Properties

Label 882.3.b.h
Level $882$
Weight $3$
Character orbit 882.b
Analytic conductor $24.033$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 882.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(24.0327593166\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Defining polynomial: \(x^{4} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{8}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( \zeta_{8} + \zeta_{8}^{3} ) q^{2} -2 q^{4} + 4 \zeta_{8}^{2} q^{5} + ( -2 \zeta_{8} - 2 \zeta_{8}^{3} ) q^{8} +O(q^{10})\) \( q + ( \zeta_{8} + \zeta_{8}^{3} ) q^{2} -2 q^{4} + 4 \zeta_{8}^{2} q^{5} + ( -2 \zeta_{8} - 2 \zeta_{8}^{3} ) q^{8} + ( -4 \zeta_{8} + 4 \zeta_{8}^{3} ) q^{10} + ( -2 \zeta_{8} - 2 \zeta_{8}^{3} ) q^{11} + ( 9 \zeta_{8} - 9 \zeta_{8}^{3} ) q^{13} + 4 q^{16} + 4 \zeta_{8}^{2} q^{17} + ( 16 \zeta_{8} - 16 \zeta_{8}^{3} ) q^{19} -8 \zeta_{8}^{2} q^{20} + 4 q^{22} + ( 26 \zeta_{8} + 26 \zeta_{8}^{3} ) q^{23} + 9 q^{25} + 18 \zeta_{8}^{2} q^{26} + ( 23 \zeta_{8} + 23 \zeta_{8}^{3} ) q^{29} + ( -36 \zeta_{8} + 36 \zeta_{8}^{3} ) q^{31} + ( 4 \zeta_{8} + 4 \zeta_{8}^{3} ) q^{32} + ( -4 \zeta_{8} + 4 \zeta_{8}^{3} ) q^{34} -32 q^{37} + 32 \zeta_{8}^{2} q^{38} + ( 8 \zeta_{8} - 8 \zeta_{8}^{3} ) q^{40} -38 \zeta_{8}^{2} q^{41} + 20 q^{43} + ( 4 \zeta_{8} + 4 \zeta_{8}^{3} ) q^{44} -52 q^{46} -20 \zeta_{8}^{2} q^{47} + ( 9 \zeta_{8} + 9 \zeta_{8}^{3} ) q^{50} + ( -18 \zeta_{8} + 18 \zeta_{8}^{3} ) q^{52} + ( 67 \zeta_{8} + 67 \zeta_{8}^{3} ) q^{53} + ( 8 \zeta_{8} - 8 \zeta_{8}^{3} ) q^{55} -46 q^{58} + 4 \zeta_{8}^{2} q^{59} + ( 59 \zeta_{8} - 59 \zeta_{8}^{3} ) q^{61} -72 \zeta_{8}^{2} q^{62} -8 q^{64} + ( 36 \zeta_{8} + 36 \zeta_{8}^{3} ) q^{65} -48 q^{67} -8 \zeta_{8}^{2} q^{68} + ( 54 \zeta_{8} + 54 \zeta_{8}^{3} ) q^{71} + ( -85 \zeta_{8} + 85 \zeta_{8}^{3} ) q^{73} + ( -32 \zeta_{8} - 32 \zeta_{8}^{3} ) q^{74} + ( -32 \zeta_{8} + 32 \zeta_{8}^{3} ) q^{76} -148 q^{79} + 16 \zeta_{8}^{2} q^{80} + ( 38 \zeta_{8} - 38 \zeta_{8}^{3} ) q^{82} + 80 \zeta_{8}^{2} q^{83} -16 q^{85} + ( 20 \zeta_{8} + 20 \zeta_{8}^{3} ) q^{86} -8 q^{88} -106 \zeta_{8}^{2} q^{89} + ( -52 \zeta_{8} - 52 \zeta_{8}^{3} ) q^{92} + ( 20 \zeta_{8} - 20 \zeta_{8}^{3} ) q^{94} + ( 64 \zeta_{8} + 64 \zeta_{8}^{3} ) q^{95} + ( 109 \zeta_{8} - 109 \zeta_{8}^{3} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{4} + O(q^{10}) \) \( 4 q - 8 q^{4} + 16 q^{16} + 16 q^{22} + 36 q^{25} - 128 q^{37} + 80 q^{43} - 208 q^{46} - 184 q^{58} - 32 q^{64} - 192 q^{67} - 592 q^{79} - 64 q^{85} - 32 q^{88} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
197.1
0.707107 0.707107i
−0.707107 0.707107i
−0.707107 + 0.707107i
0.707107 + 0.707107i
1.41421i 0 −2.00000 4.00000i 0 0 2.82843i 0 −5.65685
197.2 1.41421i 0 −2.00000 4.00000i 0 0 2.82843i 0 5.65685
197.3 1.41421i 0 −2.00000 4.00000i 0 0 2.82843i 0 5.65685
197.4 1.41421i 0 −2.00000 4.00000i 0 0 2.82843i 0 −5.65685
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
7.b odd 2 1 inner
21.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 882.3.b.h 4
3.b odd 2 1 inner 882.3.b.h 4
7.b odd 2 1 inner 882.3.b.h 4
7.c even 3 2 882.3.s.g 8
7.d odd 6 2 882.3.s.g 8
21.c even 2 1 inner 882.3.b.h 4
21.g even 6 2 882.3.s.g 8
21.h odd 6 2 882.3.s.g 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
882.3.b.h 4 1.a even 1 1 trivial
882.3.b.h 4 3.b odd 2 1 inner
882.3.b.h 4 7.b odd 2 1 inner
882.3.b.h 4 21.c even 2 1 inner
882.3.s.g 8 7.c even 3 2
882.3.s.g 8 7.d odd 6 2
882.3.s.g 8 21.g even 6 2
882.3.s.g 8 21.h odd 6 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(882, [\chi])\):

\( T_{5}^{2} + 16 \)
\( T_{11}^{2} + 8 \)
\( T_{13}^{2} - 162 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( 2 + T^{2} )^{2} \)
$3$ \( T^{4} \)
$5$ \( ( 16 + T^{2} )^{2} \)
$7$ \( T^{4} \)
$11$ \( ( 8 + T^{2} )^{2} \)
$13$ \( ( -162 + T^{2} )^{2} \)
$17$ \( ( 16 + T^{2} )^{2} \)
$19$ \( ( -512 + T^{2} )^{2} \)
$23$ \( ( 1352 + T^{2} )^{2} \)
$29$ \( ( 1058 + T^{2} )^{2} \)
$31$ \( ( -2592 + T^{2} )^{2} \)
$37$ \( ( 32 + T )^{4} \)
$41$ \( ( 1444 + T^{2} )^{2} \)
$43$ \( ( -20 + T )^{4} \)
$47$ \( ( 400 + T^{2} )^{2} \)
$53$ \( ( 8978 + T^{2} )^{2} \)
$59$ \( ( 16 + T^{2} )^{2} \)
$61$ \( ( -6962 + T^{2} )^{2} \)
$67$ \( ( 48 + T )^{4} \)
$71$ \( ( 5832 + T^{2} )^{2} \)
$73$ \( ( -14450 + T^{2} )^{2} \)
$79$ \( ( 148 + T )^{4} \)
$83$ \( ( 6400 + T^{2} )^{2} \)
$89$ \( ( 11236 + T^{2} )^{2} \)
$97$ \( ( -23762 + T^{2} )^{2} \)
show more
show less