Properties

Label 882.2.h.k.67.2
Level $882$
Weight $2$
Character 882.67
Analytic conductor $7.043$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [882,2,Mod(67,882)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(882, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("882.67"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 882.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-2,-2,-2,4,-2,0,4,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.04280545828\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 67.2
Root \(1.22474 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 882.67
Dual form 882.2.h.k.79.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(0.724745 + 1.57313i) q^{3} +(-0.500000 - 0.866025i) q^{4} -1.44949 q^{5} +(-1.72474 - 0.158919i) q^{6} +1.00000 q^{8} +(-1.94949 + 2.28024i) q^{9} +(0.724745 - 1.25529i) q^{10} +2.00000 q^{11} +(1.00000 - 1.41421i) q^{12} +(-2.44949 + 4.24264i) q^{13} +(-1.05051 - 2.28024i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-1.00000 + 1.73205i) q^{17} +(-1.00000 - 2.82843i) q^{18} +(-1.27526 - 2.20881i) q^{19} +(0.724745 + 1.25529i) q^{20} +(-1.00000 + 1.73205i) q^{22} -1.00000 q^{23} +(0.724745 + 1.57313i) q^{24} -2.89898 q^{25} +(-2.44949 - 4.24264i) q^{26} +(-5.00000 - 1.41421i) q^{27} +(3.44949 + 5.97469i) q^{29} +(2.50000 + 0.230351i) q^{30} +(-3.00000 - 5.19615i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(1.44949 + 3.14626i) q^{33} +(-1.00000 - 1.73205i) q^{34} +(2.94949 + 0.548188i) q^{36} +(-5.89898 - 10.2173i) q^{37} +2.55051 q^{38} +(-8.44949 - 0.778539i) q^{39} -1.44949 q^{40} +(-4.89898 + 8.48528i) q^{41} +(-3.44949 - 5.97469i) q^{43} +(-1.00000 - 1.73205i) q^{44} +(2.82577 - 3.30518i) q^{45} +(0.500000 - 0.866025i) q^{46} +(-4.89898 + 8.48528i) q^{47} +(-1.72474 - 0.158919i) q^{48} +(1.44949 - 2.51059i) q^{50} +(-3.44949 - 0.317837i) q^{51} +4.89898 q^{52} +(5.44949 - 9.43879i) q^{53} +(3.72474 - 3.62302i) q^{54} -2.89898 q^{55} +(2.55051 - 3.60697i) q^{57} -6.89898 q^{58} +(1.00000 + 1.73205i) q^{59} +(-1.44949 + 2.04989i) q^{60} +(-3.27526 + 5.67291i) q^{61} +6.00000 q^{62} +1.00000 q^{64} +(3.55051 - 6.14966i) q^{65} +(-3.44949 - 0.317837i) q^{66} +(6.44949 + 11.1708i) q^{67} +2.00000 q^{68} +(-0.724745 - 1.57313i) q^{69} +0.101021 q^{71} +(-1.94949 + 2.28024i) q^{72} +(3.44949 - 5.97469i) q^{73} +11.7980 q^{74} +(-2.10102 - 4.56048i) q^{75} +(-1.27526 + 2.20881i) q^{76} +(4.89898 - 6.92820i) q^{78} +(0.949490 - 1.64456i) q^{79} +(0.724745 - 1.25529i) q^{80} +(-1.39898 - 8.89060i) q^{81} +(-4.89898 - 8.48528i) q^{82} +(-1.00000 - 1.73205i) q^{83} +(1.44949 - 2.51059i) q^{85} +6.89898 q^{86} +(-6.89898 + 9.75663i) q^{87} +2.00000 q^{88} +(8.44949 + 14.6349i) q^{89} +(1.44949 + 4.09978i) q^{90} +(0.500000 + 0.866025i) q^{92} +(6.00000 - 8.48528i) q^{93} +(-4.89898 - 8.48528i) q^{94} +(1.84847 + 3.20164i) q^{95} +(1.00000 - 1.41421i) q^{96} +(-1.44949 - 2.51059i) q^{97} +(-3.89898 + 4.56048i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - 2 q^{3} - 2 q^{4} + 4 q^{5} - 2 q^{6} + 4 q^{8} + 2 q^{9} - 2 q^{10} + 8 q^{11} + 4 q^{12} - 14 q^{15} - 2 q^{16} - 4 q^{17} - 4 q^{18} - 10 q^{19} - 2 q^{20} - 4 q^{22} - 4 q^{23} - 2 q^{24}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) 0.724745 + 1.57313i 0.418432 + 0.908248i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −1.44949 −0.648232 −0.324116 0.946017i \(-0.605067\pi\)
−0.324116 + 0.946017i \(0.605067\pi\)
\(6\) −1.72474 0.158919i −0.704124 0.0648783i
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) −1.94949 + 2.28024i −0.649830 + 0.760080i
\(10\) 0.724745 1.25529i 0.229184 0.396959i
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 1.00000 1.41421i 0.288675 0.408248i
\(13\) −2.44949 + 4.24264i −0.679366 + 1.17670i 0.295806 + 0.955248i \(0.404412\pi\)
−0.975172 + 0.221449i \(0.928921\pi\)
\(14\) 0 0
\(15\) −1.05051 2.28024i −0.271241 0.588755i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −1.00000 + 1.73205i −0.242536 + 0.420084i −0.961436 0.275029i \(-0.911312\pi\)
0.718900 + 0.695113i \(0.244646\pi\)
\(18\) −1.00000 2.82843i −0.235702 0.666667i
\(19\) −1.27526 2.20881i −0.292564 0.506735i 0.681852 0.731491i \(-0.261175\pi\)
−0.974415 + 0.224756i \(0.927842\pi\)
\(20\) 0.724745 + 1.25529i 0.162058 + 0.280692i
\(21\) 0 0
\(22\) −1.00000 + 1.73205i −0.213201 + 0.369274i
\(23\) −1.00000 −0.208514 −0.104257 0.994550i \(-0.533247\pi\)
−0.104257 + 0.994550i \(0.533247\pi\)
\(24\) 0.724745 + 1.57313i 0.147938 + 0.321114i
\(25\) −2.89898 −0.579796
\(26\) −2.44949 4.24264i −0.480384 0.832050i
\(27\) −5.00000 1.41421i −0.962250 0.272166i
\(28\) 0 0
\(29\) 3.44949 + 5.97469i 0.640554 + 1.10947i 0.985309 + 0.170780i \(0.0546286\pi\)
−0.344755 + 0.938693i \(0.612038\pi\)
\(30\) 2.50000 + 0.230351i 0.456435 + 0.0420561i
\(31\) −3.00000 5.19615i −0.538816 0.933257i −0.998968 0.0454165i \(-0.985539\pi\)
