 59.7519i −0.245245 + 0.141592i
\(423\) 0 0
\(424\) 132.996 230.356i 0.313670 0.543292i
\(425\) −111.724 + 64.5039i −0.262880 + 0.151774i
\(426\) 0 0
\(427\) 0 0
\(428\) 164.759i 0.384950i
\(429\) 0 0
\(430\) 358.332 620.649i 0.833330 1.44337i
\(431\) 615.725 + 355.489i 1.42860 + 0.824800i 0.997010 0.0772717i \(-0.0246209\pi\)
0.431586 + 0.902072i \(0.357954\pi\)
\(432\) 0 0
\(433\) 377.984 0.872943 0.436471 0.899718i \(-0.356228\pi\)
0.436471 + 0.899718i \(0.356228\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 33.8301 + 58.5954i 0.0775919 + 0.134393i
\(437\) −210.240 121.382i −0.481098 0.277762i
\(438\) 0 0
\(439\) −264.073 457.388i −0.601533 1.04189i −0.992589 0.121519i \(-0.961223\pi\)
0.391056 0.920367i \(-0.372110\pi\)
\(440\) 208.365i 0.473556i
\(441\) 0 0
\(442\) 286.494 0.648177
\(443\) −31.7345 + 18.3219i −0.0716354 + 0.0413587i −0.535390 0.844605i \(-0.679835\pi\)
0.463754 + 0.885964i \(0.346502\pi\)
\(444\) 0 0
\(445\) 14.4902 25.0977i 0.0325622 0.0563993i
\(446\) −194.115 + 112.072i −0.435235 + 0.251283i
\(447\) 0 0
\(448\) 0 0
\(449\) 397.612i 0.885550i 0.896633 + 0.442775i \(0.146006\pi\)
−0.896633 + 0.442775i \(0.853994\pi\)
\(450\) 0 0
\(451\) 367.992 637.381i 0.815947 1.41326i
\(452\) 49.3964 + 28.5190i 0.109284 + 0.0630952i
\(453\) 0 0
\(454\) 144.000 0.317181
\(455\) 0 0
\(456\) 0 0
\(457\) −172.162 298.193i −0.376722 0.652502i 0.613861 0.789414i \(-0.289616\pi\)
−0.990583 + 0.136912i \(0.956282\pi\)
\(458\) 329.352 + 190.152i 0.719110 + 0.415178i
\(459\) 0 0
\(460\) −73.6680 127.597i −0.160148 0.277384i
\(461\) 370.936i 0.804634i 0.915500 + 0.402317i \(0.131795\pi\)
−0.915500 + 0.402317i \(0.868205\pi\)
\(462\) 0 0
\(463\) 78.3320 0.169184 0.0845918 0.996416i \(-0.473041\pi\)
0.0845918 + 0.996416i \(0.473041\pi\)
\(464\) −144.927 + 83.6734i −0.312342 + 0.180331i
\(465\) 0 0
\(466\) 18.5791 32.1799i 0.0398692 0.0690556i
\(467\) 346.201 199.879i 0.741330 0.428007i −0.0812229 0.996696i \(-0.525883\pi\)
0.822553 + 0.568689i \(0.192549\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 145.658i 0.309912i
\(471\) 0 0
\(472\) −82.3320 + 142.603i −0.174432 + 0.302126i
\(473\) −877.731 506.758i −1.85567 1.07137i
\(474\) 0 0
\(475\) −236.680 −0.498273
\(476\) 0 0
\(477\) 0 0
\(478\) −65.2470 113.011i −0.136500 0.236425i
\(479\) −609.100 351.664i −1.27161 0.734163i −0.296317 0.955090i \(-0.595759\pi\)
−0.975290 + 0.220927i \(0.929092\pi\)
\(480\) 0 0
\(481\) 353.077 + 611.547i 0.734048 + 1.27141i
\(482\) 485.425i 1.00711i
\(483\) 0 0
\(484\) 52.6719 0.108826
\(485\) −990.298 + 571.749i −2.04185 + 1.17886i
\(486\) 0 0
\(487\) 41.2549 71.4556i 0.0847124 0.146726i −0.820556 0.571566i \(-0.806336\pi\)
0.905269 + 0.424840i \(0.139670\pi\)
\(488\) −38.3786 + 22.1579i −0.0786446 + 0.0454055i
\(489\) 0 0
\(490\) 0 0
\(491\) 184.203i 0.375158i 0.982249 + 0.187579i \(0.0600641\pi\)
−0.982249 + 0.187579i \(0.939936\pi\)
\(492\) 0 0
\(493\) −228.041 + 394.978i −0.462557 + 0.801172i
