# Properties

 Label 882.3.n.b Level $882$ Weight $3$ Character orbit 882.n Analytic conductor $24.033$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$882 = 2 \cdot 3^{2} \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$3$$ Character orbit: $$[\chi]$$ $$=$$ 882.n (of order $$6$$, degree $$2$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$24.0327593166$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(\zeta_{6})$$ Coefficient field: $$\Q(\sqrt{2}, \sqrt{-3})$$ Defining polynomial: $$x^{4} + 2 x^{2} + 4$$ Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 14) Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2,\beta_3$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( \beta_{1} + \beta_{3} ) q^{2} + ( -2 - 2 \beta_{2} ) q^{4} + ( -2 + 2 \beta_{1} - \beta_{2} - 2 \beta_{3} ) q^{5} -2 \beta_{3} q^{8} +O(q^{10})$$ $$q + ( \beta_{1} + \beta_{3} ) q^{2} + ( -2 - 2 \beta_{2} ) q^{4} + ( -2 + 2 \beta_{1} - \beta_{2} - 2 \beta_{3} ) q^{5} -2 \beta_{3} q^{8} + ( -4 - \beta_{1} + 4 \beta_{2} - 2 \beta_{3} ) q^{10} + ( -9 - 3 \beta_{1} - 9 \beta_{2} ) q^{11} + ( 6 - 4 \beta_{1} + 12 \beta_{2} - 2 \beta_{3} ) q^{13} + 4 \beta_{2} q^{16} + ( -5 + 2 \beta_{1} + 5 \beta_{2} + 4 \beta_{3} ) q^{17} + ( -2 + \beta_{1} - \beta_{2} - \beta_{3} ) q^{19} + ( 2 - 8 \beta_{1} + 4 \beta_{2} - 4 \beta_{3} ) q^{20} + ( 6 - 9 \beta_{3} ) q^{22} + ( -9 \beta_{1} + 15 \beta_{2} - 9 \beta_{3} ) q^{23} + ( 2 - 12 \beta_{1} + 2 \beta_{2} ) q^{25} + ( 8 - 6 \beta_{1} + 4 \beta_{2} + 6 \beta_{3} ) q^{26} + ( -12 + 6 \beta_{3} ) q^{29} + ( 7 + 15 \beta_{1} - 7 \beta_{2} + 30 \beta_{3} ) q^{31} -4 \beta_{1} q^{32} + ( -4 - 10 \beta_{1} - 8 \beta_{2} - 5 \beta_{3} ) q^{34} + ( 24 \beta_{1} + 31 \beta_{2} + 24 \beta_{3} ) q^{37} + ( -2 - \beta_{1} + 2 \beta_{2} - 2 \beta_{3} ) q^{38} + ( 16 - 2 \beta_{1} + 8 \beta_{2} + 2 \beta_{3} ) q^{40} + ( 2 - 20 \beta_{1} + 4 \beta_{2} - 10 \beta_{3} ) q^{41} + ( -2 - 6 \beta_{3} ) q^{43} + ( 6 \beta_{1} + 18 \beta_{2} + 6 \beta_{3} ) q^{44} + ( 18 - 15 \beta_{1} + 18 \beta_{2} ) q^{46} + ( 58 - \beta_{1} + 29 \beta_{2} + \beta_{3} ) q^{47} + ( 24 + 2 \beta_{3} ) q^{50} + ( 12 + 4 \beta_{1} - 12 \beta_{2} + 8 \beta_{3} ) q^{52} + ( 39 - 12 \beta_{1} + 39 \beta_{2} ) q^{53} + ( -3 - 30 \beta_{1} - 6 \beta_{2} - 15 \beta_{3} ) q^{55} + ( -12 \beta_{1} - 12 \beta_{2} - 12 \beta_{3} ) q^{58} + ( -13 + 25 \beta_{1} + 13 \beta_{2} + 50 \beta_{3} ) q^{59} + ( 14 - 32 \beta_{1} + 7 \beta_{2} + 32 \beta_{3} ) q^{61} + ( -30 + 14 \beta_{1} - 60 \beta_{2} + 7 \beta_{3} ) q^{62} + 8 q^{64} + ( 42 \beta_{1} - 42 \beta_{2} + 42 \beta_{3} ) q^{65} + ( -29 - 45 \beta_{1} - 29 \beta_{2} ) q^{67} + ( 20 + 4 \beta_{1} + 10 \beta_{2} - 4 \beta_{3} ) q^{68} + ( 