Properties

Label 882.3.n.c.325.1
Level $882$
Weight $3$
Character 882.325
Analytic conductor $24.033$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 882.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(24.0327593166\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
Defining polynomial: \(x^{4} + 2 x^{2} + 4\)
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 325.1
Root \(-0.707107 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 882.325
Dual form 882.3.n.c.19.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.707107 - 1.22474i) q^{2} +(-1.00000 + 1.73205i) q^{4} +(-4.24264 + 2.44949i) q^{5} +2.82843 q^{8} +O(q^{10})\) \(q+(-0.707107 - 1.22474i) q^{2} +(-1.00000 + 1.73205i) q^{4} +(-4.24264 + 2.44949i) q^{5} +2.82843 q^{8} +(6.00000 + 3.46410i) q^{10} +(8.48528 - 14.6969i) q^{11} +1.73205i q^{13} +(-2.00000 - 3.46410i) q^{16} +(4.24264 + 2.44949i) q^{17} +(-25.5000 + 14.7224i) q^{19} -9.79796i q^{20} -24.0000 q^{22} +(4.24264 + 7.34847i) q^{23} +(-0.500000 + 0.866025i) q^{25} +(2.12132 - 1.22474i) q^{26} -33.9411 q^{29} +(10.5000 + 6.06218i) q^{31} +(-2.82843 + 4.89898i) q^{32} -6.92820i q^{34} +(23.5000 + 40.7032i) q^{37} +(36.0624 + 20.8207i) q^{38} +(-12.0000 + 6.92820i) q^{40} -68.5857i q^{41} +31.0000 q^{43} +(16.9706 + 29.3939i) q^{44} +(6.00000 - 10.3923i) q^{46} +(72.1249 - 41.6413i) q^{47} +1.41421 q^{50} +(-3.00000 - 1.73205i) q^{52} +(38.1838 - 66.1362i) q^{53} +83.1384i q^{55} +(24.0000 + 41.5692i) q^{58} +(72.1249 + 41.6413i) q^{59} +(72.0000 - 41.5692i) q^{61} -17.1464i q^{62} +8.00000 q^{64} +(-4.24264 - 7.34847i) q^{65} +(15.5000 - 26.8468i) q^{67} +(-8.48528 + 4.89898i) q^{68} +59.3970 q^{71} +(70.5000 + 40.7032i) q^{73} +(33.2340 - 57.5630i) q^{74} -58.8897i q^{76} +(-20.5000 - 35.5070i) q^{79} +(16.9706 + 9.79796i) q^{80} +(-84.0000 + 48.4974i) q^{82} +4.89898i q^{83} -24.0000 q^{85} +(-21.9203 - 37.9671i) q^{86} +(24.0000 - 41.5692i) q^{88} +(-50.9117 + 29.3939i) q^{89} -16.9706 q^{92} +(-102.000 - 58.8897i) q^{94} +(72.1249 - 124.924i) q^{95} -41.5692i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 4q^{4} + O(q^{10}) \) \( 4q - 4q^{4} + 24q^{10} - 8q^{16} - 102q^{19} - 96q^{22} - 2q^{25} + 42q^{31} + 94q^{37} - 48q^{40} + 124q^{43} + 24q^{46} - 12q^{52} + 96q^{58} + 288q^{61} + 32q^{64} + 62q^{67} + 282q^{73} - 82q^{79} - 336q^{82} - 96q^{85} + 96q^{88} - 408q^{94} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 1.22474i −0.353553 0.612372i
\(3\) 0 0
\(4\) −1.00000 + 1.73205i −0.250000 + 0.433013i
\(5\) −4.24264 + 2.44949i −0.848528 + 0.489898i −0.860154 0.510034i \(-0.829633\pi\)
0.0116258 + 0.999932i \(0.496299\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 2.82843 0.353553
\(9\) 0 0
\(10\) 6.00000 + 3.46410i 0.600000 + 0.346410i
\(11\) 8.48528 14.6969i 0.771389 1.33609i −0.165412 0.986224i \(-0.552896\pi\)
0.936802 0.349861i \(-0.113771\pi\)
\(12\) 0 0
\(13\) 1.73205i 0.133235i 0.997779 + 0.0666173i \(0.0212207\pi\)
−0.997779 + 0.0666173i \(0.978779\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −2.00000 3.46410i −0.125000 0.216506i
\(17\) 4.24264 + 2.44949i 0.249567 + 0.144088i 0.619566 0.784945i \(-0.287309\pi\)
−0.369999 + 0.929032i \(0.620642\pi\)
\(18\) 0 0
\(19\) −25.5000 + 14.7224i −1.34211 + 0.774865i −0.987116 0.160006i \(-0.948849\pi\)
−0.354989 + 0.934870i \(0.615515\pi\)
\(20\) 9.79796i 0.489898i
\(21\) 0 0
\(22\) −24.0000 −1.09091
\(23\) 4.24264 + 7.34847i 0.184463 + 0.319499i 0.943395 0.331670i \(-0.107612\pi\)
−0.758933 + 0.651169i \(0.774279\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(26\) 2.12132 1.22474i 0.0815892 0.0471056i
\(27\) 0 0
\(28\) 0 0
\(29\) −33.9411 −1.17038 −0.585192 0.810895i \(-0.698981\pi\)
−0.585192 + 0.810895i \(0.698981\pi\)
\(30\) 0 0
\(31\) 10.5000 + 6.06218i 0.338710 + 0.195554i 0.659701 0.751528i \(-0.270683\pi\)
−0.320992 + 0.947082i \(0.604016\pi\)
\(32\) −2.82843 + 4.89898i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 6.92820i 0.203771i
\(35\) 0 0
\(36\) 0 0
\(37\) 23.5000 + 40.7032i 0.635135 + 1.10009i 0.986486 + 0.163843i \(0.0523889\pi\)
−0.351351 + 0.936244i \(0.614278\pi\)
\(38\) 36.0624 + 20.8207i 0.949012 + 0.547912i
\(39\) 0 0
\(40\) −12.0000 + 6.92820i −0.300000 + 0.173205i
\(41\) 68.5857i 1.67282i −0.548103 0.836411i \(-0.684650\pi\)
0.548103 0.836411i \(-0.315350\pi\)
\(42\) 0 0
\(43\) 31.0000 0.720930 0.360465 0.932773i \(-0.382618\pi\)
