Properties

Label 882.2.l.a.509.3
Level $882$
Weight $2$
Character 882.509
Analytic conductor $7.043$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 882.l (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(7.04280545828\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 6 x^{14} + 9 x^{12} + 54 x^{10} - 288 x^{8} + 486 x^{6} + 729 x^{4} - 4374 x^{2} + 6561\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 509.3
Root \(-1.40917 - 1.00709i\) of defining polynomial
Character \(\chi\) \(=\) 882.509
Dual form 882.2.l.a.227.7

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000i q^{2} +(0.167584 - 1.72392i) q^{3} -1.00000 q^{4} +(1.17468 + 2.03460i) q^{5} +(-1.72392 - 0.167584i) q^{6} +1.00000i q^{8} +(-2.94383 - 0.577806i) q^{9} +O(q^{10})\) \(q-1.00000i q^{2} +(0.167584 - 1.72392i) q^{3} -1.00000 q^{4} +(1.17468 + 2.03460i) q^{5} +(-1.72392 - 0.167584i) q^{6} +1.00000i q^{8} +(-2.94383 - 0.577806i) q^{9} +(2.03460 - 1.17468i) q^{10} +(4.91614 + 2.83834i) q^{11} +(-0.167584 + 1.72392i) q^{12} +(1.48943 + 0.859925i) q^{13} +(3.70436 - 1.68409i) q^{15} +1.00000 q^{16} +(0.884414 + 1.53185i) q^{17} +(-0.577806 + 2.94383i) q^{18} +(-0.986680 - 0.569660i) q^{19} +(-1.17468 - 2.03460i) q^{20} +(2.83834 - 4.91614i) q^{22} +(3.18272 - 1.83755i) q^{23} +(1.72392 + 0.167584i) q^{24} +(-0.259741 + 0.449885i) q^{25} +(0.859925 - 1.48943i) q^{26} +(-1.48943 + 4.97811i) q^{27} +(3.59886 - 2.07781i) q^{29} +(-1.68409 - 3.70436i) q^{30} +8.37019i q^{31} -1.00000i q^{32} +(5.71694 - 7.99939i) q^{33} +(1.53185 - 0.884414i) q^{34} +(2.94383 + 0.577806i) q^{36} +(4.59886 - 7.96547i) q^{37} +(-0.569660 + 0.986680i) q^{38} +(1.73205 - 2.42356i) q^{39} +(-2.03460 + 1.17468i) q^{40} +(3.99709 - 6.92317i) q^{41} +(1.76053 + 3.04933i) q^{43} +(-4.91614 - 2.83834i) q^{44} +(-2.28245 - 6.66826i) q^{45} +(-1.83755 - 3.18272i) q^{46} -11.8099 q^{47} +(0.167584 - 1.72392i) q^{48} +(0.449885 + 0.259741i) q^{50} +(2.78901 - 1.26795i) q^{51} +(-1.48943 - 0.859925i) q^{52} +(4.97811 + 1.48943i) q^{54} +13.3365i q^{55} +(-1.14740 + 1.60550i) q^{57} +(-2.07781 - 3.59886i) q^{58} -2.22966 q^{59} +(-3.70436 + 1.68409i) q^{60} +8.99970i q^{61} +8.37019 q^{62} -1.00000 q^{64} +4.04054i q^{65} +(-7.99939 - 5.71694i) q^{66} +10.8712 q^{67} +(-0.884414 - 1.53185i) q^{68} +(-2.63442 - 5.79472i) q^{69} -4.52106i q^{71} +(0.577806 - 2.94383i) q^{72} +(-4.62660 + 2.67117i) q^{73} +(-7.96547 - 4.59886i) q^{74} +(0.732039 + 0.523168i) q^{75} +(0.986680 + 0.569660i) q^{76} +(-2.42356 - 1.73205i) q^{78} -13.0284 q^{79} +(1.17468 + 2.03460i) q^{80} +(8.33228 + 3.40192i) q^{81} +(-6.92317 - 3.99709i) q^{82} +(-6.27298 - 10.8651i) q^{83} +(-2.07781 + 3.59886i) q^{85} +(3.04933 - 1.76053i) q^{86} +(-2.97887 - 6.55238i) q^{87} +(-2.83834 + 4.91614i) q^{88} +(0.580529 - 1.00551i) q^{89} +(-6.66826 + 2.28245i) q^{90} +(-3.18272 + 1.83755i) q^{92} +(14.4296 + 1.40271i) q^{93} +11.8099i q^{94} -2.67667i q^{95} +(-1.72392 - 0.167584i) q^{96} +(-3.97536 + 2.29517i) q^{97} +(-12.8323 - 11.1962i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{4} - 12 q^{9} + O(q^{10}) \) \( 16 q - 16 q^{4} - 12 q^{9} + 12 q^{11} + 16 q^{16} + 12 q^{18} + 48 q^{23} - 8 q^{25} - 12 q^{29} + 12 q^{30} + 12 q^{36} + 4 q^{37} + 4 q^{43} - 12 q^{44} - 12 q^{46} + 60 q^{50} + 24 q^{51} + 48 q^{57} - 12 q^{58} - 16 q^{64} + 56 q^{67} - 12 q^{72} - 36 q^{74} - 24 q^{78} + 8 q^{79} - 12 q^{85} + 24 q^{86} - 48 q^{92} + 84 q^{93} - 72 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0.167584 1.72392i 0.0967549 0.995308i
\(4\) −1.00000 −0.500000
\(5\) 1.17468 + 2.03460i 0.525332 + 0.909902i 0.999565 + 0.0295026i \(0.00939234\pi\)
−0.474232 + 0.880400i \(0.657274\pi\)
\(6\) −1.72392 0.167584i −0.703789 0.0684160i
\(7\) 0 0
\(8\) 1.00000i 0.353553i
\(9\) −2.94383 0.577806i −0.981277 0.192602i
\(10\) 2.03460 1.17468i 0.643398 0.371466i
\(11\) 4.91614 + 2.83834i 1.48227 + 0.855790i 0.999798 0.0201197i \(-0.00640473\pi\)
0.482475 + 0.875910i \(0.339738\pi\)
\(12\) −0.167584 + 1.72392i −0.0483774 + 0.497654i
\(13\) 1.48943 + 0.859925i 0.413094 + 0.238500i 0.692118 0.721784i \(-0.256678\pi\)
−0.279024 + 0.960284i \(0.590011\pi\)
\(14\) 0 0
\(15\) 3.70436 1.68409i 0.956462 0.434830i
\(16\) 1.00000 0.250000
\(17\) 0.884414 + 1.53185i 0.214502 + 0.371528i 0.953118 0.302598i \(-0.0978538\pi\)
−0.738616 + 0.674126i \(0.764520\pi\)
\(18\) −0.577806 + 2.94383i −0.136190 + 0.693868i
\(19\) −0.986680 0.569660i −0.226360 0.130689i 0.382532 0.923942i \(-0.375052\pi\)
−0.608892 + 0.793253i \(0.708386\pi\)
\(20\) −1.17468 2.03460i −0.262666 0.454951i
\(21\) 0 0
\(22\) 2.83834 4.91614i 0.605135 1.04812i
\(23\) 3.18272 1.83755i 0.663644 0.383155i −0.130020 0.991511i \(-0.541504\pi\)
0.793664 + 0.608356i \(0.208171\pi\)
\(24\) 1.72392 + 0.167584i 0.351895 + 0.0342080i
\(25\) −0.259741 + 0.449885i −0.0519482 + 0.0899769i
\(26\) 0.859925 1.48943i 0.168645 0.292102i
\(27\) −1.48943 + 4.97811i −0.286642 + 0.958038i
\(28\) 0 0
\(29\) 3.59886 2.07781i 0.668292 0.385839i −0.127137 0.991885i \(-0.540579\pi\)
0.795429 + 0.606046i \(0.207245\pi\)
\(30\) −1.68409 3.70436i −0.307471 0.676321i
\(31\) 8.37019i 1.50333i 0.659545 + 0.751665i \(0.270749\pi\)
−0.659545 + 0.751665i \(0.729251\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 5.71694 7.99939i 0.995192 1.39252i
\(34\) 1.53185 0.884414i 0.262710 0.151676i
\(35\) 0 0
\(36\) 2.94383 + 0.577806i 0.490638 + 0.0963009i