0.460152 0.887840i \(-0.347795\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 1.44949 + 3.14626i 0.252324 + 0.547694i
\(34\) −1.00000 1.73205i −0.171499 0.297044i
\(35\) 0 0
\(36\) 2.94949 + 0.548188i 0.491582 + 0.0913647i
\(37\) −5.89898 10.2173i −0.969786 1.67972i −0.696165 0.717881i \(-0.745112\pi\)
−0.273621 0.961838i \(-0.588221\pi\)
\(38\) 2.55051 0.413747
\(39\) −8.44949 0.778539i −1.35300 0.124666i
\(40\) −1.44949 −0.229184
\(41\) −4.89898 + 8.48528i −0.765092 + 1.32518i 0.175106 + 0.984550i \(0.443973\pi\)
−0.940198 + 0.340629i \(0.889360\pi\)
\(42\) 0 0
\(43\) −3.44949 5.97469i −0.526042 0.911132i −0.999540 0.0303367i \(-0.990342\pi\)
0.473497 0.880795i \(-0.342991\pi\)
\(44\) −1.00000 1.73205i −0.150756 0.261116i
\(45\) 2.82577 3.30518i 0.421240 0.492708i
\(46\) 0.500000 0.866025i 0.0737210 0.127688i
\(47\) −4.89898 + 8.48528i −0.714590 + 1.23771i 0.248528 + 0.968625i \(0.420053\pi\)
−0.963118 + 0.269081i \(0.913280\pi\)
\(48\) −1.72474 0.158919i −0.248945 0.0229379i
\(49\) 0 0
\(50\) 1.44949 2.51059i 0.204989 0.355051i
\(51\) −3.44949 0.317837i −0.483025 0.0445061i
\(52\) 4.89898 0.679366
\(53\) 5.44949 9.43879i 0.748545 1.29652i −0.199975 0.979801i \(-0.564086\pi\)
0.948520 0.316717i \(-0.102581\pi\)
\(54\) 3.72474 3.62302i 0.506874 0.493031i
\(55\) −2.89898 −0.390898
\(56\) 0 0
\(57\) 2.55051 3.60697i 0.337823 0.477754i
\(58\) −6.89898 −0.905880
\(59\) 1.00000 + 1.73205i 0.130189 + 0.225494i 0.923749 0.382998i \(-0.125108\pi\)
−0.793560 + 0.608492i \(0.791775\pi\)
\(60\) −1.44949 + 2.04989i −0.187128 + 0.264639i
\(61\) −3.27526 + 5.67291i −0.419353 + 0.726341i −0.995875 0.0907408i \(-0.971077\pi\)
0.576521 + 0.817082i \(0.304410\pi\)
\(62\) 6.00000 0.762001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 3.55051 6.14966i 0.440387 0.762772i
\(66\) −3.44949 0.317837i −0.424603 0.0391231i
\(67\) 6.44949 + 11.1708i 0.787931 + 1.36474i 0.927233 + 0.374486i \(0.122181\pi\)
−0.139302 + 0.990250i \(0.544486\pi\)
\(68\) 2.00000 0.242536
\(69\) −0.724745 1.57313i −0.0872490 0.189383i
\(70\) 0 0
\(71\) 0.101021 0.0119889 0.00599446 0.999982i \(-0.498092\pi\)
0.00599446 + 0.999982i \(0.498092\pi\)
\(72\) −1.94949 + 2.28024i −0.229750 + 0.268729i
\(73\) 3.44949 5.97469i 0.403732 0.699285i −0.590441 0.807081i \(-0.701046\pi\)
0.994173 + 0.107796i \(0.0343794\pi\)
\(74\) 11.7980 1.37148
\(75\) −2.10102 4.56048i −0.242605 0.526599i
\(76\) −1.27526 + 2.20881i −0.146282 + 0.253368i
\(77\) 0 0
\(78\) 4.89898 6.92820i 0.554700 0.784465i
\(79\) 0.949490 1.64456i 0.106826 0.185028i −0.807657 0.589653i \(-0.799265\pi\)
0.914483 + 0.404625i \(0.132598\pi\)
\(80\) 0.724745 1.25529i 0.0810289 0.140346i
\(81\) −1.39898 8.89060i −0.155442 0.987845i
\(82\) −4.89898 8.48528i −0.541002 0.937043i
\(83\) −1.00000 1.73205i −0.109764 0.190117i 0.805910 0.592037i \(-0.201676\pi\)
−0.915675 + 0.401920i \(0.868343\pi\)
\(84\) 0 0
\(85\) 1.44949 2.51059i 0.157219 0.272312i
\(86\) 6.89898 0.743936
\(87\) −6.89898 + 9.75663i −0.739648 + 1.04602i
\(88\) 2.00000 0.213201
\(89\) 8.44949 + 14.6349i 0.895644 + 1.55130i 0.833005 + 0.553265i \(0.186618\pi\)
0.0626387 + 0.998036i \(0.480048\pi\)
\(90\) 1.44949 + 4.09978i 0.152790 + 0.432154i
\(91\) 0 0
\(92\) 0.500000 + 0.866025i 0.0521286 + 0.0902894i
\(93\) 6.00000 8.48528i 0.622171 0.879883i
\(94\) −4.89898 8.48528i −0.505291 0.875190i
\(95\) 1.84847 + 3.20164i 0.189649 + 0.328482i
\(96\) 1.00000 1.41421i 0.102062 0.144338i
\(97\) −1.44949 2.51059i −0.147173 0.254912i 0.783008 0.622011i \(-0.213684\pi\)
−0.930182 + 0.367099i \(0.880351\pi\)
\(98\) 0 0
\(99\) −3.89898 + 4.56048i −0.391862 + 0.458345i
\(100\) 1.44949 + 2.51059i 0.144949 + 0.251059i
\(101\) −17.2474 −1.71619 −0.858093 0.513495i \(-0.828351\pi\)
−0.858093 + 0.513495i \(0.828351\pi\)
\(102\) 2.00000 2.82843i 0.198030 0.280056i
\(103\) 14.0000 1.37946 0.689730 0.724066i \(-0.257729\pi\)
0.689730 + 0.724066i \(0.257729\pi\)
\(104\) −2.44949 + 4.24264i −0.240192 + 0.416025i
\(105\) 0 0
\(106\) 5.44949 + 9.43879i 0.529301 + 0.916777i
\(107\) 6.00000 + 10.3923i 0.580042 + 1.00466i 0.995474 + 0.0950377i \(0.0302972\pi\)
−0.415432 + 0.909624i \(0.636370\pi\)
\(108\) 1.27526 + 5.03723i 0.122711 + 0.484708i
\(109\) −6.34847 + 10.9959i −0.608073 + 1.05321i 0.383485 + 0.923547i \(0.374724\pi\)
−0.991558 + 0.129666i \(0.958609\pi\)
\(110\) 1.44949 2.51059i 0.138203 0.239375i
\(111\) 11.7980 16.6848i 1.11981 1.58365i
\(112\) 0 0
\(113\) 3.05051 5.28364i 0.286968 0.497043i −0.686117 0.727492i \(-0.740686\pi\)
0.973084 + 0.230449i \(0.0740194\pi\)
\(114\) 1.84847 + 4.01229i 0.173125 + 0.375785i
\(115\) 1.44949 0.135166
\(116\) 3.44949 5.97469i 0.320277 0.554736i
\(117\) −4.89898 13.8564i −0.452911 1.28103i
\(118\) −2.00000 −0.184115
\(119\) 0 0
\(120\) −1.05051 2.28024i −0.0958980 0.208156i
\(121\) −7.00000 −0.636364
\(122\) −3.27526 5.67291i −0.296528 0.513601i
\(123\) −16.8990 1.55708i −1.52373 0.140397i
\(124\) −3.00000 + 5.19615i −0.269408 + 0.466628i