0.360465 + 0.932773i \(0.382618\pi\)
\(44\) 16.9706 + 29.3939i 0.385695 + 0.668043i
\(45\) 0 0
\(46\) 6.00000 10.3923i 0.130435 0.225920i
\(47\) 72.1249 41.6413i 1.53457 0.885986i 0.535430 0.844580i \(-0.320150\pi\)
0.999142 0.0414059i \(-0.0131837\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 1.41421 0.0282843
\(51\) 0 0
\(52\) −3.00000 1.73205i −0.0576923 0.0333087i
\(53\) 38.1838 66.1362i 0.720448 1.24785i −0.240372 0.970681i \(-0.577269\pi\)
0.960820 0.277172i \(-0.0893973\pi\)
\(54\) 0 0
\(55\) 83.1384i 1.51161i
\(56\) 0 0
\(57\) 0 0
\(58\) 24.0000 + 41.5692i 0.413793 + 0.716711i
\(59\) 72.1249 + 41.6413i 1.22246 + 0.705785i 0.965441 0.260622i \(-0.0839277\pi\)
0.257015 + 0.966407i \(0.417261\pi\)
\(60\) 0 0
\(61\) 72.0000 41.5692i 1.18033 0.681463i 0.224237 0.974535i \(-0.428011\pi\)
0.956090 + 0.293072i \(0.0946775\pi\)
\(62\) 17.1464i 0.276555i
\(63\) 0 0
\(64\) 8.00000 0.125000
\(65\) −4.24264 7.34847i −0.0652714 0.113053i
\(66\) 0 0
\(67\) 15.5000 26.8468i 0.231343 0.400698i −0.726860 0.686785i \(-0.759021\pi\)
0.958204 + 0.286087i \(0.0923546\pi\)
\(68\) −8.48528 + 4.89898i −0.124784 + 0.0720438i
\(69\) 0 0
\(70\) 0 0
\(71\) 59.3970 0.836577 0.418289 0.908314i \(-0.362630\pi\)
0.418289 + 0.908314i \(0.362630\pi\)
\(72\) 0 0
\(73\) 70.5000 + 40.7032i 0.965753 + 0.557578i 0.897939 0.440120i \(-0.145064\pi\)
0.0678144 + 0.997698i \(0.478397\pi\)
\(74\) 33.2340 57.5630i 0.449108 0.777878i
\(75\) 0 0
\(76\) 58.8897i 0.774865i
\(77\) 0 0
\(78\) 0 0
\(79\) −20.5000 35.5070i −0.259494 0.449456i 0.706613 0.707601i \(-0.250222\pi\)
−0.966106 + 0.258144i \(0.916889\pi\)
\(80\) 16.9706 + 9.79796i 0.212132 + 0.122474i
\(81\) 0 0
\(82\) −84.0000 + 48.4974i −1.02439 + 0.591432i
\(83\) 4.89898i 0.0590238i 0.999564 + 0.0295119i \(0.00939530\pi\)
−0.999564 + 0.0295119i \(0.990605\pi\)
\(84\) 0 0
\(85\) −24.0000 −0.282353
\(86\) −21.9203 37.9671i −0.254887 0.441478i
\(87\) 0 0
\(88\) 24.0000 41.5692i 0.272727 0.472377i
\(89\) −50.9117 + 29.3939i −0.572041 + 0.330268i −0.757964 0.652296i \(-0.773806\pi\)
0.185923 + 0.982564i \(0.440473\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −16.9706 −0.184463
\(93\) 0 0
\(94\) −102.000 58.8897i −1.08511 0.626486i
\(95\) 72.1249 124.924i 0.759209 1.31499i
\(96\) 0 0
\(97\) 41.5692i 0.428549i −0.976774 0.214274i \(-0.931261\pi\)
0.976774 0.214274i \(-0.0687387\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −1.00000 1.73205i −0.0100000 0.0173205i
\(101\) 152.735 + 88.1816i 1.51223 + 0.873085i 0.999898 + 0.0142971i \(0.00455107\pi\)
0.512331 + 0.858788i \(0.328782\pi\)
\(102\) 0 0
\(103\) 25.5000 14.7224i 0.247573 0.142936i −0.371080 0.928601i \(-0.621012\pi\)
0.618652 + 0.785665i \(0.287679\pi\)
\(104\) 4.89898i 0.0471056i
\(105\) 0 0
\(106\) −108.000 −1.01887
\(107\) 72.1249 + 124.924i 0.674064 + 1.16751i 0.976741 + 0.214421i \(0.0687863\pi\)
−0.302677 + 0.953093i \(0.597880\pi\)
\(108\) 0 0
\(109\) −84.5000 + 146.358i −0.775229 + 1.34274i 0.159436 + 0.987208i \(0.449032\pi\)
−0.934665 + 0.355528i \(0.884301\pi\)
\(110\) 101.823 58.7878i 0.925667 0.534434i
\(111\) 0 0
\(112\) 0 0
\(113\) −59.3970 −0.525637 −0.262818 0.964845i \(-0.584652\pi\)
−0.262818 + 0.964845i \(0.584652\pi\)
\(114\) 0 0
\(115\) −36.0000 20.7846i −0.313043 0.180736i
\(116\) 33.9411 58.7878i 0.292596 0.506791i
\(117\) 0 0
\(118\) 117.779i 0.998131i
\(119\) 0 0
\(120\) 0 0
\(121\) −83.5000 144.626i −0.690083 1.19526i
\(122\) −101.823 58.7878i −0.834618 0.481867i
\(123\) 0 0
\(124\) −21.0000 + 12.1244i −0.169355 + 0.0977771i
\(125\) 127.373i 1.01899i
\(126\) 0 0
\(127\) 209.000 1.64567 0.822835 0.568281i \(-0.192391\pi\)
0.822835 + 0.568281i \(0.192391\pi\)
\(128\) −5.65685 9.79796i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) −6.00000 + 10.3923i −0.0461538 + 0.0799408i
\(131\) 50.9117 29.3939i 0.388639 0.224381i −0.292931 0.956133i \(-0.594631\pi\)
0.681570 + 0.731753i \(0.261297\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −43.8406 −0.327169
\(135\) 0 0
\(136\) 12.0000 + 6.92820i 0.0882353 + 0.0509427i
\(137\) −76.3675 + 132.272i −0.557427 + 0.965492i 0.440283 + 0.897859i \(0.354878\pi\)
−0.997710 + 0.0676333i \(0.978455\pi\)
\(138\) 0 0
\(139\) 195.722i 1.40807i 0.710165 + 0.704035i \(0.248620\pi\)
−0.710165 + 0.704035i \(0.751380\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −42.0000 72.7461i −0.295775 0.512297i
\(143\) 25.4558 + 14.6969i 0.178013 + 0.102776i