\(37\) 4.59886 7.96547i 0.756049 1.30951i −0.188803 0.982015i \(-0.560461\pi\)
0.944851 0.327500i \(-0.106206\pi\)
\(38\) −0.569660 + 0.986680i −0.0924111 + 0.160061i
\(39\) 1.73205 2.42356i 0.277350 0.388080i
\(40\) −2.03460 + 1.17468i −0.321699 + 0.185733i
\(41\) 3.99709 6.92317i 0.624241 1.08122i −0.364446 0.931225i \(-0.618742\pi\)
0.988687 0.149993i \(-0.0479251\pi\)
\(42\) 0 0
\(43\) 1.76053 + 3.04933i 0.268478 + 0.465018i 0.968469 0.249134i \(-0.0801459\pi\)
−0.699991 + 0.714152i \(0.746813\pi\)
\(44\) −4.91614 2.83834i −0.741136 0.427895i
\(45\) −2.28245 6.66826i −0.340248 0.994046i
\(46\) −1.83755 3.18272i −0.270931 0.469267i
\(47\) −11.8099 −1.72265 −0.861324 0.508055i \(-0.830365\pi\)
−0.861324 + 0.508055i \(0.830365\pi\)
\(48\) 0.167584 1.72392i 0.0241887 0.248827i
\(49\) 0 0
\(50\) 0.449885 + 0.259741i 0.0636233 + 0.0367329i
\(51\) 2.78901 1.26795i 0.390539 0.177548i
\(52\) −1.48943 0.859925i −0.206547 0.119250i
\(53\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(54\) 4.97811 + 1.48943i 0.677435 + 0.202686i
\(55\) 13.3365i 1.79830i
\(56\) 0 0
\(57\) −1.14740 + 1.60550i −0.151977 + 0.212653i
\(58\) −2.07781 3.59886i −0.272829 0.472554i
\(59\) −2.22966 −0.290277 −0.145139 0.989411i \(-0.546363\pi\)
−0.145139 + 0.989411i \(0.546363\pi\)
\(60\) −3.70436 + 1.68409i −0.478231 + 0.217415i
\(61\) 8.99970i 1.15229i 0.817346 + 0.576146i \(0.195444\pi\)
−0.817346 + 0.576146i \(0.804556\pi\)
\(62\) 8.37019 1.06301
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 4.04054i 0.501167i
\(66\) −7.99939 5.71694i −0.984657 0.703707i
\(67\) 10.8712 1.32813 0.664067 0.747673i \(-0.268829\pi\)
0.664067 + 0.747673i \(0.268829\pi\)
\(68\) −0.884414 1.53185i −0.107251 0.185764i
\(69\) −2.63442 5.79472i −0.317147 0.697602i
\(70\) 0 0
\(71\) 4.52106i 0.536551i −0.963342 0.268276i \(-0.913546\pi\)
0.963342 0.268276i \(-0.0864538\pi\)
\(72\) 0.577806 2.94383i 0.0680950 0.346934i
\(73\) −4.62660 + 2.67117i −0.541503 + 0.312637i −0.745688 0.666295i \(-0.767879\pi\)
0.204185 + 0.978932i \(0.434546\pi\)
\(74\) −7.96547 4.59886i −0.925967 0.534607i
\(75\) 0.732039 + 0.523168i 0.0845285 + 0.0604102i
\(76\) 0.986680 + 0.569660i 0.113180 + 0.0653445i
\(77\) 0 0
\(78\) −2.42356 1.73205i −0.274414 0.196116i
\(79\) −13.0284 −1.46581 −0.732907 0.680329i \(-0.761837\pi\)
−0.732907 + 0.680329i \(0.761837\pi\)
\(80\) 1.17468 + 2.03460i 0.131333 + 0.227476i
\(81\) 8.33228 + 3.40192i 0.925809 + 0.377992i
\(82\) −6.92317 3.99709i −0.764536 0.441405i
\(83\) −6.27298 10.8651i −0.688549 1.19260i −0.972307 0.233707i \(-0.924915\pi\)
0.283758 0.958896i \(-0.408419\pi\)
\(84\) 0 0
\(85\) −2.07781 + 3.59886i −0.225370 + 0.390352i
\(86\) 3.04933 1.76053i 0.328817 0.189843i
\(87\) −2.97887 6.55238i −0.319368 0.702489i
\(88\) −2.83834 + 4.91614i −0.302568 + 0.524062i
\(89\) 0.580529 1.00551i 0.0615360 0.106583i −0.833616 0.552344i \(-0.813733\pi\)
0.895152 + 0.445761i \(0.147067\pi\)
\(90\) −6.66826 + 2.28245i −0.702897 + 0.240591i
\(91\) 0 0
\(92\) −3.18272 + 1.83755i −0.331822 + 0.191577i
\(93\) 14.4296 + 1.40271i 1.49628 + 0.145454i
\(94\) 11.8099i 1.21810i
\(95\) 2.67667i 0.274621i
\(96\) −1.72392 0.167584i −0.175947 0.0171040i
\(97\) −3.97536 + 2.29517i −0.403636 + 0.233039i −0.688052 0.725662i \(-0.741534\pi\)
0.284416 + 0.958701i \(0.408200\pi\)
\(98\) 0 0
\(99\) −12.8323 11.1962i −1.28969 1.12526i
\(100\) 0.259741 0.449885i 0.0259741 0.0449885i
\(101\) 3.31155 5.73577i 0.329511 0.570730i −0.652904 0.757441i \(-0.726449\pi\)
0.982415 + 0.186711i \(0.0597827\pi\)
\(102\) −1.26795 2.78901i −0.125546 0.276153i
\(103\) 5.07471 2.92989i 0.500026 0.288690i −0.228698 0.973497i \(-0.573447\pi\)
0.728724 + 0.684807i \(0.240114\pi\)
\(104\) −0.859925 + 1.48943i −0.0843225 + 0.146051i
\(105\) 0 0
\(106\) 0 0
\(107\) −4.08386 2.35782i −0.394802 0.227939i 0.289437 0.957197i \(-0.406532\pi\)
−0.684239 + 0.729258i \(0.739865\pi\)
\(108\) 1.48943 4.97811i 0.143321 0.479019i
\(109\) −2.11835 3.66908i −0.202901 0.351435i 0.746561 0.665317i \(-0.231704\pi\)
−0.949462 + 0.313882i \(0.898370\pi\)
\(110\) 13.3365 1.27159
\(111\) −12.9612 9.26298i −1.23022 0.879203i
\(112\) 0 0
\(113\) 5.91693 + 3.41614i 0.556618 + 0.321363i 0.751787 0.659406i \(-0.229192\pi\)
−0.195169 + 0.980770i \(0.562526\pi\)
\(114\) 1.60550 + 1.14740i 0.150368 + 0.107464i
\(115\) 7.47736 + 4.31705i 0.697267 + 0.402567i
\(116\) −3.59886 + 2.07781i −0.334146 + 0.192919i
\(117\) −3.88777 3.39208i −0.359424 0.313597i
\(118\) 2.22966i 0.205257i
\(119\) 0 0
\(120\) 1.68409 + 3.70436i 0.153736 + 0.338160i
\(121\) 10.6123 + 18.3810i 0.964754 + 1.67100i
\(122\) 8.99970 0.814794
\(123\) −11.2652 8.05090i −1.01575 0.725926i
\(124\) 8.37019i 0.751665i
\(125\) 10.5263 0.941504
\(126\) 0 0
\(127\) −6.67667 −0.592459 −0.296229 0.955117i \(-0.595729\pi\)
−0.296229 + 0.955117i \(0.595729\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 5.55185 2.52400i 0.488813 0.222226i
\(130\) 4.04054 0.354379
\(131\) 3.73653 + 6.47185i 0.326462 + 0.565448i 0.981807 0.189881i \(-0.0608102\pi\)
−0.655345 + 0.755329i \(0.727477\pi\)
\(132\) −5.71694 + 7.99939i −0.497596 + 0.696258i
\(133\) 0 0
\(134\) 10.8712i 0.939133i
\(135\) −11.8781 + 2.81728i −1.02230 + 0.242473i
\(136\) −1.53185 + 0.884414i −0.131355 + 0.0758379i
\(137\) −6.91772 3.99395i −0.591021 0.341226i 0.174480 0.984661i \(-0.444175\pi\)
−0.765501 + 0.643435i \(0.777509\pi\)