\(494\) 455.189 + 262.803i 0.921435 + 0.531991i
\(495\) 0 0
\(496\) 100.664 0.202952
\(497\) 0 0
\(498\) 0 0
\(499\) −376.405 651.953i −0.754319 1.30652i −0.945712 0.325005i \(-0.894634\pi\)
0.191393 0.981513i \(-0.438699\pi\)
\(500\) 138.401 + 79.9059i 0.276802 + 0.159812i
\(501\) 0 0
\(502\) −252.000 436.477i −0.501992 0.869476i
\(503\) 662.540i 1.31718i 0.752504 + 0.658588i \(0.228846\pi\)
−0.752504 + 0.658588i \(0.771154\pi\)
\(504\) 0 0
\(505\) 647.652 1.28248
\(506\) −180.449 + 104.182i −0.356618 + 0.205894i
\(507\) 0 0
\(508\) 129.668 224.592i 0.255252 0.442109i
\(509\) −821.958 + 474.557i −1.61485 + 0.932333i −0.626623 + 0.779322i \(0.715563\pi\)
−0.988225 + 0.153010i \(0.951103\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 22.6274i 0.0441942i
\(513\) 0 0
\(514\) 180.122 311.980i 0.350431 0.606964i
\(515\) −691.153 399.037i −1.34204 0.774830i
\(516\) 0 0
\(517\) −205.992 −0.398437
\(518\) 0 0
\(519\) 0 0
\(520\) 159.498 + 276.259i 0.306727 + 0.531267i
\(521\) 618.640 + 357.172i 1.18741 + 0.685551i 0.957717 0.287712i \(-0.0928947\pi\)
0.229692 + 0.973263i \(0.426228\pi\)
\(522\) 0 0
\(523\) 116.000 + 200.918i 0.221797 + 0.384164i 0.955354 0.295464i \(-0.0954743\pi\)
−0.733556 + 0.679629i \(0.762141\pi\)
\(524\) 296.035i 0.564952i
\(525\) 0 0
\(526\) 370.494 0.704361
\(527\) 237.591 137.173i 0.450837 0.260291i
\(528\) 0 0
\(529\) −190.832 + 330.531i −0.360741 + 0.624822i
\(530\) 699.027 403.583i 1.31892 0.761478i
\(531\) 0 0
\(532\) 0 0
\(533\) 1126.76i 2.11399i
\(534\) 0 0
\(535\) −249.984 + 432.985i −0.467260 + 0.809319i
\(536\) −324.959 187.615i −0.606267 0.350029i
\(537\) 0 0
\(538\) 132.405 0.246106
\(539\) 0 0
\(540\) 0 0
\(541\) −82.8340 143.473i −0.153113 0.265199i 0.779257 0.626704i \(-0.215596\pi\)
−0.932370 + 0.361505i \(0.882263\pi\)
\(542\) −1.42807 0.824494i −0.00263481 0.00152121i
\(543\) 0 0
\(544\) 30.8340 + 53.4060i 0.0566801 + 0.0981729i
\(545\) 205.318i 0.376730i
\(546\) 0 0
\(547\) 295.676 0.540541 0.270270 0.962784i \(-0.412887\pi\)
0.270270 + 0.962784i \(0.412887\pi\)
\(548\) −133.294 + 76.9573i −0.243237 + 0.140433i
\(549\) 0 0
\(550\) −101.571 + 175.926i −0.184675 + 0.319866i
\(551\) −724.633 + 418.367i −1.31512 + 0.759287i
\(552\) 0 0
\(553\) 0 0
\(554\) 45.2548i 0.0816874i
\(555\) 0 0
\(556\) 217.328 376.423i 0.390878 0.677020i
\(557\) 66.5477 + 38.4213i 0.119475 + 0.0689790i 0.558547 0.829473i \(-0.311359\pi\)
−0.439071 + 0.898452i \(0.644693\pi\)
\(558\) 0 0
\(559\) −1551.64 −2.77575
\(560\) 0 0
\(561\) 0 0
\(562\) −117.915 204.235i −0.209813 0.363407i
\(563\) 880.170 + 508.167i 1.56336 + 0.902605i 0.996914 + 0.0785049i \(0.0250146\pi\)
0.566444 + 0.824100i \(0.308319\pi\)
\(564\) 0 0
\(565\) 86.5425 + 149.896i 0.153173 + 0.265303i
\(566\) 23.1081i 0.0408270i
\(567\) 0 0
\(568\) 34.3320 0.0604437
\(569\) 507.952 293.266i 0.892710 0.515406i 0.0178822 0.999840i \(-0.494308\pi\)
0.874828 + 0.484434i \(0.160974\pi\)
\(570\) 0 0