\(144\) 0 0
\(145\) 144.000 83.1384i 0.993103 0.573369i
\(146\) 115.126i 0.788534i
\(147\) 0 0
\(148\) −94.0000 −0.635135
\(149\) −25.4558 44.0908i −0.170845 0.295912i 0.767871 0.640605i \(-0.221316\pi\)
−0.938715 + 0.344693i \(0.887983\pi\)
\(150\) 0 0
\(151\) −5.00000 + 8.66025i −0.0331126 + 0.0573527i −0.882107 0.471049i \(-0.843875\pi\)
0.848994 + 0.528402i \(0.177209\pi\)
\(152\) −72.1249 + 41.6413i −0.474506 + 0.273956i
\(153\) 0 0
\(154\) 0 0
\(155\) −59.3970 −0.383206
\(156\) 0 0
\(157\) −36.0000 20.7846i −0.229299 0.132386i 0.380949 0.924596i \(-0.375597\pi\)
−0.610249 + 0.792210i \(0.708931\pi\)
\(158\) −28.9914 + 50.2145i −0.183490 + 0.317814i
\(159\) 0 0
\(160\) 27.7128i 0.173205i
\(161\) 0 0
\(162\) 0 0
\(163\) −43.0000 74.4782i −0.263804 0.456921i 0.703446 0.710749i \(-0.251644\pi\)
−0.967250 + 0.253828i \(0.918310\pi\)
\(164\) 118.794 + 68.5857i 0.724353 + 0.418206i
\(165\) 0 0
\(166\) 6.00000 3.46410i 0.0361446 0.0208681i
\(167\) 181.262i 1.08540i −0.839926 0.542701i \(-0.817402\pi\)
0.839926 0.542701i \(-0.182598\pi\)
\(168\) 0 0
\(169\) 166.000 0.982249
\(170\) 16.9706 + 29.3939i 0.0998268 + 0.172905i
\(171\) 0 0
\(172\) −31.0000 + 53.6936i −0.180233 + 0.312172i
\(173\) 38.1838 22.0454i 0.220715 0.127430i −0.385566 0.922680i \(-0.625994\pi\)
0.606281 + 0.795250i \(0.292660\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −67.8823 −0.385695
\(177\) 0 0
\(178\) 72.0000 + 41.5692i 0.404494 + 0.233535i
\(179\) 4.24264 7.34847i 0.0237019 0.0410529i −0.853931 0.520386i \(-0.825788\pi\)
0.877633 + 0.479333i \(0.159121\pi\)
\(180\) 0 0
\(181\) 43.3013i 0.239234i −0.992820 0.119617i \(-0.961833\pi\)
0.992820 0.119617i \(-0.0381666\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 12.0000 + 20.7846i 0.0652174 + 0.112960i
\(185\) −199.404 115.126i −1.07786 0.622303i
\(186\) 0 0
\(187\) 72.0000 41.5692i 0.385027 0.222295i
\(188\) 166.565i 0.885986i
\(189\) 0 0
\(190\) −204.000 −1.07368
\(191\) −38.1838 66.1362i −0.199915 0.346263i 0.748586 0.663038i \(-0.230733\pi\)
−0.948501 + 0.316775i \(0.897400\pi\)
\(192\) 0 0
\(193\) 143.500 248.549i 0.743523 1.28782i −0.207358 0.978265i \(-0.566487\pi\)
0.950882 0.309555i \(-0.100180\pi\)
\(194\) −50.9117 + 29.3939i −0.262431 + 0.151515i
\(195\) 0 0
\(196\) 0 0
\(197\) 127.279 0.646087 0.323044 0.946384i \(-0.395294\pi\)
0.323044 + 0.946384i \(0.395294\pi\)
\(198\) 0 0
\(199\) −180.000 103.923i −0.904523 0.522226i −0.0258579 0.999666i \(-0.508232\pi\)
−0.878665 + 0.477439i \(0.841565\pi\)
\(200\) −1.41421 + 2.44949i −0.00707107 + 0.0122474i
\(201\) 0 0
\(202\) 249.415i 1.23473i
\(203\) 0 0
\(204\) 0 0
\(205\) 168.000 + 290.985i 0.819512 + 1.41944i
\(206\) −36.0624 20.8207i −0.175060 0.101071i
\(207\) 0 0
\(208\) 6.00000 3.46410i 0.0288462 0.0166543i
\(209\) 499.696i 2.39089i
\(210\) 0 0
\(211\) 82.0000 0.388626 0.194313 0.980940i \(-0.437752\pi\)
0.194313 + 0.980940i \(0.437752\pi\)
\(212\) 76.3675 + 132.272i 0.360224 + 0.623927i
\(213\) 0 0
\(214\) 102.000 176.669i 0.476636 0.825557i
\(215\) −131.522 + 75.9342i −0.611730 + 0.353182i
\(216\) 0 0
\(217\) 0 0
\(218\) 239.002 1.09634
\(219\) 0 0
\(220\) −144.000 83.1384i −0.654545 0.377902i
\(221\) −4.24264 + 7.34847i −0.0191975 + 0.0332510i
\(222\) 0 0
\(223\) 41.5692i 0.186409i 0.995647 + 0.0932045i \(0.0297110\pi\)
−0.995647 + 0.0932045i \(0.970289\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 42.0000 + 72.7461i 0.185841 + 0.321886i
\(227\) −330.926 191.060i −1.45782 0.841675i −0.458920 0.888478i \(-0.651763\pi\)
−0.998904 + 0.0468029i \(0.985097\pi\)
\(228\) 0 0
\(229\) 70.5000 40.7032i 0.307860 0.177743i −0.338108 0.941107i \(-0.609787\pi\)
0.645969 + 0.763364i \(0.276454\pi\)
\(230\) 58.7878i 0.255599i
\(231\) 0 0
\(232\) −96.0000 −0.413793
\(233\) −114.551 198.409i −0.491636 0.851539i 0.508317 0.861170i \(-0.330268\pi\)
−0.999954 + 0.00963059i \(0.996934\pi\)
\(234\) 0 0
\(235\) −204.000 + 353.338i −0.868085 + 1.50357i
\(236\) −144.250 + 83.2827i −0.611228 + 0.352893i
\(237\) 0 0
\(238\) 0 0
\(239\) −67.8823 −0.284026 −0.142013 0.989865i \(-0.545358\pi\)
−0.142013 + 0.989865i \(0.545358\pi\)
\(240\) 0 0
\(241\) 396.000 + 228.631i 1.64315 + 0.948675i 0.979703 + 0.200455i \(0.0642421\pi\)
0.663451 + 0.748220i \(0.269091\pi\)
\(242\) −118.087 + 204.532i −0.487962 + 0.845175i
\(243\) 0 0
\(244\) 166.277i 0.681463i
\(245\) 0 0
\(246\) 0 0
\(247\) −25.5000 44.1673i −0.103239 0.178815i