\(138\) −5.79472 + 2.63442i −0.493279 + 0.224256i
\(139\) 17.9792 + 10.3803i 1.52498 + 0.880446i 0.999562 + 0.0295993i \(0.00942312\pi\)
0.525415 + 0.850846i \(0.323910\pi\)
\(140\) 0 0
\(141\) −1.97915 + 20.3593i −0.166675 + 1.71457i
\(142\) −4.52106 −0.379399
\(143\) 4.88151 + 8.45502i 0.408212 + 0.707044i
\(144\) −2.94383 0.577806i −0.245319 0.0481505i
\(145\) 8.45502 + 4.88151i 0.702151 + 0.405387i
\(146\) 2.67117 + 4.62660i 0.221068 + 0.382900i
\(147\) 0 0
\(148\) −4.59886 + 7.96547i −0.378024 + 0.654757i
\(149\) 1.03726 0.598865i 0.0849760 0.0490609i −0.456910 0.889513i \(-0.651044\pi\)
0.541886 + 0.840452i \(0.317710\pi\)
\(150\) 0.523168 0.732039i 0.0427165 0.0597707i
\(151\) −7.61229 + 13.1849i −0.619480 + 1.07297i 0.370101 + 0.928991i \(0.379323\pi\)
−0.989581 + 0.143979i \(0.954010\pi\)
\(152\) 0.569660 0.986680i 0.0462055 0.0800303i
\(153\) −1.71845 5.02053i −0.138929 0.405886i
\(154\) 0 0
\(155\) −17.0300 + 9.83228i −1.36788 + 0.789748i
\(156\) −1.73205 + 2.42356i −0.138675 + 0.194040i
\(157\) 10.0269i 0.800237i −0.916463 0.400118i \(-0.868969\pi\)
0.916463 0.400118i \(-0.131031\pi\)
\(158\) 13.0284i 1.03649i
\(159\) 0 0
\(160\) 2.03460 1.17468i 0.160850 0.0928665i
\(161\) 0 0
\(162\) 3.40192 8.33228i 0.267280 0.654646i
\(163\) −6.00158 + 10.3950i −0.470080 + 0.814202i −0.999415 0.0342109i \(-0.989108\pi\)
0.529335 + 0.848413i \(0.322442\pi\)
\(164\) −3.99709 + 6.92317i −0.312121 + 0.540609i
\(165\) 22.9912 + 2.23499i 1.78986 + 0.173994i
\(166\) −10.8651 + 6.27298i −0.843297 + 0.486878i
\(167\) 8.57472 14.8518i 0.663532 1.14927i −0.316150 0.948709i \(-0.602390\pi\)
0.979681 0.200561i \(-0.0642765\pi\)
\(168\) 0 0
\(169\) −5.02106 8.69673i −0.386235 0.668979i
\(170\) 3.59886 + 2.07781i 0.276020 + 0.159360i
\(171\) 2.57547 + 2.24709i 0.196951 + 0.171839i
\(172\) −1.76053 3.04933i −0.134239 0.232509i
\(173\) −1.98748 −0.151105 −0.0755525 0.997142i \(-0.524072\pi\)
−0.0755525 + 0.997142i \(0.524072\pi\)
\(174\) −6.55238 + 2.97887i −0.496735 + 0.225827i
\(175\) 0 0
\(176\) 4.91614 + 2.83834i 0.370568 + 0.213948i
\(177\) −0.373656 + 3.84377i −0.0280857 + 0.288915i
\(178\) −1.00551 0.580529i −0.0753659 0.0435125i
\(179\) 7.19773 4.15561i 0.537984 0.310605i −0.206278 0.978493i \(-0.566135\pi\)
0.744261 + 0.667889i \(0.232802\pi\)
\(180\) 2.28245 + 6.66826i 0.170124 + 0.497023i
\(181\) 15.4541i 1.14870i 0.818611 + 0.574348i \(0.194744\pi\)
−0.818611 + 0.574348i \(0.805256\pi\)
\(182\) 0 0
\(183\) 15.5148 + 1.50821i 1.14689 + 0.111490i
\(184\) 1.83755 + 3.18272i 0.135466 + 0.234634i
\(185\) 21.6088 1.58871
\(186\) 1.40271 14.4296i 0.102852 1.05803i
\(187\) 10.0411i 0.734275i
\(188\) 11.8099 0.861324
\(189\) 0 0
\(190\) −2.67667 −0.194186
\(191\) 12.3381i 0.892752i 0.894845 + 0.446376i \(0.147286\pi\)
−0.894845 + 0.446376i \(0.852714\pi\)
\(192\) −0.167584 + 1.72392i −0.0120944 + 0.124414i
\(193\) 4.39388 0.316279 0.158139 0.987417i \(-0.449451\pi\)
0.158139 + 0.987417i \(0.449451\pi\)
\(194\) 2.29517 + 3.97536i 0.164784 + 0.285414i
\(195\) 6.96559 + 0.677132i 0.498816 + 0.0484904i
\(196\) 0 0
\(197\) 10.8865i 0.775632i 0.921737 + 0.387816i \(0.126770\pi\)
−0.921737 + 0.387816i \(0.873230\pi\)
\(198\) −11.1962 + 12.8323i −0.795676 + 0.911951i
\(199\) −23.8733 + 13.7832i −1.69233 + 0.977068i −0.739703 + 0.672933i \(0.765034\pi\)
−0.952629 + 0.304135i \(0.901633\pi\)
\(200\) −0.449885 0.259741i −0.0318116 0.0183665i
\(201\) 1.82185 18.7412i 0.128503 1.32190i
\(202\) −5.73577 3.31155i −0.403567 0.233000i
\(203\) 0 0
\(204\) −2.78901 + 1.26795i −0.195270 + 0.0887742i
\(205\) 18.7812 1.31174
\(206\) −2.92989 5.07471i −0.204135 0.353572i
\(207\) −10.4311 + 3.57043i −0.725015 + 0.248162i
\(208\) 1.48943 + 0.859925i 0.103274 + 0.0596250i
\(209\) −3.23377 5.60106i −0.223685 0.387433i
\(210\) 0 0
\(211\) 5.15561 8.92978i 0.354927 0.614751i −0.632179 0.774823i \(-0.717839\pi\)
0.987105 + 0.160071i \(0.0511724\pi\)
\(212\) 0 0
\(213\) −7.79396 0.757659i −0.534034 0.0519139i
\(214\) −2.35782 + 4.08386i −0.161177 + 0.279167i
\(215\) −4.13611 + 7.16396i −0.282081 + 0.488578i
\(216\) −4.97811 1.48943i −0.338718 0.101343i
\(217\) 0 0
\(218\) −3.66908 + 2.11835i −0.248502 + 0.143473i
\(219\) 3.82955 + 8.42356i 0.258777 + 0.569211i
\(220\) 13.3365i 0.899149i
\(221\) 3.04212i 0.204635i
\(222\) −9.26298 + 12.9612i −0.621691 + 0.869897i
\(223\) −6.24329 + 3.60456i −0.418081 + 0.241379i −0.694256 0.719728i \(-0.744267\pi\)
0.276175 + 0.961107i \(0.410933\pi\)
\(224\) 0 0
\(225\) 1.02458 1.17430i 0.0683053 0.0782870i
\(226\) 3.41614 5.91693i 0.227238 0.393588i
\(227\) 6.37800 11.0470i 0.423323 0.733217i −0.572939 0.819598i \(-0.694197\pi\)
0.996262 + 0.0863812i \(0.0275303\pi\)
\(228\) 1.14740 1.60550i 0.0759886 0.106327i
\(229\) −3.89208 + 2.24709i −0.257196 + 0.148492i −0.623055 0.782178i \(-0.714109\pi\)
0.365859 + 0.930670i \(0.380775\pi\)
\(230\) 4.31705 7.47736i 0.284658 0.493042i
\(231\) 0 0
\(232\) 2.07781 + 3.59886i 0.136415 + 0.236277i
\(233\) −1.86545 1.07702i −0.122210 0.0705577i 0.437649 0.899146i \(-0.355811\pi\)
−0.559859 + 0.828588i \(0.689145\pi\)
\(234\) −3.39208 + 3.88777i −0.221747 + 0.254151i
\(235\) −13.8728 24.0284i −0.904963 1.56744i
\(236\) 2.22966 0.145139
\(237\) −2.18336 + 22.4600i −0.141825 + 1.45894i
\(238\) 0 0
\(239\) −8.78317 5.07096i −0.568136 0.328013i 0.188269 0.982118i \(-0.439712\pi\)
−0.756404 + 0.654104i \(0.773046\pi\)
\(240\) 3.70436 1.68409i 0.239115 0.108708i