\(571\) −475.822 + 824.148i −0.833314 + 1.44334i 0.0620822 + 0.998071i \(0.480226\pi\)
−0.895396 + 0.445271i \(0.853107\pi\)
\(572\) 390.689 225.564i 0.683022 0.394343i
\(573\) 0 0
\(574\) 0 0
\(575\) 143.643i 0.249815i
\(576\) 0 0
\(577\) 74.3360 128.754i 0.128832 0.223143i −0.794392 0.607405i \(-0.792211\pi\)
0.923224 + 0.384262i \(0.125544\pi\)
\(578\) −208.400 120.320i −0.360554 0.208166i
\(579\) 0 0
\(580\) −507.822 −0.875555
\(581\) 0 0
\(582\) 0 0
\(583\) −570.753 988.573i −0.978993 1.69567i
\(584\) −188.403 108.774i −0.322607 0.186257i
\(585\) 0 0
\(586\) −260.867 451.834i −0.445165 0.771048i
\(587\) 332.564i 0.566548i −0.959039 0.283274i \(-0.908579\pi\)
0.959039 0.283274i \(-0.0914206\pi\)
\(588\) 0 0
\(589\) 503.320 0.854533
\(590\) −432.737 + 249.841i −0.733452 + 0.423459i
\(591\) 0 0
\(592\) −76.0000 + 131.636i −0.128378 + 0.222358i
\(593\) −188.145 + 108.625i −0.317276 + 0.183180i −0.650178 0.759782i \(-0.725306\pi\)
0.332902 + 0.942962i \(0.391972\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 323.849i 0.543371i
\(597\) 0 0
\(598\) −159.498 + 276.259i −0.266719 + 0.461971i
\(599\) −149.111 86.0896i −0.248934 0.143722i 0.370342 0.928895i \(-0.379240\pi\)
−0.619276 + 0.785173i \(0.712574\pi\)
\(600\) 0 0
\(601\) −418.000 −0.695507 −0.347754 0.937586i \(-0.613055\pi\)
−0.347754 + 0.937586i \(0.613055\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −93.1660 161.368i −0.154248 0.267166i
\(605\) 138.422 + 79.9178i 0.228796 + 0.132096i
\(606\) 0 0
\(607\) −313.579 543.135i −0.516605 0.894786i −0.999814 0.0192808i \(-0.993862\pi\)
0.483209 0.875505i \(-0.339471\pi\)
\(608\) 113.137i 0.186081i
\(609\) 0 0
\(610\) −134.478 −0.220456
\(611\) −273.113 + 157.682i −0.446994 + 0.258072i
\(612\) 0 0
\(613\) 139.664 241.905i 0.227837 0.394625i −0.729330 0.684162i \(-0.760168\pi\)
0.957167 + 0.289537i \(0.0935014\pi\)
\(614\) −235.964 + 136.234i −0.384307 + 0.221880i
\(615\) 0 0
\(616\) 0 0
\(617\) 358.380i 0.580843i −0.956899 0.290422i \(-0.906204\pi\)
0.956899 0.290422i \(-0.0937955\pi\)
\(618\) 0 0
\(619\) 491.822 851.861i 0.794543 1.37619i −0.128586 0.991698i \(-0.541044\pi\)
0.923129 0.384491i \(-0.125623\pi\)
\(620\) 264.545 + 152.735i 0.426685 + 0.246347i
\(621\) 0 0
\(622\) 185.652 0.298476
\(623\) 0 0
\(624\) 0 0
\(625\) 390.403 + 676.198i 0.624645 + 1.08192i
\(626\) −53.0658 30.6376i −0.0847697 0.0489418i
\(627\) 0 0
\(628\) −184.996 320.423i −0.294580 0.510227i
\(629\) 414.256i 0.658594i
\(630\) 0 0
\(631\) −298.996 −0.473845 −0.236922 0.971529i \(-0.576139\pi\)
−0.236922 + 0.971529i \(0.576139\pi\)
\(632\) −82.4694 + 47.6137i −0.130490 + 0.0753382i
\(633\) 0 0
\(634\) 177.996 308.298i 0.280751 0.486275i
\(635\) 681.534 393.484i 1.07328 0.619660i
\(636\) 0 0
\(637\) 0 0
\(638\) 718.169i 1.12566i
\(639\) 0 0
\(640\) −34.3320 + 59.4648i −0.0536438 + 0.0929138i
\(641\) −270.163 155.979i −0.421471 0.243336i 0.274236 0.961663i \(-0.411575\pi\)
−0.695706 + 0.718326i \(0.744909\pi\)
\(642\) 0 0