\(248\) 29.6985 + 17.1464i 0.119752 + 0.0691388i
\(249\) 0 0
\(250\) −156.000 + 90.0666i −0.624000 + 0.360267i
\(251\) 347.828i 1.38577i 0.721050 + 0.692884i \(0.243660\pi\)
−0.721050 + 0.692884i \(0.756340\pi\)
\(252\) 0 0
\(253\) 144.000 0.569170
\(254\) −147.785 255.972i −0.581832 1.00776i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) −140.007 + 80.8332i −0.544775 + 0.314526i −0.747012 0.664811i \(-0.768512\pi\)
0.202237 + 0.979337i \(0.435179\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 16.9706 0.0652714
\(261\) 0 0
\(262\) −72.0000 41.5692i −0.274809 0.158661i
\(263\) −127.279 + 220.454i −0.483951 + 0.838228i −0.999830 0.0184332i \(-0.994132\pi\)
0.515879 + 0.856662i \(0.327466\pi\)
\(264\) 0 0
\(265\) 374.123i 1.41178i
\(266\) 0 0
\(267\) 0 0
\(268\) 31.0000 + 53.6936i 0.115672 + 0.200349i
\(269\) −16.9706 9.79796i −0.0630876 0.0364236i 0.468124 0.883663i \(-0.344930\pi\)
−0.531212 + 0.847239i \(0.678263\pi\)
\(270\) 0 0
\(271\) −36.0000 + 20.7846i −0.132841 + 0.0766960i −0.564948 0.825127i \(-0.691104\pi\)
0.432107 + 0.901823i \(0.357770\pi\)
\(272\) 19.5959i 0.0720438i
\(273\) 0 0
\(274\) 216.000 0.788321
\(275\) 8.48528 + 14.6969i 0.0308556 + 0.0534434i
\(276\) 0 0
\(277\) 168.500 291.851i 0.608303 1.05361i −0.383217 0.923658i \(-0.625184\pi\)
0.991520 0.129954i \(-0.0414829\pi\)
\(278\) 239.709 138.396i 0.862263 0.497828i
\(279\) 0 0
\(280\) 0 0
\(281\) 246.073 0.875705 0.437853 0.899047i \(-0.355739\pi\)
0.437853 + 0.899047i \(0.355739\pi\)
\(282\) 0 0
\(283\) 169.500 + 97.8609i 0.598940 + 0.345798i 0.768624 0.639700i \(-0.220942\pi\)
−0.169685 + 0.985498i \(0.554275\pi\)
\(284\) −59.3970 + 102.879i −0.209144 + 0.362248i
\(285\) 0 0
\(286\) 41.5692i 0.145347i
\(287\) 0 0
\(288\) 0 0
\(289\) −132.500 229.497i −0.458478 0.794106i
\(290\) −203.647 117.576i −0.702230 0.405433i
\(291\) 0 0
\(292\) −141.000 + 81.4064i −0.482877 + 0.278789i
\(293\) 97.9796i 0.334401i −0.985923 0.167201i \(-0.946527\pi\)
0.985923 0.167201i \(-0.0534728\pi\)
\(294\) 0 0
\(295\) −408.000 −1.38305
\(296\) 66.4680 + 115.126i 0.224554 + 0.388939i
\(297\) 0 0
\(298\) −36.0000 + 62.3538i −0.120805 + 0.209241i
\(299\) −12.7279 + 7.34847i −0.0425683 + 0.0245768i
\(300\) 0 0
\(301\) 0 0
\(302\) 14.1421 0.0468283
\(303\) 0 0
\(304\) 102.000 + 58.8897i 0.335526 + 0.193716i
\(305\) −203.647 + 352.727i −0.667694 + 1.15648i
\(306\) 0 0
\(307\) 71.0141i 0.231316i 0.993289 + 0.115658i \(0.0368977\pi\)
−0.993289 + 0.115658i \(0.963102\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 42.0000 + 72.7461i 0.135484 + 0.234665i
\(311\) −186.676 107.778i −0.600245 0.346552i 0.168893 0.985634i \(-0.445981\pi\)
−0.769138 + 0.639083i \(0.779314\pi\)
\(312\) 0 0
\(313\) −253.500 + 146.358i −0.809904 + 0.467598i −0.846923 0.531716i \(-0.821547\pi\)
0.0370184 + 0.999315i \(0.488214\pi\)
\(314\) 58.7878i 0.187222i
\(315\) 0 0
\(316\) 82.0000 0.259494
\(317\) 118.794 + 205.757i 0.374744 + 0.649076i 0.990289 0.139026i \(-0.0443972\pi\)
−0.615544 + 0.788102i \(0.711064\pi\)
\(318\) 0 0
\(319\) −288.000 + 498.831i −0.902821 + 1.56373i
\(320\) −33.9411 + 19.5959i −0.106066 + 0.0612372i
\(321\) 0 0
\(322\) 0 0
\(323\) −144.250 −0.446594
\(324\) 0 0
\(325\) −1.50000 0.866025i −0.00461538 0.00266469i
\(326\) −60.8112 + 105.328i −0.186537 + 0.323092i
\(327\) 0 0
\(328\) 193.990i 0.591432i
\(329\) 0 0
\(330\) 0 0
\(331\) 92.5000 + 160.215i 0.279456 + 0.484032i 0.971250 0.238063i \(-0.0765125\pi\)
−0.691794 + 0.722095i \(0.743179\pi\)
\(332\) −8.48528 4.89898i −0.0255581 0.0147560i
\(333\) 0 0
\(334\) −222.000 + 128.172i −0.664671 + 0.383748i
\(335\) 151.868i 0.453338i
\(336\) 0 0
\(337\) −359.000 −1.06528 −0.532641 0.846341i \(-0.678800\pi\)
−0.532641 + 0.846341i \(0.678800\pi\)
\(338\) −117.380 203.308i −0.347277 0.601502i
\(339\) 0 0
\(340\) 24.0000 41.5692i 0.0705882 0.122262i
\(341\) 178.191 102.879i 0.522554 0.301697i
\(342\) 0 0
\(343\) 0 0
\(344\) 87.6812 0.254887
\(345\) 0 0
\(346\) −54.0000 31.1769i −0.156069 0.0901067i
\(347\) −233.345 + 404.166i −0.672465 + 1.16474i 0.304738 + 0.952436i \(0.401431\pi\)
−0.977203 + 0.212307i \(0.931902\pi\)
\(348\) 0 0
\(349\) 581.969i 1.66753i −0.552117 0.833767i \(-0.686180\pi\)
0.552117 0.833767i \(-0.313820\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 48.0000 + 83.1384i 0.136364 + 0.236189i
\(353\) −250.316 144.520i −0.709110 0.409405i 0.101621 0.994823i \(-0.467597\pi\)