6 - 30 \beta_{3} ) q^{71} + ( -53 + 16 \beta_{1} + 53 \beta_{2} + 32 \beta_{3} ) q^{73} + ( -48 - 31 \beta_{1} - 48 \beta_{2} ) q^{74} + ( 2 - 4 \beta_{1} + 4 \beta_{2} - 2 \beta_{3} ) q^{76} + ( -15 \beta_{1} - 55 \beta_{2} - 15 \beta_{3} ) q^{79} + ( 4 + 8 \beta_{1} - 4 \beta_{2} + 16 \beta_{3} ) q^{80} + ( 40 - 2 \beta_{1} + 20 \beta_{2} + 2 \beta_{3} ) q^{82} + ( 68 - 8 \beta_{1} + 136 \beta_{2} - 4 \beta_{3} ) q^{83} + ( -9 + 24 \beta_{3} ) q^{85} + ( -2 \beta_{1} + 12 \beta_{2} - 2 \beta_{3} ) q^{86} + ( -12 - 18 \beta_{1} - 12 \beta_{2} ) q^{88} + ( -126 - 24 \beta_{1} - 63 \beta_{2} + 24 \beta_{3} ) q^{89} + ( 30 + 18 \beta_{3} ) q^{92} + ( 2 + 29 \beta_{1} - 2 \beta_{2} + 58 \beta_{3} ) q^{94} + ( 15 - 9 \beta_{1} + 15 \beta_{2} ) q^{95} + ( 22 - 52 \beta_{1} + 44 \beta_{2} - 26 \beta_{3} ) q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4q - 4q^{4} - 6q^{5} + O(q^{10})$$ $$4q - 4q^{4} - 6q^{5} - 24q^{10} - 18q^{11} - 8q^{16} - 30q^{17} - 6q^{19} + 24q^{22} - 30q^{23} + 4q^{25} + 24q^{26} - 48q^{29} + 42q^{31} - 62q^{37} - 12q^{38} + 48q^{40} - 8q^{43} - 36q^{44} + 36q^{46} + 174q^{47} + 96q^{50} + 72q^{52} + 78q^{53} + 24q^{58} - 78q^{59} + 42q^{61} + 32q^{64} + 84q^{65} - 58q^{67} + 60q^{68} + 24q^{71} - 318q^{73} - 96q^{74} + 110q^{79} + 24q^{80} + 120q^{82} - 36q^{85} - 24q^{86} - 24q^{88} - 378q^{89} + 120q^{92} + 12q^{94} + 30q^{95} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{4} + 2 x^{2} + 4$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$\nu$$ $$\beta_{2}$$ $$=$$ $$\nu^{2}$$$$/2$$ $$\beta_{3}$$ $$=$$ $$\nu^{3}$$$$/2$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$\beta_{1}$$ $$\nu^{2}$$ $$=$$ $$2 \beta_{2}$$ $$\nu^{3}$$ $$=$$ $$2 \beta_{3}$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/882\mathbb{Z}\right)^\times$$.

 $$n$$ $$199$$ $$785$$ $$\chi(n)$$ $$-\beta_{2}$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
19.1
 0.707107 + 1.22474i −0.707107 − 1.22474i 0.707107 − 1.22474i −0.707107 + 1.22474i
−0.707107 + 1.22474i 0 −1.00000 1.73205i 2.74264 + 1.58346i 0 0 2.82843 0 −3.87868 + 2.23936i
19.2 0.707107 1.22474i 0 −1.00000 1.73205i −5.74264 3.31552i 0 0 −2.82843 0 −8.12132 + 4.68885i
325.1 −0.707107 1.22474i 0 −1.00000 + 1.73205i 2.74264 1.58346i 0 0 2.82843 0 −3.87868 2.23936i
325.2 0.707107 + 1.22474i 0 −1.00000 + 1.73205i −5.74264 + 3.31552i 0 0 −2.82843 0 −8.12132 4.68885i
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.d odd 6 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 882.3.n.b 4
3.b odd 2 1 98.3.d.a 4
7.b odd 2 1 126.3.n.c 4
7.c even 3 1 126.3.n.c 4
7.c even 3 1 882.3.c.f 4
7.d odd 6 1 882.3.c.f 4
7.d odd 6 1 inner 882.3.n.b 4
12.b even 2 1 784.3.s.c 4
21.c even 2 1 14.3.d.a 4