\(125\) 11.4495 1.02407
\(126\) 0 0
\(127\) −3.00000 −0.266207 −0.133103 0.991102i \(-0.542494\pi\)
−0.133103 + 0.991102i \(0.542494\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) 6.89898 9.75663i 0.607421 0.859023i
\(130\) 3.55051 + 6.14966i 0.311400 + 0.539361i
\(131\) −8.55051 −0.747062 −0.373531 0.927618i \(-0.621853\pi\)
−0.373531 + 0.927618i \(0.621853\pi\)
\(132\) 2.00000 2.82843i 0.174078 0.246183i
\(133\) 0 0
\(134\) −12.8990 −1.11430
\(135\) 7.24745 + 2.04989i 0.623761 + 0.176426i
\(136\) −1.00000 + 1.73205i −0.0857493 + 0.148522i
\(137\) 7.79796 0.666225 0.333112 0.942887i \(-0.391901\pi\)
0.333112 + 0.942887i \(0.391901\pi\)
\(138\) 1.72474 + 0.158919i 0.146820 + 0.0135281i
\(139\) −2.27526 + 3.94086i −0.192985 + 0.334259i −0.946238 0.323471i \(-0.895150\pi\)
0.753253 + 0.657730i \(0.228483\pi\)
\(140\) 0 0
\(141\) −16.8990 1.55708i −1.42315 0.131130i
\(142\) −0.0505103 + 0.0874863i −0.00423873 + 0.00734169i
\(143\) −4.89898 + 8.48528i −0.409673 + 0.709575i
\(144\) −1.00000 2.82843i −0.0833333 0.235702i
\(145\) −5.00000 8.66025i −0.415227 0.719195i
\(146\) 3.44949 + 5.97469i 0.285482 + 0.494469i
\(147\) 0 0
\(148\) −5.89898 + 10.2173i −0.484893 + 0.839860i
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) 5.00000 + 0.460702i 0.408248 + 0.0376161i
\(151\) −5.00000 −0.406894 −0.203447 0.979086i \(-0.565214\pi\)
−0.203447 + 0.979086i \(0.565214\pi\)
\(152\) −1.27526 2.20881i −0.103437 0.179158i
\(153\) −2.00000 5.65685i −0.161690 0.457330i
\(154\) 0 0
\(155\) 4.34847 + 7.53177i 0.349277 + 0.604966i
\(156\) 3.55051 + 7.70674i 0.284268 + 0.617033i
\(157\) 4.17423 + 7.22999i 0.333140 + 0.577016i 0.983126 0.182931i \(-0.0585584\pi\)
−0.649986 + 0.759947i \(0.725225\pi\)
\(158\) 0.949490 + 1.64456i 0.0755373 + 0.130835i
\(159\) 18.7980 + 1.73205i 1.49078 + 0.137361i
\(160\) 0.724745 + 1.25529i 0.0572961 + 0.0992398i
\(161\) 0 0
\(162\) 8.39898 + 3.23375i 0.659886 + 0.254067i
\(163\) 9.89898 + 17.1455i 0.775348 + 1.34294i 0.934599 + 0.355704i \(0.115759\pi\)
−0.159251 + 0.987238i \(0.550908\pi\)
\(164\) 9.79796 0.765092
\(165\) −2.10102 4.56048i −0.163564 0.355033i
\(166\) 2.00000 0.155230
\(167\) 5.34847 9.26382i 0.413877 0.716856i −0.581433 0.813594i \(-0.697508\pi\)
0.995310 + 0.0967384i \(0.0308410\pi\)
\(168\) 0 0
\(169\) −5.50000 9.52628i −0.423077 0.732791i
\(170\) 1.44949 + 2.51059i 0.111171 + 0.192553i
\(171\) 7.52270 + 1.39816i 0.575276 + 0.106920i
\(172\) −3.44949 + 5.97469i −0.263021 + 0.455566i
\(173\) 1.55051 2.68556i 0.117883 0.204180i −0.801045 0.598604i \(-0.795723\pi\)
0.918929 + 0.394424i \(0.129056\pi\)
\(174\) −5.00000 10.8530i −0.379049 0.822764i
\(175\) 0 0
\(176\) −1.00000 + 1.73205i −0.0753778 + 0.130558i
\(177\) −2.00000 + 2.82843i −0.150329 + 0.212598i
\(178\) −16.8990 −1.26663
\(179\) −10.3485 + 17.9241i −0.773481 + 1.33971i 0.162163 + 0.986764i \(0.448153\pi\)
−0.935644 + 0.352944i \(0.885181\pi\)
\(180\) −4.27526 0.794593i −0.318659 0.0592255i
\(181\) −10.3485 −0.769196 −0.384598 0.923084i \(-0.625660\pi\)
−0.384598 + 0.923084i \(0.625660\pi\)
\(182\) 0 0
\(183\) −11.2980 1.04100i −0.835169 0.0769528i
\(184\) −1.00000 −0.0737210
\(185\) 8.55051 + 14.8099i 0.628646 + 1.08885i
\(186\) 4.34847 + 9.43879i 0.318845 + 0.692086i
\(187\) −2.00000 + 3.46410i −0.146254 + 0.253320i
\(188\) 9.79796 0.714590
\(189\) 0 0
\(190\) −3.69694 −0.268204
\(191\) −2.05051 + 3.55159i −0.148370 + 0.256984i −0.930625 0.365974i \(-0.880736\pi\)
0.782255 + 0.622958i \(0.214069\pi\)
\(192\) 0.724745 + 1.57313i 0.0523040 + 0.113531i
\(193\) 8.94949 + 15.5010i 0.644198 + 1.11578i 0.984486 + 0.175463i \(0.0561422\pi\)
−0.340288 + 0.940321i \(0.610524\pi\)
\(194\) 2.89898 0.208135
\(195\) 12.2474 + 1.12848i 0.877058 + 0.0808124i
\(196\) 0 0
\(197\) 16.6969 1.18961 0.594804 0.803871i \(-0.297230\pi\)
0.594804 + 0.803871i \(0.297230\pi\)
\(198\) −2.00000 5.65685i −0.142134 0.402015i
\(199\) 1.44949 2.51059i 0.102752 0.177971i −0.810066 0.586339i \(-0.800569\pi\)
0.912817 + 0.408368i \(0.133902\pi\)
\(200\) −2.89898 −0.204989
\(201\) −12.8990 + 18.2419i −0.909824 + 1.28669i
\(202\) 8.62372 14.9367i 0.606763 1.05094i
\(203\) 0 0
\(204\) 1.44949 + 3.14626i 0.101485 + 0.220283i
\(205\) 7.10102 12.2993i 0.495957 0.859022i
\(206\) −7.00000 + 12.1244i −0.487713 + 0.844744i
\(207\) 1.94949 2.28024i 0.135499 0.158488i
\(208\) −2.44949 4.24264i −0.169842 0.294174i
\(209\) −2.55051 4.41761i −0.176422 0.305573i
\(210\) 0 0
\(211\) −6.44949 + 11.1708i −0.444001 + 0.769033i −0.997982 0.0634968i \(-0.979775\pi\)
0.553981 + 0.832529i \(0.313108\pi\)
\(212\) −10.8990 −0.748545
\(213\) 0.0732141 + 0.158919i 0.00501655 + 0.0108889i
\(214\) −12.0000 −0.820303
\(215\) 5.00000 + 8.66025i 0.340997 + 0.590624i
\(216\) −5.00000 1.41421i −0.340207 0.0962250i
\(217\) 0 0
\(218\) −6.34847 10.9959i −0.429973 0.744734i
\(219\) 11.8990 + 1.09638i 0.804059 + 0.0740862i
\(220\) 1.44949 + 2.51059i 0.0977246 + 0.169264i