\(241\) −9.13490 5.27404i −0.588431 0.339731i 0.176046 0.984382i \(-0.443669\pi\)
−0.764477 + 0.644651i \(0.777003\pi\)
\(242\) 18.3810 10.6123i 1.18158 0.682184i
\(243\) 7.26102 13.7941i 0.465795 0.884893i
\(244\) 8.99970i 0.576146i
\(245\) 0 0
\(246\) −8.05090 + 11.2652i −0.513307 + 0.718241i
\(247\) −0.979729 1.69694i −0.0623387 0.107974i
\(248\) −8.37019 −0.531507
\(249\) −19.7819 + 8.99332i −1.25363 + 0.569929i
\(250\) 10.5263i 0.665744i
\(251\) −29.3005 −1.84943 −0.924714 0.380662i \(-0.875696\pi\)
−0.924714 + 0.380662i \(0.875696\pi\)
\(252\) 0 0
\(253\) 20.8623 1.31160
\(254\) 6.67667i 0.418932i
\(255\) 5.85596 + 4.18509i 0.366715 + 0.262081i
\(256\) 1.00000 0.0625000
\(257\) −3.81430 6.60656i −0.237930 0.412106i 0.722190 0.691694i \(-0.243135\pi\)
−0.960120 + 0.279588i \(0.909802\pi\)
\(258\) −2.52400 5.55185i −0.157137 0.345643i
\(259\) 0 0
\(260\) 4.04054i 0.250584i
\(261\) −11.7950 + 4.03726i −0.730093 + 0.249900i
\(262\) 6.47185 3.73653i 0.399832 0.230843i
\(263\) 10.5531 + 6.09281i 0.650729 + 0.375699i 0.788736 0.614733i \(-0.210736\pi\)
−0.138006 + 0.990431i \(0.544069\pi\)
\(264\) 7.99939 + 5.71694i 0.492329 + 0.351854i
\(265\) 0 0
\(266\) 0 0
\(267\) −1.63613 1.16930i −0.100129 0.0715597i
\(268\) −10.8712 −0.664067
\(269\) −1.38717 2.40264i −0.0845771 0.146492i 0.820634 0.571454i \(-0.193621\pi\)
−0.905211 + 0.424963i \(0.860287\pi\)
\(270\) 2.81728 + 11.8781i 0.171454 + 0.722877i
\(271\) −2.77815 1.60396i −0.168760 0.0974338i 0.413241 0.910622i \(-0.364397\pi\)
−0.582001 + 0.813188i \(0.697730\pi\)
\(272\) 0.884414 + 1.53185i 0.0536255 + 0.0928821i
\(273\) 0 0
\(274\) −3.99395 + 6.91772i −0.241283 + 0.417915i
\(275\) −2.55385 + 1.47446i −0.154003 + 0.0889135i
\(276\) 2.63442 + 5.79472i 0.158573 + 0.348801i
\(277\) −5.04054 + 8.73047i −0.302857 + 0.524563i −0.976782 0.214236i \(-0.931274\pi\)
0.673925 + 0.738800i \(0.264607\pi\)
\(278\) 10.3803 17.9792i 0.622569 1.07832i
\(279\) 4.83634 24.6404i 0.289544 1.47518i
\(280\) 0 0
\(281\) 4.21999 2.43641i 0.251743 0.145344i −0.368819 0.929501i \(-0.620238\pi\)
0.620562 + 0.784157i \(0.286904\pi\)
\(282\) 20.3593 + 1.97915i 1.21238 + 0.117857i
\(283\) 2.81781i 0.167502i 0.996487 + 0.0837508i \(0.0266900\pi\)
−0.996487 + 0.0837508i \(0.973310\pi\)
\(284\) 4.52106i 0.268276i
\(285\) −4.61438 0.448568i −0.273332 0.0265709i
\(286\) 8.45502 4.88151i 0.499956 0.288650i
\(287\) 0 0
\(288\) −0.577806 + 2.94383i −0.0340475 + 0.173467i
\(289\) 6.93562 12.0129i 0.407978 0.706638i
\(290\) 4.88151 8.45502i 0.286652 0.496496i
\(291\) 3.29050 + 7.23785i 0.192892 + 0.424290i
\(292\) 4.62660 2.67117i 0.270751 0.156318i
\(293\) −4.05694 + 7.02683i −0.237009 + 0.410512i −0.959855 0.280498i \(-0.909500\pi\)
0.722846 + 0.691010i \(0.242834\pi\)
\(294\) 0 0
\(295\) −2.61914 4.53648i −0.152492 0.264124i
\(296\) 7.96547 + 4.59886i 0.462983 + 0.267304i
\(297\) −21.4518 + 20.2456i −1.24476 + 1.17477i
\(298\) −0.598865 1.03726i −0.0346913 0.0600871i
\(299\) 6.32061 0.365530
\(300\) −0.732039 0.523168i −0.0422643 0.0302051i
\(301\) 0 0
\(302\) 13.1849 + 7.61229i 0.758705 + 0.438038i
\(303\) −9.33307 6.67008i −0.536171 0.383186i
\(304\) −0.986680 0.569660i −0.0565900 0.0326722i
\(305\) −18.3108 + 10.5718i −1.04847 + 0.605337i
\(306\) −5.02053 + 1.71845i −0.287004 + 0.0982375i
\(307\) 10.8996i 0.622074i −0.950398 0.311037i \(-0.899324\pi\)
0.950398 0.311037i \(-0.100676\pi\)
\(308\) 0 0
\(309\) −4.20046 9.23943i −0.238956 0.525613i
\(310\) 9.83228 + 17.0300i 0.558436 + 0.967240i
\(311\) −8.23637 −0.467042 −0.233521 0.972352i \(-0.575025\pi\)
−0.233521 + 0.972352i \(0.575025\pi\)
\(312\) 2.42356 + 1.73205i 0.137207 + 0.0980581i
\(313\) 33.8023i 1.91062i −0.295611 0.955308i \(-0.595523\pi\)
0.295611 0.955308i \(-0.404477\pi\)
\(314\) −10.0269 −0.565853
\(315\) 0 0
\(316\) 13.0284 0.732907
\(317\) 6.73090i 0.378045i 0.981973 + 0.189022i \(0.0605319\pi\)
−0.981973 + 0.189022i \(0.939468\pi\)
\(318\) 0 0
\(319\) 23.5900 1.32079
\(320\) −1.17468 2.03460i −0.0656665 0.113738i
\(321\) −4.74909 + 6.64513i −0.265068 + 0.370895i
\(322\) 0 0
\(323\) 2.01526i 0.112132i
\(324\) −8.33228 3.40192i −0.462905 0.188996i
\(325\) −0.773734 + 0.446715i −0.0429190 + 0.0247793i
\(326\) 10.3950 + 6.00158i 0.575728 + 0.332397i
\(327\) −6.68023 + 3.03699i −0.369417 + 0.167946i
\(328\) 6.92317 + 3.99709i 0.382268 + 0.220703i
\(329\) 0 0
\(330\) 2.23499 22.9912i 0.123032 1.26562i
\(331\) −32.0569 −1.76200 −0.881002 0.473112i \(-0.843131\pi\)
−0.881002 + 0.473112i \(0.843131\pi\)
\(332\) 6.27298 + 10.8651i 0.344275 + 0.596301i
\(333\) −18.1408 + 20.7917i −0.994108 + 1.13938i
\(334\) −14.8518 8.57472i −0.812657 0.469188i
\(335\) 12.7702 + 22.1187i 0.697712 + 1.20847i
\(336\) 0 0
\(337\) −12.1123 + 20.9791i −0.659799 + 1.14280i 0.320869 + 0.947124i \(0.396025\pi\)
−0.980668 + 0.195681i \(0.937308\pi\)
\(338\) −8.69673 + 5.02106i −0.473040 + 0.273110i
\(339\) 6.88075 9.62785i 0.373711 0.522913i
\(340\) 2.07781 3.59886i 0.112685 0.195176i
\(341\) −23.7574 + 41.1490i −1.28654 + 2.22834i
\(342\) 2.24709 2.57547i 0.121509 0.139265i
\(343\) 0 0
\(344\) −3.04933 + 1.76053i −0.164409 + 0.0949214i
\(345\) 8.69536 12.1669i 0.468143 0.655045i
\(346\) 1.98748i 0.106847i
\(347\) 22.7999i 1.22396i −0.790873 0.611981i \(-0.790373\pi\)
0.790873 0.611981i \(-0.209627\pi\)
\(348\) 2.97887 + 6.55238i 0.159684 + 0.351244i
\(349\) −2.46389 + 1.42253i −0.131889 + 0.0761461i −0.564493 0.825438i \(-0.690928\pi\)