\(643\) −604.000 −0.939347 −0.469673 0.882840i \(-0.655628\pi\)
−0.469673 + 0.882840i \(0.655628\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 154.170 + 267.030i 0.238653 + 0.413359i
\(647\) 155.538 + 89.7998i 0.240398 + 0.138794i 0.615360 0.788246i \(-0.289011\pi\)
−0.374961 + 0.927040i \(0.622344\pi\)
\(648\) 0 0
\(649\) 353.328 + 611.982i 0.544419 + 0.942962i
\(650\) 311.001i 0.478463i
\(651\) 0 0
\(652\) −173.992 −0.266859
\(653\) −417.331 + 240.946i −0.639097 + 0.368983i −0.784267 0.620424i \(-0.786961\pi\)
0.145169 + 0.989407i \(0.453627\pi\)
\(654\) 0 0
\(655\) 449.166 777.978i 0.685750 1.18775i
\(656\) 210.041 121.267i 0.320185 0.184859i
\(657\) 0 0
\(658\) 0 0
\(659\) 877.408i 1.33142i −0.746209 0.665711i \(-0.768128\pi\)
0.746209 0.665711i \(-0.231872\pi\)
\(660\) 0 0
\(661\) 260.822 451.757i 0.394587 0.683445i −0.598461 0.801152i \(-0.704221\pi\)
0.993048 + 0.117707i \(0.0375543\pi\)
\(662\) −442.733 255.612i −0.668781 0.386121i
\(663\) 0 0
\(664\) 171.336 0.258036
\(665\) 0 0
\(666\) 0 0
\(667\) −253.911 439.787i −0.380676 0.659351i
\(668\) −104.921 60.5764i −0.157068 0.0906832i
\(669\) 0 0
\(670\) −569.328 986.105i −0.849743 1.47180i
\(671\) 190.181i 0.283429i
\(672\) 0 0
\(673\) −659.992 −0.980672 −0.490336 0.871534i \(-0.663126\pi\)
−0.490336 + 0.871534i \(0.663126\pi\)
\(674\) −365.995 + 211.308i −0.543020 + 0.313513i
\(675\) 0 0
\(676\) 176.328 305.409i 0.260840 0.451789i
\(677\) −880.121 + 508.138i −1.30003 + 0.750573i −0.980409 0.196972i \(-0.936889\pi\)
−0.319622 + 0.947545i \(0.603556\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 187.135i 0.275198i
\(681\) 0 0
\(682\) 216.000 374.123i 0.316716 0.548567i
\(683\) −203.615 117.557i −0.298119 0.172119i 0.343479 0.939160i \(-0.388395\pi\)
−0.641597 + 0.767042i \(0.721728\pi\)
\(684\) 0 0
\(685\) −467.061 −0.681841
\(686\) 0 0
\(687\) 0 0
\(688\) −166.996 289.246i −0.242727 0.420415i
\(689\) −1513.46 873.795i −2.19660 1.26821i
\(690\) 0 0
\(691\) 25.4902 + 44.1502i 0.0368888 + 0.0638933i 0.883880 0.467713i \(-0.154922\pi\)
−0.846992 + 0.531606i \(0.821589\pi\)
\(692\) 325.143i 0.469860i
\(693\) 0 0
\(694\) 291.498 0.420026
\(695\) 1142.28 659.493i 1.64356 0.948911i
\(696\) 0 0
\(697\) 330.498 572.439i 0.474172 0.821290i
\(698\) 531.936 307.114i 0.762086 0.439991i
\(699\) 0 0
\(700\) 0 0
\(701\) 141.530i 0.201898i −0.994892 0.100949i \(-0.967812\pi\)
0.994892 0.100949i \(-0.0321879\pi\)
\(702\) 0 0
\(703\) −380.000 + 658.179i −0.540541 + 0.936244i
\(704\) 84.0959 + 48.5528i 0.119454 + 0.0689671i
\(705\) 0 0
\(706\) −262.251 −0.371460
\(707\) 0 0
\(708\) 0 0
\(709\) 27.7490 + 48.0627i 0.0391382 + 0.0677894i 0.884931 0.465722i \(-0.154205\pi\)
−0.845793 + 0.533512i \(0.820872\pi\)
\(710\) 90.2245 + 52.0911i 0.127077 + 0.0733678i
\(711\) 0 0
\(712\) −6.75295 11.6965i −0.00948448 0.0164276i
\(713\) 305.470i 0.428429i
\(714\) 0 0
\(715\) 1368.97 1.91465
\(716\) 386.405 223.091i 0.539671 0.311579i
\(717\) 0 0