\(221\) −4.89898 8.48528i −0.329541 0.570782i
\(222\) 8.55051 + 18.5597i 0.573873 + 1.24565i
\(223\) 5.55051 + 9.61377i 0.371690 + 0.643785i 0.989826 0.142286i \(-0.0454452\pi\)
−0.618136 + 0.786071i \(0.712112\pi\)
\(224\) 0 0
\(225\) 5.65153 6.61037i 0.376769 0.440691i
\(226\) 3.05051 + 5.28364i 0.202917 + 0.351462i
\(227\) −5.44949 −0.361695 −0.180848 0.983511i \(-0.557884\pi\)
−0.180848 + 0.983511i \(0.557884\pi\)
\(228\) −4.39898 0.405324i −0.291330 0.0268432i
\(229\) 1.24745 0.0824337 0.0412169 0.999150i \(-0.486877\pi\)
0.0412169 + 0.999150i \(0.486877\pi\)
\(230\) −0.724745 + 1.25529i −0.0477883 + 0.0827717i
\(231\) 0 0
\(232\) 3.44949 + 5.97469i 0.226470 + 0.392258i
\(233\) 3.50000 + 6.06218i 0.229293 + 0.397146i 0.957599 0.288106i \(-0.0930254\pi\)
−0.728306 + 0.685252i \(0.759692\pi\)
\(234\) 14.4495 + 2.68556i 0.944593 + 0.175561i
\(235\) 7.10102 12.2993i 0.463220 0.802320i
\(236\) 1.00000 1.73205i 0.0650945 0.112747i
\(237\) 3.27526 + 0.301783i 0.212751 + 0.0196029i
\(238\) 0 0
\(239\) −3.39898 + 5.88721i −0.219862 + 0.380812i −0.954766 0.297360i \(-0.903894\pi\)
0.734904 + 0.678171i \(0.237227\pi\)
\(240\) 2.50000 + 0.230351i 0.161374 + 0.0148691i
\(241\) 0.898979 0.0579084 0.0289542 0.999581i \(-0.490782\pi\)
0.0289542 + 0.999581i \(0.490782\pi\)
\(242\) 3.50000 6.06218i 0.224989 0.389692i
\(243\) 12.9722 8.64420i 0.832167 0.554526i
\(244\) 6.55051 0.419353
\(245\) 0 0
\(246\) 9.79796 13.8564i 0.624695 0.883452i
\(247\) 12.4949 0.795031
\(248\) −3.00000 5.19615i −0.190500 0.329956i
\(249\) 2.00000 2.82843i 0.126745 0.179244i
\(250\) −5.72474 + 9.91555i −0.362065 + 0.627114i
\(251\) 17.4495 1.10140 0.550701 0.834703i \(-0.314360\pi\)
0.550701 + 0.834703i \(0.314360\pi\)
\(252\) 0 0
\(253\) −2.00000 −0.125739
\(254\) 1.50000 2.59808i 0.0941184 0.163018i
\(255\) 5.00000 + 0.460702i 0.313112 + 0.0288503i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 8.20204 0.511629 0.255815 0.966726i \(-0.417656\pi\)
0.255815 + 0.966726i \(0.417656\pi\)
\(258\) 5.00000 + 10.8530i 0.311286 + 0.675679i
\(259\) 0 0
\(260\) −7.10102 −0.440387
\(261\) −20.3485 3.78194i −1.25954 0.234096i
\(262\) 4.27526 7.40496i 0.264126 0.457480i
\(263\) 25.8990 1.59700 0.798500 0.601995i \(-0.205627\pi\)
0.798500 + 0.601995i \(0.205627\pi\)
\(264\) 1.44949 + 3.14626i 0.0892099 + 0.193639i
\(265\) −7.89898 + 13.6814i −0.485230 + 0.840444i
\(266\) 0 0
\(267\) −16.8990 + 23.8988i −1.03420 + 1.46258i
\(268\) 6.44949 11.1708i 0.393965 0.682368i
\(269\) 9.17423 15.8902i 0.559363 0.968845i −0.438187 0.898884i \(-0.644379\pi\)
0.997550 0.0699611i \(-0.0222875\pi\)
\(270\) −5.39898 + 5.25153i −0.328571 + 0.319598i
\(271\) −3.55051 6.14966i −0.215678 0.373565i 0.737804 0.675015i \(-0.235863\pi\)
−0.953482 + 0.301450i \(0.902530\pi\)
\(272\) −1.00000 1.73205i −0.0606339 0.105021i
\(273\) 0 0
\(274\) −3.89898 + 6.75323i −0.235546 + 0.407978i
\(275\) −5.79796 −0.349630
\(276\) −1.00000 + 1.41421i −0.0601929 + 0.0851257i
\(277\) −18.6969 −1.12339 −0.561695 0.827344i \(-0.689851\pi\)
−0.561695 + 0.827344i \(0.689851\pi\)
\(278\) −2.27526 3.94086i −0.136461 0.236357i
\(279\) 17.6969 + 3.28913i 1.05949 + 0.196915i
\(280\) 0 0
\(281\) 9.50000 + 16.4545i 0.566722 + 0.981592i 0.996887 + 0.0788417i \(0.0251222\pi\)
−0.430165 + 0.902750i \(0.641545\pi\)
\(282\) 9.79796 13.8564i 0.583460 0.825137i
\(283\) 12.7247 + 22.0399i 0.756408 + 1.31014i 0.944672 + 0.328018i \(0.106381\pi\)
−0.188264 + 0.982118i \(0.560286\pi\)
\(284\) −0.0505103 0.0874863i −0.00299723 0.00519136i
\(285\) −3.69694 + 5.22826i −0.218988 + 0.309695i
\(286\) −4.89898 8.48528i −0.289683 0.501745i
\(287\) 0 0
\(288\) 2.94949 + 0.548188i 0.173800 + 0.0323023i
\(289\) 6.50000 + 11.2583i 0.382353 + 0.662255i
\(290\) 10.0000 0.587220
\(291\) 2.89898 4.09978i 0.169941 0.240333i
\(292\) −6.89898 −0.403732
\(293\) −1.37628 + 2.38378i −0.0804029 + 0.139262i −0.903423 0.428750i \(-0.858954\pi\)
0.823020 + 0.568012i \(0.192287\pi\)
\(294\) 0 0
\(295\) −1.44949 2.51059i −0.0843926 0.146172i
\(296\) −5.89898 10.2173i −0.342871 0.593870i
\(297\) −10.0000 2.82843i −0.580259 0.164122i
\(298\) 3.00000 5.19615i 0.173785 0.301005i
\(299\) 2.44949 4.24264i 0.141658 0.245358i
\(300\) −2.89898 + 4.09978i −0.167373 + 0.236701i
\(301\) 0 0
\(302\) 2.50000 4.33013i 0.143859 0.249171i
\(303\) −12.5000 27.1325i −0.718106 1.55872i
\(304\) 2.55051 0.146282
\(305\) 4.74745 8.22282i 0.271838 0.470837i
\(306\) 5.89898 + 1.09638i 0.337222 + 0.0626757i
\(307\) 25.2474 1.44095 0.720474 0.693482i \(-0.243924\pi\)
0.720474 + 0.693482i \(0.243924\pi\)
\(308\) 0 0
\(309\) 10.1464 + 22.0239i 0.577210 + 1.25289i
\(310\) −8.69694 −0.493953
\(311\) −15.3485 26.5843i −0.870332 1.50746i −0.861654 0.507497i \(-0.830571\pi\)
−0.00867810 0.999962i \(-0.502762\pi\)
\(312\) −8.44949 0.778539i −0.478358 0.0440761i
\(313\) 2.34847 4.06767i 0.132743 0.229918i −0.791990 0.610534i \(-0.790955\pi\)
0.924733 + 0.380616i \(0.124288\pi\)