0.432604 + 0.901584i \(0.357595\pi\)
\(350\) 0 0
\(351\) −6.49921 + 6.13376i −0.346902 + 0.327396i
\(352\) 2.83834 4.91614i 0.151284 0.262031i
\(353\) −3.57212 + 6.18709i −0.190125 + 0.329306i −0.945291 0.326227i \(-0.894223\pi\)
0.755167 + 0.655533i \(0.227556\pi\)
\(354\) 3.84377 + 0.373656i 0.204294 + 0.0198596i
\(355\) 9.19856 5.31079i 0.488209 0.281868i
\(356\) −0.580529 + 1.00551i −0.0307680 + 0.0532917i
\(357\) 0 0
\(358\) −4.15561 7.19773i −0.219631 0.380412i
\(359\) −10.0491 5.80186i −0.530372 0.306210i 0.210796 0.977530i \(-0.432394\pi\)
−0.741168 + 0.671320i \(0.765728\pi\)
\(360\) 6.66826 2.28245i 0.351448 0.120296i
\(361\) −8.85097 15.3303i −0.465841 0.806860i
\(362\) 15.4541 0.812250
\(363\) 33.4660 15.2144i 1.75651 0.798550i
\(364\) 0 0
\(365\) −10.8695 6.27554i −0.568938 0.328477i
\(366\) 1.50821 15.5148i 0.0788353 0.810971i
\(367\) −6.78525 3.91747i −0.354187 0.204490i 0.312341 0.949970i \(-0.398887\pi\)
−0.666528 + 0.745480i \(0.732220\pi\)
\(368\) 3.18272 1.83755i 0.165911 0.0957887i
\(369\) −15.7670 + 18.0711i −0.820798 + 0.940744i
\(370\) 21.6088i 1.12339i
\(371\) 0 0
\(372\) −14.4296 1.40271i −0.748138 0.0727272i
\(373\) −12.8339 22.2289i −0.664512 1.15097i −0.979417 0.201845i \(-0.935306\pi\)
0.314905 0.949123i \(-0.398027\pi\)
\(374\) 10.0411 0.519211
\(375\) 1.76405 18.1466i 0.0910951 0.937087i
\(376\) 11.8099i 0.609048i
\(377\) 7.14702 0.368091
\(378\) 0 0
\(379\) −15.1045 −0.775868 −0.387934 0.921687i \(-0.626811\pi\)
−0.387934 + 0.921687i \(0.626811\pi\)
\(380\) 2.67667i 0.137310i
\(381\) −1.11891 + 11.5101i −0.0573233 + 0.589679i
\(382\) 12.3381 0.631271
\(383\) 0.763322 + 1.32211i 0.0390040 + 0.0675568i 0.884868 0.465841i \(-0.154248\pi\)
−0.845864 + 0.533398i \(0.820915\pi\)
\(384\) 1.72392 + 0.167584i 0.0879737 + 0.00855200i
\(385\) 0 0
\(386\) 4.39388i 0.223643i
\(387\) −3.42078 9.99395i −0.173888 0.508021i
\(388\) 3.97536 2.29517i 0.201818 0.116520i
\(389\) −12.8948 7.44483i −0.653794 0.377468i 0.136115 0.990693i \(-0.456538\pi\)
−0.789908 + 0.613225i \(0.789872\pi\)
\(390\) 0.677132 6.96559i 0.0342879 0.352716i
\(391\) 5.62969 + 3.25030i 0.284706 + 0.164375i
\(392\) 0 0
\(393\) 11.7832 5.35691i 0.594382 0.270220i
\(394\) 10.8865 0.548454
\(395\) −15.3042 26.5077i −0.770039 1.33375i
\(396\) 12.8323 + 11.1962i 0.644846 + 0.562628i
\(397\) 24.9302 + 14.3935i 1.25121 + 0.722388i 0.971350 0.237653i \(-0.0763780\pi\)
0.279862 + 0.960040i \(0.409711\pi\)
\(398\) 13.7832 + 23.8733i 0.690892 + 1.19666i
\(399\) 0 0
\(400\) −0.259741 + 0.449885i −0.0129871 + 0.0224942i
\(401\) 33.0592 19.0868i 1.65090 0.953147i 0.674196 0.738552i \(-0.264490\pi\)
0.976703 0.214595i \(-0.0688431\pi\)
\(402\) −18.7412 1.82185i −0.934726 0.0908657i
\(403\) −7.19773 + 12.4668i −0.358544 + 0.621017i
\(404\) −3.31155 + 5.73577i −0.164756 + 0.285365i
\(405\) 2.86619 + 20.9491i 0.142422 + 1.04097i
\(406\) 0 0
\(407\) 45.2173 26.1062i 2.24134 1.29404i
\(408\) 1.26795 + 2.78901i 0.0627728 + 0.138076i
\(409\) 6.96694i 0.344493i −0.985054 0.172247i \(-0.944897\pi\)
0.985054 0.172247i \(-0.0551026\pi\)
\(410\) 18.7812i 0.927538i
\(411\) −8.04456 + 11.2563i −0.396809 + 0.555232i
\(412\) −5.07471 + 2.92989i −0.250013 + 0.144345i
\(413\) 0 0
\(414\) 3.57043 + 10.4311i 0.175477 + 0.512663i
\(415\) 14.7375 25.5261i 0.723435 1.25303i
\(416\) 0.859925 1.48943i 0.0421613 0.0730255i
\(417\) 20.9079 29.2552i 1.02386 1.43263i
\(418\) −5.60106 + 3.23377i −0.273957 + 0.158169i
\(419\) −17.4232 + 30.1778i −0.851177 + 1.47428i 0.0289690 + 0.999580i \(0.490778\pi\)
−0.880146 + 0.474702i \(0.842556\pi\)
\(420\) 0 0
\(421\) 2.84597 + 4.92936i 0.138704 + 0.240242i 0.927006 0.375046i \(-0.122373\pi\)
−0.788302 + 0.615288i \(0.789040\pi\)
\(422\) −8.92978 5.15561i −0.434695 0.250971i
\(423\) 34.7663 + 6.82382i 1.69040 + 0.331785i
\(424\) 0 0
\(425\) −0.918875 −0.0445720
\(426\) −0.757659 + 7.79396i −0.0367087 + 0.377619i
\(427\) 0 0
\(428\) 4.08386 + 2.35782i 0.197401 + 0.113969i
\(429\) 15.3939 6.99842i 0.743224 0.337887i
\(430\) 7.16396 + 4.13611i 0.345477 + 0.199461i
\(431\) −26.2350 + 15.1468i −1.26370 + 0.729595i −0.973787 0.227460i \(-0.926958\pi\)
−0.289908 + 0.957055i \(0.593625\pi\)
\(432\) −1.48943 + 4.97811i −0.0716604 + 0.239509i
\(433\) 23.6094i 1.13459i −0.823513 0.567297i \(-0.807989\pi\)
0.823513 0.567297i \(-0.192011\pi\)
\(434\) 0 0
\(435\) 9.83228 13.7578i 0.471422 0.659634i
\(436\) 2.11835 + 3.66908i 0.101450 + 0.175717i
\(437\) −4.18711 −0.200297
\(438\) 8.42356 3.82955i 0.402493 0.182983i
\(439\) 25.0202i 1.19415i 0.802185 + 0.597075i \(0.203671\pi\)
−0.802185 + 0.597075i \(0.796329\pi\)
\(440\) −13.3365 −0.635794
\(441\) 0 0
\(442\) 3.04212 0.144699
\(443\) 23.0300i 1.09419i −0.837071 0.547094i \(-0.815734\pi\)
0.837071 0.547094i \(-0.184266\pi\)
\(444\) 12.9612 + 9.26298i 0.615110 + 0.439602i
\(445\) 2.72774 0.129307
\(446\) 3.60456 + 6.24329i 0.170681 + 0.295628i
\(447\) −0.858568 1.88853i −0.0406089 0.0893242i
\(448\) 0 0
\(449\) 15.9028i 0.750501i 0.926923 + 0.375251i \(0.122443\pi\)
−0.926923 + 0.375251i \(0.877557\pi\)
\(450\) −1.17430 1.02458i −0.0553572 0.0482991i
\(451\) 39.3006 22.6902i 1.85059 1.06844i
\(452\) −5.91693 3.41614i −0.278309 0.160682i
\(453\) 21.4540 + 15.3326i 1.00800 + 0.720388i
\(454\) −11.0470 6.37800i −0.518462 0.299334i
\(455\) 0 0
\(456\) −1.60550 1.14740i −0.0751842 0.0537321i