\(718\) 365.409 632.907i 0.508926 0.881486i
\(719\) 873.843 504.514i 1.21536 0.701688i 0.251438 0.967874i \(-0.419097\pi\)
0.963922 + 0.266185i \(0.0857634\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 55.1543i 0.0763910i
\(723\) 0 0
\(724\) 188.915 327.210i 0.260932 0.451948i
\(725\) −428.765 247.547i −0.591400 0.341445i
\(726\) 0 0
\(727\) −365.182 −0.502313 −0.251157 0.967946i \(-0.580811\pi\)
−0.251157 + 0.967946i \(0.580811\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −330.081 571.717i −0.452166 0.783174i
\(731\) −788.300 455.125i −1.07839 0.622606i
\(732\) 0 0
\(733\) 176.539 + 305.774i 0.240844 + 0.417154i 0.960955 0.276705i \(-0.0892425\pi\)
−0.720111 + 0.693859i \(0.755909\pi\)
\(734\) 166.156i 0.226371i
\(735\) 0 0
\(736\) −68.6640 −0.0932935
\(737\) −1394.56 + 805.151i −1.89222 + 1.09247i
\(738\) 0 0
\(739\) −164.842 + 285.514i −0.223061 + 0.386352i −0.955736 0.294226i \(-0.904938\pi\)
0.732675 + 0.680579i \(0.238271\pi\)
\(740\) −399.456 + 230.626i −0.539805 + 0.311657i
\(741\) 0 0
\(742\) 0 0
\(743\) 112.061i 0.150822i 0.997153 + 0.0754112i \(0.0240270\pi\)
−0.997153 + 0.0754112i \(0.975973\pi\)
\(744\) 0 0
\(745\) −491.369 + 851.075i −0.659555 + 1.14238i
\(746\) 493.161 + 284.726i 0.661073 + 0.381671i
\(747\) 0 0
\(748\) 264.648 0.353808
\(749\) 0 0
\(750\) 0 0
\(751\) 72.4131 + 125.423i 0.0964222 + 0.167008i 0.910201 0.414166i \(-0.135927\pi\)
−0.813779 + 0.581174i \(0.802593\pi\)
\(752\) −58.7878 33.9411i −0.0781752 0.0451345i
\(753\) 0 0
\(754\) 549.741 + 952.180i 0.729100 + 1.26284i
\(755\) 565.434i 0.748919i
\(756\) 0 0
\(757\) 78.1699 0.103263 0.0516314 0.998666i \(-0.483558\pi\)
0.0516314 + 0.998666i \(0.483558\pi\)
\(758\) 488.470 282.018i 0.644419 0.372056i
\(759\) 0 0
\(760\) −171.660 + 297.324i −0.225869 + 0.391216i
\(761\) −1269.16 + 732.752i −1.66776 + 0.962880i −0.698915 + 0.715205i \(0.746333\pi\)
−0.968843 + 0.247676i \(0.920333\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 456.076i 0.596957i
\(765\) 0 0
\(766\) −526.656 + 912.195i −0.687541 + 1.19086i
\(767\) 936.915 + 540.928i 1.22153 + 0.705252i
\(768\) 0 0
\(769\) 729.320 0.948401 0.474200 0.880417i \(-0.342737\pi\)
0.474200 + 0.880417i \(0.342737\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 134.000 + 232.095i 0.173575 + 0.300641i
\(773\) −376.339 217.280i −0.486855 0.281086i 0.236414 0.971653i \(-0.424028\pi\)
−0.723269 + 0.690566i \(0.757361\pi\)
\(774\) 0 0
\(775\) 148.907 + 257.915i 0.192138 + 0.332793i
\(776\) 532.913i 0.686743i
\(777\) 0 0
\(778\) −756.834 −0.972794
\(779\) 1050.21 606.337i 1.34815 0.778353i
\(780\) 0 0
\(781\) 73.6680 127.597i 0.0943252 0.163376i
\(782\) −162.063 + 93.5673i −0.207242 + 0.119651i
\(783\) 0 0
\(784\) 0 0
\(785\) 1122.76i 1.43027i
\(786\) 0 0
\(787\) 7.67585 13.2950i 0.00975331 0.0168932i −0.861108 0.508423i \(-0.830229\pi\)
0.870861 + 0.491530i \(0.163562\pi\)
\(788\) 326.595 + 188.560i 0.414461 + 0.239289i
\(789\) 0 0
\(790\) −288.972 −0.365788
\(791\) 0 0