−0.810731 + 0.585418i \(0.800930\pi\)
\(354\) 0 0
\(355\) −252.000 + 145.492i −0.709859 + 0.409837i
\(356\) 117.576i 0.330268i
\(357\) 0 0
\(358\) −12.0000 −0.0335196
\(359\) −169.706 293.939i −0.472718 0.818771i 0.526795 0.849992i \(-0.323394\pi\)
−0.999512 + 0.0312215i \(0.990060\pi\)
\(360\) 0 0
\(361\) 253.000 438.209i 0.700831 1.21387i
\(362\) −53.0330 + 30.6186i −0.146500 + 0.0845818i
\(363\) 0 0
\(364\) 0 0
\(365\) −398.808 −1.09263
\(366\) 0 0
\(367\) −133.500 77.0763i −0.363760 0.210017i 0.306969 0.951720i \(-0.400685\pi\)
−0.670729 + 0.741703i \(0.734019\pi\)
\(368\) 16.9706 29.3939i 0.0461157 0.0798747i
\(369\) 0 0
\(370\) 325.626i 0.880069i
\(371\) 0 0
\(372\) 0 0
\(373\) 144.500 + 250.281i 0.387399 + 0.670996i 0.992099 0.125458i \(-0.0400401\pi\)
−0.604699 + 0.796454i \(0.706707\pi\)
\(374\) −101.823 58.7878i −0.272255 0.157187i
\(375\) 0 0
\(376\) 204.000 117.779i 0.542553 0.313243i
\(377\) 58.7878i 0.155936i
\(378\) 0 0
\(379\) 7.00000 0.0184697 0.00923483 0.999957i \(-0.497060\pi\)
0.00923483 + 0.999957i \(0.497060\pi\)
\(380\) 144.250 + 249.848i 0.379605 + 0.657495i
\(381\) 0 0
\(382\) −54.0000 + 93.5307i −0.141361 + 0.244845i
\(383\) −428.507 + 247.398i −1.11882 + 0.645949i −0.941099 0.338132i \(-0.890205\pi\)
−0.177718 + 0.984081i \(0.556871\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −405.879 −1.05150
\(387\) 0 0
\(388\) 72.0000 + 41.5692i 0.185567 + 0.107137i
\(389\) 114.551 198.409i 0.294476 0.510048i −0.680387 0.732853i \(-0.738188\pi\)
0.974863 + 0.222805i \(0.0715214\pi\)
\(390\) 0 0
\(391\) 41.5692i 0.106315i
\(392\) 0 0
\(393\) 0 0
\(394\) −90.0000 155.885i −0.228426 0.395646i
\(395\) 173.948 + 100.429i 0.440375 + 0.254251i
\(396\) 0 0
\(397\) −70.5000 + 40.7032i −0.177582 + 0.102527i −0.586156 0.810198i \(-0.699359\pi\)
0.408574 + 0.912725i \(0.366026\pi\)
\(398\) 293.939i 0.738540i
\(399\) 0 0
\(400\) 4.00000 0.0100000
\(401\) 46.6690 + 80.8332i 0.116382 + 0.201579i 0.918331 0.395813i \(-0.129537\pi\)
−0.801950 + 0.597392i \(0.796204\pi\)
\(402\) 0 0
\(403\) −10.5000 + 18.1865i −0.0260546 + 0.0451279i
\(404\) −305.470 + 176.363i −0.756114 + 0.436543i
\(405\) 0 0
\(406\) 0 0
\(407\) 797.616 1.95975
\(408\) 0 0
\(409\) 361.500 + 208.712i 0.883863 + 0.510299i 0.871930 0.489630i \(-0.162868\pi\)
0.0119329 + 0.999929i \(0.496202\pi\)
\(410\) 237.588 411.514i 0.579483 1.00369i
\(411\) 0 0
\(412\) 58.8897i 0.142936i
\(413\) 0 0
\(414\) 0 0
\(415\) −12.0000 20.7846i −0.0289157 0.0500834i
\(416\) −8.48528 4.89898i −0.0203973 0.0117764i
\(417\) 0 0
\(418\) 612.000 353.338i 1.46411 0.845307i
\(419\) 19.5959i 0.0467683i −0.999727 0.0233842i \(-0.992556\pi\)
0.999727 0.0233842i \(-0.00744408\pi\)
\(420\) 0 0
\(421\) 407.000 0.966746 0.483373 0.875415i \(-0.339412\pi\)
0.483373 + 0.875415i \(0.339412\pi\)
\(422\) −57.9828 100.429i −0.137400 0.237984i
\(423\) 0 0
\(424\) 108.000 187.061i 0.254717 0.441183i
\(425\) −4.24264 + 2.44949i −0.00998268 + 0.00576351i
\(426\) 0 0
\(427\) 0 0
\(428\) −288.500 −0.674064
\(429\) 0 0
\(430\) 186.000 + 107.387i 0.432558 + 0.249738i
\(431\) 80.6102 139.621i 0.187031 0.323946i −0.757228 0.653150i \(-0.773447\pi\)
0.944259 + 0.329204i \(0.106780\pi\)
\(432\) 0 0
\(433\) 168.009i 0.388011i 0.981000 + 0.194006i \(0.0621480\pi\)
−0.981000 + 0.194006i \(0.937852\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −169.000 292.717i −0.387615 0.671368i
\(437\) −216.375 124.924i −0.495137 0.285867i
\(438\) 0 0
\(439\) 468.000 270.200i 1.06606 0.615490i 0.138957 0.990298i \(-0.455625\pi\)
0.927102 + 0.374809i \(0.122292\pi\)
\(440\) 235.151i 0.534434i
\(441\) 0 0
\(442\) 12.0000 0.0271493
\(443\) −63.6396 110.227i −0.143656 0.248819i 0.785215 0.619224i \(-0.212553\pi\)
−0.928871 + 0.370404i \(0.879219\pi\)
\(444\) 0 0
\(445\) 144.000 249.415i 0.323596 0.560484i
\(446\) 50.9117 29.3939i 0.114152 0.0659056i
\(447\) 0 0
\(448\) 0 0
\(449\) 110.309 0.245676 0.122838 0.992427i \(-0.460800\pi\)
0.122838 + 0.992427i \(0.460800\pi\)
\(450\) 0 0
\(451\) −1008.00 581.969i −2.23503 1.29040i
\(452\) 59.3970 102.879i 0.131409 0.227607i
\(453\) 0 0
\(454\) 540.400i 1.19031i
\(455\) 0 0
\(456\) 0 0
\(457\) −12.5000 21.6506i −0.0273523 0.0473756i 0.852025 0.523501i \(-0.175374\pi\)
−0.879378 + 0.476125i \(0.842041\pi\)
\(458\) −99.7021 57.5630i −0.217690 0.125683i
\(459\) 0 0
\(460\) 72.0000 41.5692i 0.156522 0.0903679i
\(461\) 78.3837i 0.170030i 0.996380 + 0.0850148i \(0.0270938\pi\)