\(457\) −5.66614 −0.265051 −0.132525 0.991180i \(-0.542309\pi\)
−0.132525 + 0.991180i \(0.542309\pi\)
\(458\) 2.24709 + 3.89208i 0.105000 + 0.181865i
\(459\) −8.94300 + 2.12112i −0.417423 + 0.0990056i
\(460\) −7.47736 4.31705i −0.348634 0.201284i
\(461\) −15.7292 27.2438i −0.732582 1.26887i −0.955776 0.294095i \(-0.904982\pi\)
0.223194 0.974774i \(-0.428352\pi\)
\(462\) 0 0
\(463\) 4.55148 7.88340i 0.211525 0.366373i −0.740667 0.671873i \(-0.765490\pi\)
0.952192 + 0.305500i \(0.0988236\pi\)
\(464\) 3.59886 2.07781i 0.167073 0.0964597i
\(465\) 14.0961 + 31.0062i 0.653693 + 1.43788i
\(466\) −1.07702 + 1.86545i −0.0498918 + 0.0864152i
\(467\) 15.1516 26.2433i 0.701132 1.21440i −0.266938 0.963714i \(-0.586012\pi\)
0.968069 0.250682i \(-0.0806549\pi\)
\(468\) 3.88777 + 3.39208i 0.179712 + 0.156799i
\(469\) 0 0
\(470\) −24.0284 + 13.8728i −1.10835 + 0.639906i
\(471\) −17.2857 1.68036i −0.796482 0.0774268i
\(472\) 2.22966i 0.102628i
\(473\) 19.9879i 0.919044i
\(474\) 22.4600 + 2.18336i 1.03162 + 0.100285i
\(475\) 0.512563 0.295928i 0.0235180 0.0135781i
\(476\) 0 0
\(477\) 0 0
\(478\) −5.07096 + 8.78317i −0.231940 + 0.401733i
\(479\) −2.33143 + 4.03816i −0.106526 + 0.184508i −0.914361 0.404901i \(-0.867306\pi\)
0.807835 + 0.589409i \(0.200639\pi\)
\(480\) −1.68409 3.70436i −0.0768678 0.169080i
\(481\) 13.6994 7.90935i 0.624639 0.360636i
\(482\) −5.27404 + 9.13490i −0.240226 + 0.416083i
\(483\) 0 0
\(484\) −10.6123 18.3810i −0.482377 0.835501i
\(485\) −9.33953 5.39218i −0.424086 0.244846i
\(486\) −13.7941 7.26102i −0.625714 0.329367i
\(487\) 9.74105 + 16.8720i 0.441409 + 0.764543i 0.997794 0.0663816i \(-0.0211455\pi\)
−0.556385 + 0.830924i \(0.687812\pi\)
\(488\) −8.99970 −0.407397
\(489\) 16.9145 + 12.0883i 0.764900 + 0.546652i
\(490\) 0 0
\(491\) −17.7437 10.2443i −0.800762 0.462320i 0.0429758 0.999076i \(-0.486316\pi\)
−0.843737 + 0.536756i \(0.819649\pi\)
\(492\) 11.2652 + 8.05090i 0.507873 + 0.362963i
\(493\) 6.36577 + 3.67528i 0.286700 + 0.165526i
\(494\) −1.69694 + 0.979729i −0.0763490 + 0.0440801i
\(495\) 7.70592 39.2605i 0.346355 1.76463i
\(496\) 8.37019i 0.375832i
\(497\) 0 0
\(498\) 8.99332 + 19.7819i 0.403000 + 0.886449i
\(499\) 5.12598 + 8.87845i 0.229470 + 0.397454i 0.957651 0.287931i \(-0.0929673\pi\)
−0.728181 + 0.685385i \(0.759634\pi\)
\(500\) −10.5263 −0.470752
\(501\) −24.1665 17.2711i −1.07968 0.771616i
\(502\) 29.3005i 1.30774i
\(503\) −14.5521 −0.648845 −0.324422 0.945912i \(-0.605170\pi\)
−0.324422 + 0.945912i \(0.605170\pi\)
\(504\) 0 0
\(505\) 15.5600 0.692412
\(506\) 20.8623i 0.927442i
\(507\) −15.8340 + 7.19849i −0.703211 + 0.319696i
\(508\) 6.67667 0.296229
\(509\) −16.6617 28.8589i −0.738517 1.27915i −0.953163 0.302457i \(-0.902193\pi\)
0.214646 0.976692i \(-0.431140\pi\)
\(510\) 4.18509 5.85596i 0.185319 0.259306i
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) 4.30542 4.06333i 0.190089 0.179401i
\(514\) −6.60656 + 3.81430i −0.291403 + 0.168242i
\(515\) 11.9223 + 6.88335i 0.525360 + 0.303317i
\(516\) −5.55185 + 2.52400i −0.244406 + 0.111113i
\(517\) −58.0591 33.5204i −2.55343 1.47423i
\(518\) 0 0
\(519\) −0.333070 + 3.42626i −0.0146202 + 0.150396i
\(520\) −4.04054 −0.177189
\(521\) 3.26963 + 5.66316i 0.143245 + 0.248108i 0.928717 0.370790i \(-0.120913\pi\)
−0.785472 + 0.618897i \(0.787580\pi\)
\(522\) 4.03726 + 11.7950i 0.176706 + 0.516254i
\(523\) −0.681439 0.393429i −0.0297972 0.0172034i 0.485027 0.874499i \(-0.338810\pi\)
−0.514825 + 0.857296i \(0.672143\pi\)
\(524\) −3.73653 6.47185i −0.163231 0.282724i
\(525\) 0 0
\(526\) 6.09281 10.5531i 0.265659 0.460135i
\(527\) −12.8219 + 7.40271i −0.558530 + 0.322467i
\(528\) 5.71694 7.99939i 0.248798 0.348129i
\(529\) −4.74685 + 8.22178i −0.206385 + 0.357469i
\(530\) 0 0
\(531\) 6.56374 + 1.28831i 0.284842 + 0.0559079i
\(532\) 0 0
\(533\) 11.9068 6.87440i 0.515741 0.297763i
\(534\) −1.16930 + 1.63613i −0.0506004 + 0.0708022i
\(535\) 11.0787i 0.478975i
\(536\) 10.8712i 0.469566i
\(537\) −5.95773 13.1048i −0.257095 0.565512i
\(538\) −2.40264 + 1.38717i −0.103585 + 0.0598050i
\(539\) 0 0
\(540\) 11.8781 2.81728i 0.511152 0.121236i
\(541\) −2.80227 + 4.85367i −0.120479 + 0.208676i −0.919957 0.392020i \(-0.871776\pi\)
0.799478 + 0.600696i \(0.205110\pi\)
\(542\) −1.60396 + 2.77815i −0.0688961 + 0.119332i
\(543\) 26.6417 + 2.58987i 1.14331 + 0.111142i
\(544\) 1.53185 0.884414i 0.0656775 0.0379189i
\(545\) 4.97675 8.61999i 0.213181 0.369240i
\(546\) 0 0
\(547\) −6.91456 11.9764i −0.295645 0.512073i 0.679489 0.733685i \(-0.262201\pi\)
−0.975135 + 0.221612i \(0.928868\pi\)
\(548\) 6.91772 + 3.99395i 0.295510 + 0.170613i
\(549\) 5.20007 26.4936i 0.221934 1.13072i
\(550\) 1.47446 + 2.55385i 0.0628714 + 0.108896i
\(551\) −4.73457 −0.201700
\(552\) 5.79472 2.63442i 0.246640 0.112128i
\(553\) 0 0
\(554\) 8.73047 + 5.04054i 0.370922 + 0.214152i
\(555\) 3.62129 37.2519i 0.153715 1.58125i
\(556\) −17.9792 10.3803i −0.762488 0.440223i
\(557\) 24.0957 13.9117i 1.02097 0.589456i 0.106584 0.994304i \(-0.466009\pi\)
0.914384 + 0.404848i \(0.132675\pi\)
\(558\) −24.6404 4.83634i −1.04311 0.204739i
\(559\) 6.05569i 0.256128i
\(560\) 0 0
\(561\) 17.3100 + 1.68272i 0.730830 + 0.0710447i
\(562\) −2.43641 4.21999i −0.102774 0.178009i
\(563\) −24.5300 −1.03382 −0.516909 0.856040i \(-0.672917\pi\)
−0.516909 + 0.856040i \(0.672917\pi\)
\(564\) 1.97915 20.3593i 0.0833373 0.857283i
\(565\) 16.0515i 0.675291i
\(566\) 2.81781 0.118441