\(314\) −8.34847 −0.471131
\(315\) 0 0
\(316\) −1.89898 −0.106826
\(317\) −10.3485 + 17.9241i −0.581228 + 1.00672i 0.414106 + 0.910229i \(0.364094\pi\)
−0.995334 + 0.0964878i \(0.969239\pi\)
\(318\) −10.8990 + 15.4135i −0.611184 + 0.864345i
\(319\) 6.89898 + 11.9494i 0.386269 + 0.669037i
\(320\) −1.44949 −0.0810289
\(321\) −12.0000 + 16.9706i −0.669775 + 0.947204i
\(322\) 0 0
\(323\) 5.10102 0.283828
\(324\) −7.00000 + 5.65685i −0.388889 + 0.314270i
\(325\) 7.10102 12.2993i 0.393894 0.682244i
\(326\) −19.7980 −1.09651
\(327\) −21.8990 2.01778i −1.21102 0.111583i
\(328\) −4.89898 + 8.48528i −0.270501 + 0.468521i
\(329\) 0 0
\(330\) 5.00000 + 0.460702i 0.275241 + 0.0253608i
\(331\) −2.34847 + 4.06767i −0.129084 + 0.223579i −0.923322 0.384027i \(-0.874537\pi\)
0.794238 + 0.607606i \(0.207870\pi\)
\(332\) −1.00000 + 1.73205i −0.0548821 + 0.0950586i
\(333\) 34.7980 + 6.46750i 1.90692 + 0.354417i
\(334\) 5.34847 + 9.26382i 0.292655 + 0.506894i
\(335\) −9.34847 16.1920i −0.510761 0.884665i
\(336\) 0 0
\(337\) 11.6969 20.2597i 0.637173 1.10362i −0.348877 0.937168i \(-0.613437\pi\)
0.986050 0.166447i \(-0.0532296\pi\)
\(338\) 11.0000 0.598321
\(339\) 10.5227 + 0.969566i 0.571515 + 0.0526596i
\(340\) −2.89898 −0.157219
\(341\) −6.00000 10.3923i −0.324918 0.562775i
\(342\) −4.97219 + 5.81577i −0.268865 + 0.314481i
\(343\) 0 0
\(344\) −3.44949 5.97469i −0.185984 0.322134i
\(345\) 1.05051 + 2.28024i 0.0565576 + 0.122764i
\(346\) 1.55051 + 2.68556i 0.0833559 + 0.144377i
\(347\) −9.79796 16.9706i −0.525982 0.911028i −0.999542 0.0302659i \(-0.990365\pi\)
0.473560 0.880762i \(-0.342969\pi\)
\(348\) 11.8990 + 1.09638i 0.637852 + 0.0587719i
\(349\) −5.55051 9.61377i −0.297112 0.514613i 0.678362 0.734728i \(-0.262690\pi\)
−0.975474 + 0.220115i \(0.929357\pi\)
\(350\) 0 0
\(351\) 18.2474 17.7491i 0.973977 0.947377i
\(352\) −1.00000 1.73205i −0.0533002 0.0923186i
\(353\) −6.00000 −0.319348 −0.159674 0.987170i \(-0.551044\pi\)
−0.159674 + 0.987170i \(0.551044\pi\)
\(354\) −1.44949 3.14626i −0.0770395 0.167222i
\(355\) −0.146428 −0.00777160
\(356\) 8.44949 14.6349i 0.447822 0.775651i
\(357\) 0 0
\(358\) −10.3485 17.9241i −0.546934 0.947317i
\(359\) 4.39898 + 7.61926i 0.232169 + 0.402129i 0.958446 0.285273i \(-0.0920843\pi\)
−0.726277 + 0.687402i \(0.758751\pi\)
\(360\) 2.82577 3.30518i 0.148931 0.174198i
\(361\) 6.24745 10.8209i 0.328813 0.569521i
\(362\) 5.17423 8.96204i 0.271952 0.471034i
\(363\) −5.07321 11.0119i −0.266275 0.577976i
\(364\) 0 0
\(365\) −5.00000 + 8.66025i −0.261712 + 0.453298i
\(366\) 6.55051 9.26382i 0.342401 0.484228i
\(367\) −13.7980 −0.720248 −0.360124 0.932905i \(-0.617266\pi\)
−0.360124 + 0.932905i \(0.617266\pi\)
\(368\) 0.500000 0.866025i 0.0260643 0.0451447i
\(369\) −9.79796 27.7128i −0.510061 1.44267i
\(370\) −17.1010 −0.889040
\(371\) 0 0
\(372\) −10.3485 0.953512i −0.536543 0.0494373i
\(373\) −6.89898 −0.357216 −0.178608 0.983920i \(-0.557159\pi\)
−0.178608 + 0.983920i \(0.557159\pi\)
\(374\) −2.00000 3.46410i −0.103418 0.179124i
\(375\) 8.29796 + 18.0116i 0.428505 + 0.930113i
\(376\) −4.89898 + 8.48528i −0.252646 + 0.437595i
\(377\) −33.7980 −1.74068
\(378\) 0 0
\(379\) 22.4949 1.15549 0.577743 0.816219i \(-0.303934\pi\)
0.577743 + 0.816219i \(0.303934\pi\)
\(380\) 1.84847 3.20164i 0.0948245 0.164241i
\(381\) −2.17423 4.71940i −0.111389 0.241782i
\(382\) −2.05051 3.55159i −0.104913 0.181715i
\(383\) −2.89898 −0.148131 −0.0740655 0.997253i \(-0.523597\pi\)
−0.0740655 + 0.997253i \(0.523597\pi\)
\(384\) −1.72474 0.158919i −0.0880155 0.00810978i
\(385\) 0 0
\(386\) −17.8990 −0.911034
\(387\) 20.3485 + 3.78194i 1.03437 + 0.192247i
\(388\) −1.44949 + 2.51059i −0.0735867 + 0.127456i
\(389\) −24.8990 −1.26243 −0.631214 0.775609i \(-0.717443\pi\)
−0.631214 + 0.775609i \(0.717443\pi\)
\(390\) −7.10102 + 10.0424i −0.359574 + 0.508515i
\(391\) 1.00000 1.73205i 0.0505722 0.0875936i
\(392\) 0 0
\(393\) −6.19694 13.4511i −0.312594 0.678517i
\(394\) −8.34847 + 14.4600i −0.420590 + 0.728483i
\(395\) −1.37628 + 2.38378i −0.0692479 + 0.119941i
\(396\) 5.89898 + 1.09638i 0.296435 + 0.0550950i
\(397\) −19.3485 33.5125i −0.971072 1.68195i −0.692332 0.721579i \(-0.743417\pi\)
−0.278740 0.960367i \(-0.589917\pi\)
\(398\) 1.44949 + 2.51059i 0.0726564 + 0.125844i
\(399\) 0 0
\(400\) 1.44949 2.51059i 0.0724745 0.125529i
\(401\) −19.8990 −0.993708 −0.496854 0.867834i \(-0.665511\pi\)
−0.496854 + 0.867834i \(0.665511\pi\)
\(402\) −9.34847 20.2918i −0.466259 1.01206i
\(403\) 29.3939 1.46421
\(404\) 8.62372 + 14.9367i 0.429046 + 0.743130i
\(405\) 2.02781 + 12.8868i 0.100763 + 0.640352i
\(406\) 0 0
\(407\) −11.7980 20.4347i −0.584803 1.01291i
\(408\) −3.44949 0.317837i −0.170775 0.0157353i
\(409\) 6.89898 + 11.9494i 0.341133 + 0.590859i 0.984643 0.174578i \(-0.0558562\pi\)
−0.643511 + 0.765437i \(0.722523\pi\)
\(410\) 7.10102 + 12.2993i 0.350694 + 0.607421i
\(411\) 5.65153 + 12.2672i 0.278769 + 0.605097i