−0.996380 + 0.0850148i \(0.972906\pi\)
\(462\) 0 0
\(463\) 521.000 1.12527 0.562635 0.826705i \(-0.309788\pi\)
0.562635 + 0.826705i \(0.309788\pi\)
\(464\) 67.8823 + 117.576i 0.146298 + 0.253395i
\(465\) 0 0
\(466\) −162.000 + 280.592i −0.347639 + 0.602129i
\(467\) 190.919 110.227i 0.408820 0.236032i −0.281463 0.959572i \(-0.590820\pi\)
0.690283 + 0.723540i \(0.257486\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 576.999 1.22766
\(471\) 0 0
\(472\) 204.000 + 117.779i 0.432203 + 0.249533i
\(473\) 263.044 455.605i 0.556118 0.963224i
\(474\) 0 0
\(475\) 29.4449i 0.0619892i
\(476\) 0 0
\(477\) 0 0
\(478\) 48.0000 + 83.1384i 0.100418 + 0.173930i
\(479\) 759.433 + 438.459i 1.58545 + 0.915363i 0.994043 + 0.108993i \(0.0347626\pi\)
0.591412 + 0.806370i \(0.298571\pi\)
\(480\) 0 0
\(481\) −70.5000 + 40.7032i −0.146570 + 0.0846220i
\(482\) 646.665i 1.34163i
\(483\) 0 0
\(484\) 334.000 0.690083
\(485\) 101.823 + 176.363i 0.209945 + 0.363636i
\(486\) 0 0
\(487\) −63.5000 + 109.985i −0.130390 + 0.225842i −0.923827 0.382810i \(-0.874956\pi\)
0.793437 + 0.608653i \(0.208290\pi\)
\(488\) 203.647 117.576i 0.417309 0.240933i
\(489\) 0 0
\(490\) 0 0
\(491\) −627.911 −1.27884 −0.639420 0.768857i \(-0.720826\pi\)
−0.639420 + 0.768857i \(0.720826\pi\)
\(492\) 0 0
\(493\) −144.000 83.1384i −0.292089 0.168638i
\(494\) −36.0624 + 62.4620i −0.0730009 + 0.126441i
\(495\) 0 0
\(496\) 48.4974i 0.0977771i
\(497\) 0 0
\(498\) 0 0
\(499\) 116.500 + 201.784i 0.233467 + 0.404377i 0.958826 0.283994i \(-0.0916596\pi\)
−0.725359 + 0.688371i \(0.758326\pi\)
\(500\) 220.617 + 127.373i 0.441235 + 0.254747i
\(501\) 0 0
\(502\) 426.000 245.951i 0.848606 0.489943i
\(503\) 538.888i 1.07135i −0.844425 0.535674i \(-0.820058\pi\)
0.844425 0.535674i \(-0.179942\pi\)
\(504\) 0 0
\(505\) −864.000 −1.71089
\(506\) −101.823 176.363i −0.201232 0.348544i
\(507\) 0 0
\(508\) −209.000 + 361.999i −0.411417 + 0.712596i
\(509\) −275.772 + 159.217i −0.541791 + 0.312803i −0.745805 0.666165i \(-0.767935\pi\)
0.204013 + 0.978968i \(0.434601\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 22.6274 0.0441942
\(513\) 0 0
\(514\) 198.000 + 114.315i 0.385214 + 0.222403i
\(515\) −72.1249 + 124.924i −0.140048 + 0.242571i
\(516\) 0 0
\(517\) 1413.35i 2.73376i
\(518\) 0 0
\(519\) 0 0
\(520\) −12.0000 20.7846i −0.0230769 0.0399704i
\(521\) 492.146 + 284.141i 0.944619 + 0.545376i 0.891405 0.453207i \(-0.149720\pi\)
0.0532135 + 0.998583i \(0.483054\pi\)
\(522\) 0 0
\(523\) −457.500 + 264.138i −0.874761 + 0.505043i −0.868927 0.494939i \(-0.835190\pi\)
−0.00583355 + 0.999983i \(0.501857\pi\)
\(524\) 117.576i 0.224381i
\(525\) 0 0
\(526\) 360.000 0.684411
\(527\) 29.6985 + 51.4393i 0.0563539 + 0.0976078i
\(528\) 0 0
\(529\) 228.500 395.774i 0.431947 0.748154i
\(530\) 458.205 264.545i 0.864538 0.499141i
\(531\) 0 0
\(532\) 0 0
\(533\) 118.794 0.222878
\(534\) 0 0
\(535\) −612.000 353.338i −1.14393 0.660446i
\(536\) 43.8406 75.9342i 0.0817922 0.141668i
\(537\) 0 0
\(538\) 27.7128i 0.0515108i
\(539\) 0 0
\(540\) 0 0
\(541\) −167.500 290.119i −0.309612 0.536263i 0.668666 0.743563i \(-0.266866\pi\)
−0.978277 + 0.207300i \(0.933532\pi\)
\(542\) 50.9117 + 29.3939i 0.0939330 + 0.0542322i
\(543\) 0 0
\(544\) −24.0000 + 13.8564i −0.0441176 + 0.0254713i
\(545\) 827.928i 1.51913i
\(546\) 0 0
\(547\) −658.000 −1.20293 −0.601463 0.798901i \(-0.705415\pi\)
−0.601463 + 0.798901i \(0.705415\pi\)
\(548\) −152.735 264.545i −0.278714 0.482746i
\(549\) 0 0
\(550\) 12.0000 20.7846i 0.0218182 0.0377902i
\(551\) 865.499 499.696i 1.57078 0.906889i
\(552\) 0 0
\(553\) 0 0
\(554\) −476.590 −0.860271
\(555\) 0 0
\(556\) −339.000 195.722i −0.609712 0.352018i
\(557\) 135.765 235.151i 0.243742 0.422174i −0.718035 0.696007i \(-0.754958\pi\)
0.961777 + 0.273833i \(0.0882915\pi\)
\(558\) 0 0
\(559\) 53.6936i 0.0960529i
\(560\) 0 0
\(561\) 0 0
\(562\) −174.000 301.377i −0.309609 0.536258i
\(563\) 12.7279 + 7.34847i 0.0226073 + 0.0130523i 0.511261 0.859425i \(-0.329179\pi\)
−0.488654 + 0.872478i \(0.662512\pi\)
\(564\) 0 0
\(565\) 252.000 145.492i 0.446018 0.257508i
\(566\) 276.792i 0.489032i
\(567\) 0 0
\(568\) 168.000 0.295775
\(569\) 424.264 + 734.847i 0.745631 + 1.29147i 0.949899 + 0.312556i \(0.101185\pi\)
−0.204268 + 0.978915i \(0.565481\pi\)
\(570\) 0 0
\(571\) −224.500 + 388.845i −0.393170 + 0.680990i −0.992866 0.119238i \(-0.961955\pi\)
0.599696 + 0.800228i \(0.295288\pi\)