\(567\) 0 0
\(568\) 4.52106 0.189699
\(569\) 27.1079i 1.13642i −0.822882 0.568212i \(-0.807635\pi\)
0.822882 0.568212i \(-0.192365\pi\)
\(570\) −0.448568 + 4.61438i −0.0187885 + 0.193275i
\(571\) −29.8354 −1.24857 −0.624287 0.781195i \(-0.714610\pi\)
−0.624287 + 0.781195i \(0.714610\pi\)
\(572\) −4.88151 8.45502i −0.204106 0.353522i
\(573\) 21.2699 + 2.06767i 0.888563 + 0.0863781i
\(574\) 0 0
\(575\) 1.90915i 0.0796169i
\(576\) 2.94383 + 0.577806i 0.122660 + 0.0240752i
\(577\) 24.3930 14.0833i 1.01549 0.586296i 0.102699 0.994712i \(-0.467252\pi\)
0.912796 + 0.408416i \(0.133919\pi\)
\(578\) −12.0129 6.93562i −0.499669 0.288484i
\(579\) 0.736346 7.57472i 0.0306015 0.314795i
\(580\) −8.45502 4.88151i −0.351076 0.202694i
\(581\) 0 0
\(582\) 7.23785 3.29050i 0.300018 0.136395i
\(583\) 0 0
\(584\) −2.67117 4.62660i −0.110534 0.191450i
\(585\) 2.33465 11.8947i 0.0965258 0.491784i
\(586\) 7.02683 + 4.05694i 0.290276 + 0.167591i
\(587\) 4.95928 + 8.58973i 0.204692 + 0.354536i 0.950034 0.312145i \(-0.101048\pi\)
−0.745343 + 0.666681i \(0.767714\pi\)
\(588\) 0 0
\(589\) 4.76816 8.25870i 0.196469 0.340294i
\(590\) −4.53648 + 2.61914i −0.186764 + 0.107828i
\(591\) 18.7675 + 1.82441i 0.771992 + 0.0750461i
\(592\) 4.59886 7.96547i 0.189012 0.327379i
\(593\) 2.34936 4.06921i 0.0964766 0.167102i −0.813747 0.581219i \(-0.802576\pi\)
0.910224 + 0.414116i \(0.135909\pi\)
\(594\) 20.2456 + 21.4518i 0.830686 + 0.880178i
\(595\) 0 0
\(596\) −1.03726 + 0.598865i −0.0424880 + 0.0245305i
\(597\) 19.7605 + 43.4656i 0.808743 + 1.77893i
\(598\) 6.32061i 0.258469i
\(599\) 14.7004i 0.600641i −0.953838 0.300320i \(-0.902906\pi\)
0.953838 0.300320i \(-0.0970936\pi\)
\(600\) −0.523168 + 0.732039i −0.0213582 + 0.0298854i
\(601\) 16.2923 9.40634i 0.664575 0.383693i −0.129443 0.991587i \(-0.541319\pi\)
0.794018 + 0.607894i \(0.207986\pi\)
\(602\) 0 0
\(603\) −32.0031 6.28147i −1.30327 0.255801i
\(604\) 7.61229 13.1849i 0.309740 0.536485i
\(605\) −24.9321 + 43.1836i −1.01363 + 1.75566i
\(606\) −6.67008 + 9.33307i −0.270954 + 0.379130i
\(607\) −10.9051 + 6.29608i −0.442625 + 0.255550i −0.704711 0.709495i \(-0.748923\pi\)
0.262085 + 0.965045i \(0.415590\pi\)
\(608\) −0.569660 + 0.986680i −0.0231028 + 0.0400152i
\(609\) 0 0
\(610\) 10.5718 + 18.3108i 0.428038 + 0.741383i
\(611\) −17.5900 10.1556i −0.711617 0.410852i
\(612\) 1.71845 + 5.02053i 0.0694644 + 0.202943i
\(613\) 4.91009 + 8.50452i 0.198317 + 0.343494i 0.947983 0.318322i \(-0.103119\pi\)
−0.749666 + 0.661816i \(0.769786\pi\)
\(614\) −10.8996 −0.439873
\(615\) 3.14744 32.3774i 0.126917 1.30558i
\(616\) 0 0
\(617\) −3.25158 1.87730i −0.130904 0.0755772i 0.433118 0.901337i \(-0.357413\pi\)
−0.564022 + 0.825760i \(0.690747\pi\)
\(618\) −9.23943 + 4.20046i −0.371664 + 0.168967i
\(619\) −9.56902 5.52468i −0.384611 0.222055i 0.295211 0.955432i \(-0.404610\pi\)
−0.679823 + 0.733376i \(0.737943\pi\)
\(620\) 17.0300 9.83228i 0.683942 0.394874i
\(621\) 4.40706 + 18.5809i 0.176849 + 0.745624i
\(622\) 8.23637i 0.330248i
\(623\) 0 0
\(624\) 1.73205 2.42356i 0.0693375 0.0970201i
\(625\) 13.6638 + 23.6664i 0.546551 + 0.946654i
\(626\) −33.8023 −1.35101
\(627\) −10.1977 + 4.63613i −0.407258 + 0.185149i
\(628\) 10.0269i 0.400118i
\(629\) 16.2692 0.648696
\(630\) 0 0
\(631\) 19.4921 0.775969 0.387984 0.921666i \(-0.373171\pi\)
0.387984 + 0.921666i \(0.373171\pi\)
\(632\) 13.0284i 0.518243i
\(633\) −14.5303 10.3844i −0.577526 0.412742i
\(634\) 6.73090 0.267318
\(635\) −7.84294 13.5844i −0.311238 0.539080i
\(636\) 0 0
\(637\) 0 0
\(638\) 23.5900i 0.933938i
\(639\) −2.61229 + 13.3092i −0.103341 + 0.526505i
\(640\) −2.03460 + 1.17468i −0.0804248 + 0.0464333i
\(641\) 22.6669 + 13.0868i 0.895290 + 0.516896i 0.875669 0.482912i \(-0.160421\pi\)
0.0196208 + 0.999807i \(0.493754\pi\)
\(642\) 6.64513 + 4.74909i 0.262262 + 0.187432i
\(643\) 9.50955 + 5.49034i 0.375020 + 0.216518i 0.675649 0.737223i \(-0.263863\pi\)
−0.300629 + 0.953741i \(0.597197\pi\)
\(644\) 0 0
\(645\) 11.6570 + 8.33092i 0.458993 + 0.328029i
\(646\) −2.01526 −0.0792894
\(647\) −16.0063 27.7237i −0.629273 1.08993i −0.987698 0.156374i \(-0.950019\pi\)
0.358425 0.933558i \(-0.383314\pi\)
\(648\) −3.40192 + 8.33228i −0.133640 + 0.327323i
\(649\) −10.9613 6.32852i −0.430270 0.248416i
\(650\) 0.446715 + 0.773734i 0.0175216 + 0.0303483i
\(651\) 0 0
\(652\) 6.00158 10.3950i 0.235040 0.407101i
\(653\) −19.3686 + 11.1825i −0.757952 + 0.437604i −0.828560 0.559900i \(-0.810839\pi\)
0.0706080 + 0.997504i \(0.477506\pi\)
\(654\) 3.03699 + 6.68023i 0.118756 + 0.261218i
\(655\) −8.77843 + 15.2047i −0.343002 + 0.594097i
\(656\) 3.99709 6.92317i 0.156060 0.270304i
\(657\) 15.1634 5.19020i 0.591579 0.202489i
\(658\) 0 0
\(659\) −19.2546 + 11.1166i −0.750053 + 0.433043i −0.825713 0.564091i \(-0.809227\pi\)
0.0756603 + 0.997134i \(0.475894\pi\)
\(660\) −22.9912 2.23499i −0.894930 0.0869970i
\(661\) 10.5499i 0.410343i 0.978726 + 0.205171i \(0.0657751\pi\)
−0.978726 + 0.205171i \(0.934225\pi\)
\(662\) 32.0569i 1.24593i
\(663\) 5.24438 + 0.509811i 0.203675 + 0.0197994i
\(664\) 10.8651 6.27298i 0.421649 0.243439i
\(665\) 0 0
\(666\) 20.7917 + 18.1408i 0.805664 + 0.702941i
\(667\) 7.63613 13.2262i 0.295672 0.512119i
\(668\) −8.57472 + 14.8518i −0.331766 + 0.574635i
\(669\) 5.16772 + 11.3670i 0.199796 + 0.439475i
\(670\) 22.1187 12.7702i 0.854519 0.493357i
\(671\) −25.5442 + 44.2438i −0.986121 + 1.70801i
\(672\) 0 0