\(412\) −7.00000 12.1244i −0.344865 0.597324i
\(413\) 0 0
\(414\) 1.00000 + 2.82843i 0.0491473 + 0.139010i
\(415\) 1.44949 + 2.51059i 0.0711527 + 0.123240i
\(416\) 4.89898 0.240192
\(417\) −7.84847 0.723161i −0.384341 0.0354133i
\(418\) 5.10102 0.249499
\(419\) −14.7247 + 25.5040i −0.719351 + 1.24595i 0.241906 + 0.970300i \(0.422227\pi\)
−0.961257 + 0.275653i \(0.911106\pi\)
\(420\) 0 0
\(421\) −11.4495 19.8311i −0.558014 0.966509i −0.997662 0.0683385i \(-0.978230\pi\)
0.439648 0.898170i \(-0.355103\pi\)
\(422\) −6.44949 11.1708i −0.313956 0.543788i
\(423\) −9.79796 27.7128i −0.476393 1.34744i
\(424\) 5.44949 9.43879i 0.264651 0.458388i
\(425\) 2.89898 5.02118i 0.140621 0.243563i
\(426\) −0.174235 0.0160540i −0.00844169 0.000777821i
\(427\) 0 0
\(428\) 6.00000 10.3923i 0.290021 0.502331i
\(429\) −16.8990 1.55708i −0.815890 0.0751764i
\(430\) −10.0000 −0.482243
\(431\) −15.7980 + 27.3629i −0.760961 + 1.31802i 0.181395 + 0.983410i \(0.441939\pi\)
−0.942356 + 0.334613i \(0.891395\pi\)
\(432\) 3.72474 3.62302i 0.179207 0.174313i
\(433\) −7.79796 −0.374746 −0.187373 0.982289i \(-0.559997\pi\)
−0.187373 + 0.982289i \(0.559997\pi\)
\(434\) 0 0
\(435\) 10.0000 14.1421i 0.479463 0.678064i
\(436\) 12.6969 0.608073
\(437\) 1.27526 + 2.20881i 0.0610037 + 0.105662i
\(438\) −6.89898 + 9.75663i −0.329646 + 0.466190i
\(439\) −1.10102 + 1.90702i −0.0525488 + 0.0910173i −0.891103 0.453801i \(-0.850068\pi\)
0.838554 + 0.544818i \(0.183401\pi\)
\(440\) −2.89898 −0.138203
\(441\) 0 0
\(442\) 9.79796 0.466041
\(443\) 7.44949 12.9029i 0.353936 0.613035i −0.632999 0.774152i \(-0.718176\pi\)
0.986935 + 0.161117i \(0.0515098\pi\)
\(444\) −20.3485 1.87492i −0.965696 0.0889795i
\(445\) −12.2474 21.2132i −0.580585 1.00560i
\(446\) −11.1010 −0.525649
\(447\) −4.34847 9.43879i −0.205676 0.446440i
\(448\) 0 0
\(449\) 20.5959 0.971981 0.485991 0.873964i \(-0.338459\pi\)
0.485991 + 0.873964i \(0.338459\pi\)
\(450\) 2.89898 + 8.19955i 0.136659 + 0.386531i
\(451\) −9.79796 + 16.9706i −0.461368 + 0.799113i
\(452\) −6.10102 −0.286968
\(453\) −3.62372 7.86566i −0.170257 0.369561i
\(454\) 2.72474 4.71940i 0.127879 0.221492i
\(455\) 0 0
\(456\) 2.55051 3.60697i 0.119439 0.168912i
\(457\) 8.74745 15.1510i 0.409188 0.708735i −0.585611 0.810593i \(-0.699145\pi\)
0.994799 + 0.101857i \(0.0324785\pi\)
\(458\) −0.623724 + 1.08032i −0.0291447 + 0.0504801i
\(459\) 7.44949 7.24604i 0.347712 0.338216i
\(460\) −0.724745 1.25529i −0.0337914 0.0585284i
\(461\) −2.82577 4.89437i −0.131609 0.227954i 0.792688 0.609628i \(-0.208681\pi\)
−0.924297 + 0.381674i \(0.875348\pi\)
\(462\) 0 0
\(463\) −1.84847 + 3.20164i −0.0859057 + 0.148793i −0.905777 0.423755i \(-0.860712\pi\)
0.819871 + 0.572548i \(0.194045\pi\)
\(464\) −6.89898 −0.320277
\(465\) −8.69694 + 12.2993i −0.403311 + 0.570368i
\(466\) −7.00000 −0.324269
\(467\) −5.00000 8.66025i −0.231372 0.400749i 0.726840 0.686807i \(-0.240988\pi\)
−0.958212 + 0.286058i \(0.907655\pi\)
\(468\) −9.55051 + 11.1708i −0.441472 + 0.516372i
\(469\) 0 0
\(470\) 7.10102 + 12.2993i 0.327546 + 0.567326i
\(471\) −8.34847 + 11.8065i −0.384677 + 0.544016i
\(472\) 1.00000 + 1.73205i 0.0460287 + 0.0797241i
\(473\) −6.89898 11.9494i −0.317215 0.549433i
\(474\) −1.89898 + 2.68556i −0.0872230 + 0.123352i
\(475\) 3.69694 + 6.40329i 0.169627 + 0.293803i
\(476\) 0 0
\(477\) 10.8990 + 30.8270i 0.499030 + 1.41147i
\(478\) −3.39898 5.88721i −0.155466 0.269274i
\(479\) 9.59592 0.438449 0.219224 0.975674i \(-0.429647\pi\)
0.219224 + 0.975674i \(0.429647\pi\)
\(480\) −1.44949 + 2.04989i −0.0661599 + 0.0935642i
\(481\) 57.7980 2.63536
\(482\) −0.449490 + 0.778539i −0.0204737 + 0.0354615i
\(483\) 0 0
\(484\) 3.50000 + 6.06218i 0.159091 + 0.275554i
\(485\) 2.10102 + 3.63907i 0.0954024 + 0.165242i
\(486\) 1.00000 + 15.5563i 0.0453609 + 0.705650i
\(487\) 18.1969 31.5180i 0.824582 1.42822i −0.0776564 0.996980i \(-0.524744\pi\)
0.902238 0.431238i \(-0.141923\pi\)
\(488\) −3.27526 + 5.67291i −0.148264 + 0.256800i
\(489\) −19.7980 + 27.9985i −0.895295 + 1.26614i
\(490\) 0 0
\(491\) −7.89898 + 13.6814i −0.356476 + 0.617434i −0.987369 0.158435i \(-0.949355\pi\)
0.630893 + 0.775869i \(0.282688\pi\)
\(492\) 7.10102 + 15.4135i 0.320139 + 0.694894i
\(493\) −13.7980 −0.621429
\(494\) −6.24745 + 10.8209i −0.281086 + 0.486855i
\(495\) 5.65153 6.61037i 0.254017 0.297114i
\(496\) 6.00000 0.269408
\(497\) 0 0
\(498\) 1.44949 + 3.14626i 0.0649532 + 0.140987i
\(499\) −25.3939 −1.13679 −0.568393 0.822757i \(-0.692435\pi\)
−0.568393 + 0.822757i \(0.692435\pi\)
\(500\) −5.72474 9.91555i −0.256018 0.443437i
\(501\) 18.4495 + 1.69994i 0.824262 + 0.0759478i
\(502\) −8.72474 + 15.1117i −0.389404 + 0.674468i
\(503\) −24.4949 −1.09217 −0.546087 0.837729i \(-0.683883\pi\)
−0.546087 + 0.837729i \(0.683883\pi\)
\(504\) 0 0
\(505\) 25.0000 1.11249
\(506\) 1.00000 1.73205i 0.0444554 0.0769991i
\(507\) 11.0000 15.5563i 0.488527 0.690882i
\(508\) 1.50000 + 2.59808i 0.0665517 + 0.115271i