\(572\) −50.9117 + 29.3939i −0.0890064 + 0.0513879i
\(573\) 0 0
\(574\) 0 0
\(575\) −8.48528 −0.0147570
\(576\) 0 0
\(577\) 253.500 + 146.358i 0.439341 + 0.253654i 0.703318 0.710875i \(-0.251701\pi\)
−0.263977 + 0.964529i \(0.585034\pi\)
\(578\) −187.383 + 324.557i −0.324193 + 0.561518i
\(579\) 0 0
\(580\) 332.554i 0.573369i
\(581\) 0 0
\(582\) 0 0
\(583\) −648.000 1122.37i −1.11149 1.92516i
\(584\) 199.404 + 115.126i 0.341445 + 0.197134i
\(585\) 0 0
\(586\) −120.000 + 69.2820i −0.204778 + 0.118229i
\(587\) 529.090i 0.901345i 0.892689 + 0.450673i \(0.148816\pi\)
−0.892689 + 0.450673i \(0.851184\pi\)
\(588\) 0 0
\(589\) −357.000 −0.606112
\(590\) 288.500 + 499.696i 0.488982 + 0.846942i
\(591\) 0 0
\(592\) 94.0000 162.813i 0.158784 0.275022i
\(593\) 907.925 524.191i 1.53107 0.883964i 0.531758 0.846896i \(-0.321531\pi\)
0.999313 0.0370681i \(-0.0118018\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 101.823 0.170845
\(597\) 0 0
\(598\) 18.0000 + 10.3923i 0.0301003 + 0.0173784i
\(599\) 322.441 558.484i 0.538298 0.932360i −0.460698 0.887557i \(-0.652401\pi\)
0.998996 0.0448028i \(-0.0142660\pi\)
\(600\) 0 0
\(601\) 458.993i 0.763716i −0.924221 0.381858i \(-0.875284\pi\)
0.924221 0.381858i \(-0.124716\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −10.0000 17.3205i −0.0165563 0.0286763i
\(605\) 708.521 + 409.065i 1.17111 + 0.676140i
\(606\) 0 0
\(607\) −910.500 + 525.677i −1.50000 + 0.866025i −0.500000 + 0.866025i \(0.666667\pi\)
−1.00000 \(\pi\)
\(608\) 166.565i 0.273956i
\(609\) 0 0
\(610\) 576.000 0.944262
\(611\) 72.1249 + 124.924i 0.118044 + 0.204458i
\(612\) 0 0
\(613\) −145.000 + 251.147i −0.236542 + 0.409702i −0.959720 0.280960i \(-0.909347\pi\)
0.723178 + 0.690662i \(0.242681\pi\)
\(614\) 86.9741 50.2145i 0.141652 0.0817826i
\(615\) 0 0
\(616\) 0 0
\(617\) −729.734 −1.18271 −0.591357 0.806410i \(-0.701407\pi\)
−0.591357 + 0.806410i \(0.701407\pi\)
\(618\) 0 0
\(619\) 709.500 + 409.630i 1.14620 + 0.661761i 0.947959 0.318392i \(-0.103143\pi\)
0.198244 + 0.980153i \(0.436476\pi\)
\(620\) 59.3970 102.879i 0.0958016 0.165933i
\(621\) 0 0
\(622\) 304.841i 0.490098i
\(623\) 0 0
\(624\) 0 0
\(625\) 299.500 + 518.749i 0.479200 + 0.829999i
\(626\) 358.503 + 206.982i 0.572689 + 0.330642i
\(627\) 0 0
\(628\) 72.0000 41.5692i 0.114650 0.0661930i
\(629\) 230.252i 0.366060i
\(630\) 0 0
\(631\) −58.0000 −0.0919176 −0.0459588 0.998943i \(-0.514634\pi\)
−0.0459588 + 0.998943i \(0.514634\pi\)
\(632\) −57.9828 100.429i −0.0917449 0.158907i
\(633\) 0 0
\(634\) 168.000 290.985i 0.264984 0.458966i
\(635\) −886.712 + 511.943i −1.39640 + 0.806210i
\(636\) 0 0
\(637\) 0 0
\(638\) 814.587 1.27678
\(639\) 0 0
\(640\) 48.0000 + 27.7128i 0.0750000 + 0.0433013i
\(641\) 479.418 830.377i 0.747923 1.29544i −0.200894 0.979613i \(-0.564385\pi\)
0.948817 0.315827i \(-0.102282\pi\)
\(642\) 0 0
\(643\) 760.370i 1.18254i 0.806475 + 0.591268i \(0.201372\pi\)
−0.806475 + 0.591268i \(0.798628\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 102.000 + 176.669i 0.157895 + 0.273482i
\(647\) −305.470 176.363i −0.472133 0.272586i 0.244999 0.969523i \(-0.421212\pi\)
−0.717132 + 0.696937i \(0.754546\pi\)
\(648\) 0 0
\(649\) 1224.00 706.677i 1.88598 1.08887i
\(650\) 2.44949i 0.00376845i
\(651\) 0 0
\(652\) 172.000 0.263804
\(653\) −220.617 382.120i −0.337852 0.585177i 0.646177 0.763188i \(-0.276367\pi\)
−0.984028 + 0.178011i \(0.943034\pi\)
\(654\) 0 0
\(655\) −144.000 + 249.415i −0.219847 + 0.380787i
\(656\) −237.588 + 137.171i −0.362177 + 0.209103i
\(657\) 0 0
\(658\) 0 0
\(659\) −161.220 −0.244644 −0.122322 0.992490i \(-0.539034\pi\)
−0.122322 + 0.992490i \(0.539034\pi\)
\(660\) 0 0
\(661\) 721.500 + 416.558i 1.09153 + 0.630194i 0.933983 0.357318i \(-0.116309\pi\)
0.157545 + 0.987512i \(0.449642\pi\)
\(662\) 130.815 226.578i 0.197605 0.342263i
\(663\) 0 0
\(664\) 13.8564i 0.0208681i
\(665\) 0 0
\(666\) 0 0
\(667\) −144.000 249.415i −0.215892 0.373936i
\(668\) 313.955 + 181.262i 0.469993 + 0.271351i
\(669\) 0 0
\(670\) 186.000 107.387i 0.277612 0.160279i
\(671\) 1410.91i 2.10269i
\(672\) 0 0
\(673\) −263.000 −0.390788 −0.195394 0.980725i \(-0.562598\pi\)
−0.195394 + 0.980725i \(0.562598\pi\)
\(674\) 253.851 + 439.683i 0.376634 + 0.652349i
\(675\) 0 0
\(676\) −166.000 + 287.520i −0.245562 + 0.425326i
\(677\) 432.749 249.848i 0.639216 0.369052i −0.145096 0.989418i \(-0.546349\pi\)