\(673\) 9.93562 + 17.2090i 0.382990 + 0.663358i 0.991488 0.130197i \(-0.0415610\pi\)
−0.608498 + 0.793555i \(0.708228\pi\)
\(674\) 20.9791 + 12.1123i 0.808085 + 0.466548i
\(675\) −1.85271 1.96309i −0.0713108 0.0755595i
\(676\) 5.02106 + 8.69673i 0.193118 + 0.334490i
\(677\) 15.9290 0.612201 0.306100 0.951999i \(-0.400976\pi\)
0.306100 + 0.951999i \(0.400976\pi\)
\(678\) −9.62785 6.88075i −0.369755 0.264254i
\(679\) 0 0
\(680\) −3.59886 2.07781i −0.138010 0.0796802i
\(681\) −17.9754 12.8465i −0.688818 0.492279i
\(682\) 41.1490 + 23.7574i 1.57568 + 0.909718i
\(683\) −16.4777 + 9.51343i −0.630503 + 0.364021i −0.780947 0.624597i \(-0.785263\pi\)
0.150444 + 0.988619i \(0.451930\pi\)
\(684\) −2.57547 2.24709i −0.0984754 0.0859197i
\(685\) 18.7664i 0.717028i
\(686\) 0 0
\(687\) 3.22157 + 7.08623i 0.122910 + 0.270356i
\(688\) 1.76053 + 3.04933i 0.0671196 + 0.116254i
\(689\) 0 0
\(690\) −12.1669 8.69536i −0.463187 0.331027i
\(691\) 0.161055i 0.00612681i 0.999995 + 0.00306340i \(0.000975113\pi\)
−0.999995 + 0.00306340i \(0.999025\pi\)
\(692\) 1.98748 0.0755525
\(693\) 0 0
\(694\) −22.7999 −0.865471
\(695\) 48.7741i 1.85011i
\(696\) 6.55238 2.97887i 0.248367 0.112914i
\(697\) 14.1403 0.535604
\(698\) 1.42253 + 2.46389i 0.0538434 + 0.0932595i
\(699\) −2.16932 + 3.03540i −0.0820511 + 0.114809i
\(700\) 0 0
\(701\) 9.98234i 0.377028i 0.982071 + 0.188514i \(0.0603670\pi\)
−0.982071 + 0.188514i \(0.939633\pi\)
\(702\) 6.13376 + 6.49921i 0.231504 + 0.245297i
\(703\) −9.07522 + 5.23958i −0.342278 + 0.197614i
\(704\) −4.91614 2.83834i −0.185284 0.106974i
\(705\) −43.7481 + 19.8889i −1.64765 + 0.749060i
\(706\) 6.18709 + 3.57212i 0.232854 + 0.134438i
\(707\) 0 0
\(708\) 0.373656 3.84377i 0.0140429 0.144458i
\(709\) −24.3923 −0.916072 −0.458036 0.888934i \(-0.651447\pi\)
−0.458036 + 0.888934i \(0.651447\pi\)
\(710\) −5.31079 9.19856i −0.199311 0.345216i
\(711\) 38.3535 + 7.52790i 1.43837 + 0.282318i
\(712\) 1.00551 + 0.580529i 0.0376829 + 0.0217563i
\(713\) 15.3806 + 26.6400i 0.576008 + 0.997676i
\(714\) 0 0
\(715\) −11.4684 + 19.8639i −0.428894 + 0.742867i
\(716\) −7.19773 + 4.15561i −0.268992 + 0.155302i
\(717\) −10.2139 + 14.2917i −0.381444 + 0.533733i
\(718\) −5.80186 + 10.0491i −0.216523 + 0.375030i
\(719\) 8.13460 14.0895i 0.303370 0.525451i −0.673527 0.739162i \(-0.735222\pi\)
0.976897 + 0.213711i \(0.0685550\pi\)
\(720\) −2.28245 6.66826i −0.0850619 0.248512i
\(721\) 0 0
\(722\) −15.3303 + 8.85097i −0.570536 + 0.329399i
\(723\) −10.6229 + 14.8640i −0.395070 + 0.552799i
\(724\) 15.4541i 0.574348i
\(725\) 2.15877i 0.0801745i
\(726\) −15.2144 33.4660i −0.564660 1.24204i
\(727\) 20.6626 11.9296i 0.766335 0.442444i −0.0652306 0.997870i \(-0.520778\pi\)
0.831566 + 0.555427i \(0.187445\pi\)
\(728\) 0 0
\(729\) −22.5632 14.8291i −0.835673 0.549227i
\(730\) −6.27554 + 10.8695i −0.232268 + 0.402300i
\(731\) −3.11408 + 5.39374i −0.115178 + 0.199495i
\(732\) −15.5148 1.50821i −0.573443 0.0557450i
\(733\) −10.6259 + 6.13486i −0.392476 + 0.226596i −0.683233 0.730201i \(-0.739426\pi\)
0.290756 + 0.956797i \(0.406093\pi\)
\(734\) −3.91747 + 6.78525i −0.144596 + 0.250448i
\(735\) 0 0
\(736\) −1.83755 3.18272i −0.0677329 0.117317i
\(737\) 53.4446 + 30.8562i 1.96866 + 1.13660i
\(738\) 18.0711 + 15.7670i 0.665206 + 0.580392i
\(739\) −20.9446 36.2771i −0.770459 1.33447i −0.937312 0.348492i \(-0.886694\pi\)
0.166853 0.985982i \(-0.446639\pi\)
\(740\) −21.6088 −0.794354
\(741\) −3.08959 + 1.40460i −0.113499 + 0.0515992i
\(742\) 0 0
\(743\) 43.9160 + 25.3549i 1.61112 + 0.930182i 0.989111 + 0.147173i \(0.0470176\pi\)
0.622011 + 0.783008i \(0.286316\pi\)
\(744\) −1.40271 + 14.4296i −0.0514259 + 0.529014i
\(745\) 2.43690 + 1.40695i 0.0892813 + 0.0515466i
\(746\) −22.2289 + 12.8339i −0.813858 + 0.469881i
\(747\) 12.1887 + 35.6097i 0.445960 + 1.30289i
\(748\) 10.0411i 0.367137i
\(749\) 0 0
\(750\) −18.1466 1.76405i −0.662621 0.0644140i
\(751\) 16.3683 + 28.3508i 0.597289 + 1.03454i 0.993219 + 0.116255i \(0.0370890\pi\)
−0.395930 + 0.918281i \(0.629578\pi\)
\(752\) −11.8099 −0.430662
\(753\) −4.91030 + 50.5118i −0.178941 + 1.84075i
\(754\) 7.14702i 0.260279i
\(755\) −35.7680 −1.30173
\(756\) 0 0
\(757\) −17.9255 −0.651512 −0.325756 0.945454i \(-0.605619\pi\)
−0.325756 + 0.945454i \(0.605619\pi\)
\(758\) 15.1045i 0.548622i
\(759\) 3.49619 35.9650i 0.126904 1.30545i
\(760\) 2.67667 0.0970930
\(761\) 21.8509 + 37.8469i 0.792096 + 1.37195i 0.924667 + 0.380777i \(0.124343\pi\)
−0.132571 + 0.991174i \(0.542323\pi\)
\(762\) 11.5101 + 1.11891i 0.416966 + 0.0405337i
\(763\) 0 0
\(764\) 12.3381i 0.446376i
\(765\) 8.19615 9.39388i 0.296333 0.339637i
\(766\) 1.32211 0.763322i 0.0477699 0.0275800i
\(767\) −3.32093 1.91734i −0.119912 0.0692311i
\(768\) 0.167584 1.72392i 0.00604718 0.0622068i
\(769\) −37.0864 21.4118i −1.33737 0.772131i −0.350953 0.936393i \(-0.614142\pi\)
−0.986417 + 0.164262i \(0.947476\pi\)
\(770\) 0 0
\(771\) −12.0284 + 5.46841i −0.433193 + 0.196940i
\(772\) −4.39388 −0.158139
\(773\) 10.8025 + 18.7105i 0.388540 + 0.672971i 0.992253 0.124231i \(-0.0396462\pi\)
−0.603714 + 0.797201i \(0.706313\pi\)
\(774\) −9.99395 + 3.42078i −0.359225 + 0.122958i
\(775\) −3.76562 2.17408i −0.135265 0.0780953i
\(776\) −2.29517 3.97536i −0.0823919 0.142707i
\(777\) 0 0
\(778\) −7.44483 + 12.8948i −0.266910 + 0.462302i
\(779\) −7.88771 + 4.55397i −0.282606 + 0.163163i
\(780\) −6.96559 0.677132i −0.249408 0.0242452i
\(781\)