\(509\) −7.10102 −0.314747 −0.157374 0.987539i \(-0.550303\pi\)
−0.157374 + 0.987539i \(0.550303\pi\)
\(510\) −2.89898 + 4.09978i −0.128369 + 0.181541i
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 3.25255 + 12.8475i 0.143604 + 0.567232i
\(514\) −4.10102 + 7.10318i −0.180888 + 0.313308i
\(515\) −20.2929 −0.894210
\(516\) −11.8990 1.09638i −0.523823 0.0482653i
\(517\) −9.79796 + 16.9706i −0.430914 + 0.746364i
\(518\) 0 0
\(519\) 5.34847 + 0.492810i 0.234772 + 0.0216320i
\(520\) 3.55051 6.14966i 0.155700 0.269681i
\(521\) 4.65153 8.05669i 0.203787 0.352970i −0.745958 0.665993i \(-0.768008\pi\)
0.949746 + 0.313023i \(0.101342\pi\)
\(522\) 13.4495 15.7313i 0.588668 0.688541i
\(523\) 7.17423 + 12.4261i 0.313707 + 0.543357i 0.979162 0.203081i \(-0.0650956\pi\)
−0.665455 + 0.746438i \(0.731762\pi\)
\(524\) 4.27526 + 7.40496i 0.186765 + 0.323487i
\(525\) 0 0
\(526\) −12.9495 + 22.4292i −0.564625 + 0.977958i
\(527\) 12.0000 0.522728
\(528\) −3.44949 0.317837i −0.150120 0.0138321i
\(529\) −22.0000 −0.956522
\(530\) −7.89898 13.6814i −0.343110 0.594284i
\(531\) −5.89898 1.09638i −0.255994 0.0475787i
\(532\) 0 0
\(533\) −24.0000 41.5692i −1.03956 1.80056i
\(534\) −12.2474 26.5843i −0.529999 1.15042i
\(535\) −8.69694 15.0635i −0.376001 0.651254i
\(536\) 6.44949 + 11.1708i 0.278576 + 0.482507i
\(537\) −35.6969 3.28913i −1.54044 0.141936i
\(538\) 9.17423 + 15.8902i 0.395529 + 0.685077i
\(539\) 0 0
\(540\) −1.84847 7.30142i −0.0795455 0.314203i
\(541\) 9.24745 + 16.0171i 0.397579 + 0.688627i 0.993427 0.114471i \(-0.0365172\pi\)
−0.595848 + 0.803097i \(0.703184\pi\)
\(542\) 7.10102 0.305015
\(543\) −7.50000 16.2795i −0.321856 0.698621i
\(544\) 2.00000 0.0857493
\(545\) 9.20204 15.9384i 0.394172 0.682726i
\(546\) 0 0
\(547\) 3.79796 + 6.57826i 0.162389 + 0.281266i 0.935725 0.352730i \(-0.114747\pi\)
−0.773336 + 0.633996i \(0.781413\pi\)
\(548\) −3.89898 6.75323i −0.166556 0.288484i
\(549\) −6.55051 18.5276i −0.279569 0.790740i
\(550\) 2.89898 5.02118i 0.123613 0.214104i
\(551\) 8.79796 15.2385i 0.374806 0.649182i
\(552\) −0.724745 1.57313i −0.0308472 0.0669570i
\(553\) 0 0
\(554\) 9.34847 16.1920i 0.397178 0.687933i
\(555\) −17.1010 + 24.1845i −0.725898 + 1.02657i
\(556\) 4.55051 0.192985
\(557\) 6.44949 11.1708i 0.273274 0.473324i −0.696424 0.717630i \(-0.745227\pi\)
0.969698 + 0.244306i \(0.0785602\pi\)
\(558\) −11.6969 + 13.6814i −0.495171 + 0.579181i
\(559\) 33.7980 1.42950
\(560\) 0 0
\(561\) −6.89898 0.635674i −0.291275 0.0268382i
\(562\) −19.0000 −0.801467
\(563\) 19.9722 + 34.5929i 0.841728 + 1.45791i 0.888433 + 0.459006i \(0.151794\pi\)
−0.0467054 + 0.998909i \(0.514872\pi\)
\(564\) 7.10102 + 15.4135i 0.299007 + 0.649025i
\(565\) −4.42168 + 7.65858i −0.186022 + 0.322199i
\(566\) −25.4495 −1.06972
\(567\) 0 0
\(568\) 0.101021 0.00423873
\(569\) 15.0000 25.9808i 0.628833 1.08917i −0.358954 0.933355i \(-0.616866\pi\)
0.987786 0.155815i \(-0.0498003\pi\)
\(570\) −2.67934 5.81577i −0.112225 0.243596i
\(571\) −16.8990 29.2699i −0.707200 1.22491i −0.965892 0.258947i \(-0.916625\pi\)
0.258691 0.965960i \(-0.416709\pi\)
\(572\) 9.79796 0.409673
\(573\) −7.07321 0.651729i −0.295488 0.0272263i
\(574\) 0 0
\(575\) 2.89898 0.120896
\(576\) −1.94949 + 2.28024i −0.0812287 + 0.0950100i
\(577\) 7.79796 13.5065i 0.324633 0.562281i −0.656805 0.754061i \(-0.728092\pi\)
0.981438 + 0.191779i \(0.0614258\pi\)
\(578\) −13.0000 −0.540729
\(579\) −17.8990 + 25.3130i −0.743856 + 1.05197i
\(580\) −5.00000 + 8.66025i −0.207614 + 0.359597i
\(581\) 0 0
\(582\) 2.10102 + 4.56048i 0.0870901 + 0.189038i
\(583\) 10.8990 18.8776i 0.451390 0.781830i
\(584\) 3.44949 5.97469i 0.142741 0.247234i
\(585\) 7.10102 + 20.0847i 0.293591 + 0.830401i
\(586\) −1.37628 2.38378i −0.0568534 0.0984730i
\(587\) −8.07321 13.9832i −0.333217 0.577149i 0.649924 0.760000i \(-0.274801\pi\)
−0.983141 + 0.182850i \(0.941468\pi\)
\(588\) 0 0
\(589\) −7.65153 + 13.2528i −0.315276 + 0.546074i
\(590\) 2.89898 0.119349
\(591\) 12.1010 + 26.2665i 0.497769 + 1.08046i
\(592\) 11.7980 0.484893
\(593\) −7.34847 12.7279i −0.301765 0.522673i 0.674770 0.738028i \(-0.264243\pi\)
−0.976536 + 0.215355i \(0.930909\pi\)
\(594\) 7.44949 7.24604i 0.305656 0.297309i
\(595\) 0 0
\(596\) 3.00000 + 5.19615i 0.122885 + 0.212843i
\(597\) 5.00000 + 0.460702i 0.204636 + 0.0188553i
\(598\) 2.44949 + 4.24264i 0.100167 + 0.173494i
\(599\) 16.8990 + 29.2699i 0.690474 + 1.19594i 0.971683 + 0.236289i \(0.0759312\pi\)
−0.281209 + 0.959646i \(0.590736\pi\)
\(600\) −2.10102 4.56048i −0.0857738 0.186181i
\(601\) −8.34847 14.4600i −0.340541 0.589835i 0.643992 0.765032i \(-0.277277\pi\)
−0.984533 + 0.175198i \(0.943944\pi\)
\(602\) 0 0
\(603\) −38.0454 7.07107i −1.54933 0.287956i
\(604\) 2.50000 + 4.33013i 0.101724 + 0.176190i
\(605\) 10.1464 0.412511
\(606\) 29.7474 + 2.74094i 1.20841 + 0.111343i
\(607\) 20.6969 0.840063 0.420031 0.907510i \(-0.362019\pi\)
0.420031 + 0.907510i \(0.362019\pi\)