0.784313 + 0.620366i \(0.213016\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −67.8823 −0.0998268
\(681\) 0 0
\(682\) −252.000 145.492i −0.369501 0.213332i
\(683\) 479.418 830.377i 0.701930 1.21578i −0.265858 0.964012i \(-0.585655\pi\)
0.967788 0.251767i \(-0.0810115\pi\)
\(684\) 0 0
\(685\) 748.246i 1.09233i
\(686\) 0 0
\(687\) 0 0
\(688\) −62.0000 107.387i −0.0901163 0.156086i
\(689\) 114.551 + 66.1362i 0.166257 + 0.0959887i
\(690\) 0 0
\(691\) −1069.50 + 617.476i −1.54776 + 0.893598i −0.549444 + 0.835530i \(0.685161\pi\)
−0.998313 + 0.0580674i \(0.981506\pi\)
\(692\) 88.1816i 0.127430i
\(693\) 0 0
\(694\) 660.000 0.951009
\(695\) −479.418 830.377i −0.689811 1.19479i
\(696\) 0 0
\(697\) 168.000 290.985i 0.241033 0.417481i
\(698\) −712.764 + 411.514i −1.02115 + 0.589562i
\(699\) 0 0
\(700\) 0 0
\(701\) 975.807 1.39202 0.696011 0.718031i \(-0.254956\pi\)
0.696011 + 0.718031i \(0.254956\pi\)
\(702\) 0 0
\(703\) −1198.50 691.954i −1.70484 0.984288i
\(704\) 67.8823 117.576i 0.0964237 0.167011i
\(705\) 0 0
\(706\) 408.764i 0.578986i
\(707\) 0 0
\(708\) 0 0
\(709\) 553.000 + 957.824i 0.779972 + 1.35095i 0.931957 + 0.362568i \(0.118100\pi\)
−0.151986 + 0.988383i \(0.548567\pi\)
\(710\) 356.382 + 205.757i 0.501946 + 0.289799i
\(711\) 0 0
\(712\) −144.000 + 83.1384i −0.202247 + 0.116767i
\(713\) 102.879i 0.144290i
\(714\) 0 0
\(715\) −144.000 −0.201399
\(716\) 8.48528 + 14.6969i 0.0118510 + 0.0205265i
\(717\) 0 0
\(718\) −240.000 + 415.692i −0.334262 + 0.578958i
\(719\) −593.970 + 342.929i −0.826105 + 0.476952i −0.852517 0.522699i \(-0.824925\pi\)
0.0264120 + 0.999651i \(0.491592\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −715.592 −0.991125
\(723\) 0 0
\(724\) 75.0000 + 43.3013i 0.103591 + 0.0598084i
\(725\) 16.9706 29.3939i 0.0234077 0.0405433i
\(726\) 0 0
\(727\) 427.817i 0.588468i 0.955733 + 0.294234i \(0.0950646\pi\)
−0.955733 + 0.294234i \(0.904935\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 282.000 + 488.438i 0.386301 + 0.669094i
\(731\) 131.522 + 75.9342i 0.179920 + 0.103877i
\(732\) 0 0
\(733\) −34.5000 + 19.9186i −0.0470668 + 0.0271741i −0.523349 0.852119i \(-0.675318\pi\)
0.476282 + 0.879293i \(0.341984\pi\)
\(734\) 218.005i 0.297009i
\(735\) 0 0
\(736\) −48.0000 −0.0652174
\(737\) −263.044 455.605i −0.356911 0.618189i
\(738\) 0 0
\(739\) 243.500 421.754i 0.329499 0.570710i −0.652913 0.757433i \(-0.726453\pi\)
0.982413 + 0.186723i \(0.0597867\pi\)
\(740\) 398.808 230.252i 0.538930 0.311151i
\(741\) 0 0
\(742\) 0 0
\(743\) −509.117 −0.685218 −0.342609 0.939478i \(-0.611311\pi\)
−0.342609 + 0.939478i \(0.611311\pi\)
\(744\) 0 0
\(745\) 216.000 + 124.708i 0.289933 + 0.167393i
\(746\) 204.354 353.951i 0.273933 0.474466i
\(747\) 0 0
\(748\) 166.277i 0.222295i
\(749\) 0 0
\(750\) 0 0
\(751\) 272.500 + 471.984i 0.362850 + 0.628474i 0.988429 0.151687i \(-0.0484706\pi\)
−0.625579 + 0.780161i \(0.715137\pi\)
\(752\) −288.500 166.565i −0.383643 0.221496i
\(753\) 0 0
\(754\) −72.0000 + 41.5692i −0.0954907 + 0.0551316i
\(755\) 48.9898i 0.0648871i
\(756\) 0 0
\(757\) −770.000 −1.01717 −0.508587 0.861011i \(-0.669832\pi\)
−0.508587 + 0.861011i \(0.669832\pi\)
\(758\) −4.94975 8.57321i −0.00653001 0.0113103i
\(759\) 0 0
\(760\) 204.000 353.338i 0.268421 0.464919i
\(761\) −148.492 + 85.7321i −0.195128 + 0.112657i −0.594381 0.804184i \(-0.702603\pi\)
0.399253 + 0.916841i \(0.369270\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 152.735 0.199915
\(765\) 0 0
\(766\) 606.000 + 349.874i 0.791123 + 0.456755i
\(767\) −72.1249 + 124.924i −0.0940351 + 0.162874i
\(768\) 0 0
\(769\) 704.945i 0.916703i −0.888771 0.458352i \(-0.848440\pi\)
0.888771 0.458352i \(-0.151560\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 287.000 + 497.099i 0.371762 + 0.643910i
\(773\) −797.616 460.504i −1.03185 0.595736i −0.114333 0.993443i \(-0.536473\pi\)
−0.917513 + 0.397706i \(0.869806\pi\)
\(774\) 0 0
\(775\) −10.5000 + 6.06218i −0.0135484 + 0.00782216i
\(776\) 117.576i 0.151515i
\(777\) 0 0
\(778\) −324.000 −0.416452
\(779\) 1009.75 + 1748.94i 1.29621 + 2.24510i
\(780\) 0 0
\(781\) 504.000 872.954i 0.645327 1.11774i
\(782\) 50.9117 29.3939i 0.0651045 0.0375881i
\(783\) 0 0
\(784\) 0 0
\(785\) 203.647 0.259423
\(786\) 0 0
\(787\) −396.000 228.631i −0.503177 0.290509i 0.226848 0.973930i \(-0.427158\pi\)
−0.730024 + 0.683421i \(0.760491\pi\)
\(788\) −127.279 + 220.454i −0.161522 + 0.279764i
\(789\) 0 0
\(790\) 284.056i 0.359565i
\(791\) 0 0
\(792\) 0