21.g even 6 1 98.3.b.b 4
21.g even 6 1 98.3.d.a 4
21.h odd 6 1 14.3.d.a 4
21.h odd 6 1 98.3.b.b 4
28.d even 2 1 1008.3.cg.l 4
28.g odd 6 1 1008.3.cg.l 4
84.h odd 2 1 112.3.s.b 4
84.j odd 6 1 784.3.c.e 4
84.j odd 6 1 784.3.s.c 4
84.n even 6 1 112.3.s.b 4
84.n even 6 1 784.3.c.e 4
105.g even 2 1 350.3.k.a 4
105.k odd 4 2 350.3.i.a 8
105.o odd 6 1 350.3.k.a 4
105.x even 12 2 350.3.i.a 8
168.e odd 2 1 448.3.s.c 4
168.i even 2 1 448.3.s.d 4
168.s odd 6 1 448.3.s.d 4
168.v even 6 1 448.3.s.c 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
14.3.d.a 4 21.c even 2 1
14.3.d.a 4 21.h odd 6 1
98.3.b.b 4 21.g even 6 1
98.3.b.b 4 21.h odd 6 1
98.3.d.a 4 3.b odd 2 1
98.3.d.a 4 21.g even 6 1
112.3.s.b 4 84.h odd 2 1
112.3.s.b 4 84.n even 6 1
126.3.n.c 4 7.b odd 2 1
126.3.n.c 4 7.c even 3 1
350.3.i.a 8 105.k odd 4 2
350.3.i.a 8 105.x even 12 2
350.3.k.a 4 105.g even 2 1
350.3.k.a 4 105.o odd 6 1
448.3.s.c 4 168.e odd 2 1
448.3.s.c 4 168.v even 6 1
448.3.s.d 4 168.i even 2 1
448.3.s.d 4 168.s odd 6 1
784.3.c.e 4 84.j odd 6 1
784.3.c.e 4 84.n even 6 1
784.3.s.c 4 12.b even 2 1
784.3.s.c 4 84.j odd 6 1
882.3.c.f 4 7.c even 3 1
882.3.c.f 4 7.d odd 6 1
882.3.n.b 4 1.a even 1 1 trivial
882.3.n.b 4 7.d odd 6 1 inner
1008.3.cg.l 4 28.d even 2 1
1008.3.cg.l 4 28.g odd 6 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{3}^{\mathrm{new}}(882, [\chi])$$:

 $$T_{5}^{4} + 6 T_{5}^{3} - 9 T_{5}^{2} - 126 T_{5} + 441$$ $$T_{23}^{4} + 30 T_{23}^{3} + 837 T_{23}^{2} + 1890 T_{23} + 3969$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$4 + 2 T^{2} + T^{4}$$
$3$ $$T^{4}$$
$5$ $$441 - 126 T - 9 T^{2} + 6 T^{3} + T^{4}$$
$7$ $$T^{4}$$
$11$ $$3969 + 1134 T + 261 T^{2} + 18 T^{3} + T^{4}$$
$13$ $$7056 + 264 T^{2} + T^{4}$$
$17$ $$2601 + 1530 T + 351 T^{2} + 30 T^{3} + T^{4}$$
$19$ $$9 - 18 T + 9 T^{2} + 6 T^{3} + T^{4}$$
$23$ $$3969 + 1890 T + 837 T^{2} + 30 T^{3} + T^{4}$$
$29$ $$( 72 + 24 T + T^{2} )^{2}$$
$31$ $$1447209 + 50526 T - 615 T^{2} - 42 T^{3} + T^{4}$$
$37$ $$36481 - 11842 T + 4035 T^{2} + 62 T^{3} + T^{4}$$
$41$ $$345744 + 1224 T^{2} + T^{4}$$
$43$ $$( -68 + 4 T + T^{2} )^{2}$$
$47$ $$6335289 - 437958 T + 12609 T^{2} - 174 T^{3} + T^{4}$$
$53$ $$1520289 - 96174 T + 4851 T^{2} - 78 T^{3} + T^{4}$$
$59$ $$10517049 - 252954 T - 1215 T^{2} + 78 T^{3} + T^{4}$$
$61$ $$35964009 + 251874 T - 5409 T^{2} - 42 T^{3} + T^{4}$$
$67$ $$10297681 - 186122 T + 6573 T^{2} + 58 T^{3} + T^{4}$$
$71$ $$( -1764 - 12 T + T^{2} )^{2}$$
$73$ $$47485881 + 2191338 T + 40599 T^{2} + 318 T^{3} + T^{4}$$
$79$ $$6630625 - 283250 T + 9525 T^{2} - 110 T^{3} + T^{4}$$
$83$ $$189778176 + 27936 T^{2} + T^{4}$$
$89$ $$71419401 + 3194478 T + 56079 T^{2} + 378 T^{3} + T^{4}$$
$97$ $$6780816 + 11016 T^{2} + T^{4}$$