\(608\) −1.27526 + 2.20881i −0.0517184 + 0.0895789i
\(609\) 0 0
\(610\) 4.74745 + 8.22282i 0.192219 + 0.332932i
\(611\) −24.0000 41.5692i −0.970936 1.68171i
\(612\) −3.89898 + 4.56048i −0.157607 + 0.184346i
\(613\) 7.34847 12.7279i 0.296802 0.514076i −0.678601 0.734508i \(-0.737413\pi\)
0.975402 + 0.220432i \(0.0707466\pi\)
\(614\) −12.6237 + 21.8649i −0.509452 + 0.882397i
\(615\) 24.4949 + 2.25697i 0.987730 + 0.0910098i
\(616\) 0 0
\(617\) 7.69694 13.3315i 0.309867 0.536706i −0.668466 0.743743i \(-0.733049\pi\)
0.978333 + 0.207037i \(0.0663821\pi\)
\(618\) −24.1464 2.22486i −0.971312 0.0894970i
\(619\) 30.1464 1.21169 0.605844 0.795584i \(-0.292836\pi\)
0.605844 + 0.795584i \(0.292836\pi\)
\(620\) 4.34847 7.53177i 0.174639 0.302483i
\(621\) 5.00000 + 1.41421i 0.200643 + 0.0567504i
\(622\) 30.6969 1.23084
\(623\) 0 0
\(624\) 4.89898 6.92820i 0.196116 0.277350i
\(625\) −2.10102 −0.0840408
\(626\) 2.34847 + 4.06767i 0.0938637 + 0.162577i
\(627\) 5.10102 7.21393i 0.203715 0.288097i
\(628\) 4.17423 7.22999i 0.166570 0.288508i
\(629\) 23.5959 0.940831
\(630\) 0 0
\(631\) 27.8990 1.11064 0.555320 0.831636i \(-0.312596\pi\)
0.555320 + 0.831636i \(0.312596\pi\)
\(632\) 0.949490 1.64456i 0.0377687 0.0654173i
\(633\) −22.2474 2.04989i −0.884257 0.0814757i
\(634\) −10.3485 17.9241i −0.410990 0.711856i
\(635\) 4.34847 0.172564
\(636\) −7.89898 17.1455i −0.313215 0.679865i
\(637\) 0 0
\(638\) −13.7980 −0.546266
\(639\) −0.196938 + 0.230351i −0.00779076 + 0.00911254i
\(640\) 0.724745 1.25529i 0.0286481 0.0496199i
\(641\) −7.49490 −0.296031 −0.148015 0.988985i \(-0.547288\pi\)
−0.148015 + 0.988985i \(0.547288\pi\)
\(642\) −8.69694 18.8776i −0.343241 0.745039i
\(643\) 19.6969 34.1161i 0.776771 1.34541i −0.157022 0.987595i \(-0.550189\pi\)
0.933793 0.357812i \(-0.116477\pi\)
\(644\) 0 0
\(645\) −10.0000 + 14.1421i −0.393750 + 0.556846i
\(646\) −2.55051 + 4.41761i −0.100348 + 0.173809i
\(647\) 25.3485 43.9048i 0.996551 1.72608i 0.426412 0.904529i \(-0.359777\pi\)
0.570139 0.821548i \(-0.306889\pi\)
\(648\) −1.39898 8.89060i −0.0549571 0.349256i
\(649\) 2.00000 + 3.46410i 0.0785069 + 0.135978i
\(650\) 7.10102 + 12.2993i 0.278525 + 0.482419i
\(651\) 0 0
\(652\) 9.89898 17.1455i 0.387674 0.671471i
\(653\) 9.79796 0.383424 0.191712 0.981451i \(-0.438596\pi\)
0.191712 + 0.981451i \(0.438596\pi\)
\(654\) 12.6969 17.9562i 0.496490 0.702142i
\(655\) 12.3939 0.484269
\(656\) −4.89898 8.48528i −0.191273 0.331295i
\(657\) 6.89898 + 19.5133i 0.269155 + 0.761285i
\(658\) 0 0
\(659\) 12.3485 + 21.3882i 0.481028 + 0.833165i 0.999763 0.0217701i \(-0.00693018\pi\)
−0.518735 + 0.854935i \(0.673597\pi\)
\(660\) −2.89898 + 4.09978i −0.112843 + 0.159584i
\(661\) −2.27526 3.94086i −0.0884972 0.153282i 0.818379 0.574679i \(-0.194873\pi\)
−0.906876 + 0.421397i \(0.861540\pi\)
\(662\) −2.34847 4.06767i −0.0912758 0.158094i
\(663\) 9.79796 13.8564i 0.380521 0.538138i
\(664\) −1.00000 1.73205i −0.0388075 0.0672166i
\(665\) 0 0
\(666\) −23.0000 + 26.9022i −0.891232 + 1.04244i
\(667\) −3.44949 5.97469i −0.133565 0.231341i
\(668\) −10.6969 −0.413877
\(669\) −11.1010 + 15.6992i −0.429190 + 0.606967i
\(670\) 18.6969 0.722326
\(671\) −6.55051 + 11.3458i −0.252880 + 0.438000i
\(672\) 0 0
\(673\) 4.29796 + 7.44428i 0.165674 + 0.286956i 0.936894 0.349612i \(-0.113687\pi\)
−0.771220 + 0.636568i \(0.780353\pi\)
\(674\) 11.6969 + 20.2597i 0.450549 + 0.780374i
\(675\) 14.4949 + 4.09978i 0.557909 + 0.157800i
\(676\) −5.50000 + 9.52628i −0.211538 + 0.366395i
\(677\) −7.34847 + 12.7279i −0.282425 + 0.489174i −0.971981 0.235058i \(-0.924472\pi\)
0.689557 + 0.724232i \(0.257805\pi\)
\(678\) −6.10102 + 8.62815i −0.234308 + 0.331362i
\(679\) 0 0
\(680\) 1.44949 2.51059i 0.0555854 0.0962767i
\(681\) −3.94949 8.57277i −0.151345 0.328509i
\(682\) 12.0000 0.459504
\(683\) −25.8990 + 44.8583i −0.990997 + 1.71646i −0.379551 + 0.925171i \(0.623921\pi\)
−0.611446 + 0.791286i \(0.709412\pi\)
\(684\) −2.55051 7.21393i −0.0975212 0.275832i
\(685\) −11.3031 −0.431868
\(686\) 0 0
\(687\) 0.904082 + 1.96240i 0.0344929 + 0.0748703i
\(688\) 6.89898 0.263021
\(689\) 26.6969 + 46.2405i 1.01707 + 1.76162i
\(690\) −2.50000 0.230351i −0.0951734 0.00876931i
\(691\) −25.5227 + 44.2066i −0.970929 + 1.68170i −0.278168 + 0.960533i \(0.589727\pi\)
−0.692762 + 0.721167i \(0.743606\pi\)
\(692\) −3.10102 −0.117883
\(693\) 0 0
\(694\) 19.5959 0.743851
\(695\) 3.29796 5.71223i 0.125099 0.216677i
\(696\) −6.89898 + 9.75663i −0.261505 + 0.369824i
\(697\) −9.79796 16.9706i −0.371124 0.642806i
\(698\) 11.1010 0.420180
\(699\) −7.00000 + 9.89949i −0.264764 + 0.374433i
\(700\) 0 0
\(701\) −7.39388 −0.279263 −0.139631 0.990204i \(-0.544592\pi\)
−0.139631 + 0.990204i \(0.544592\pi\)
\(702\) 6.24745 + 24.6773i 0.235795 + 0.931385i
\(703\) −15.0454 + 26.0594i −0.567448 + 0.982849i
\(704\) 2.00000 0.0753778
\(705\) 24.4949 + 2.25697i 0.922531 + 0.0850024i
\(706\) 3.00000 5.19615i 0.112906 0.195560i
\(707\) 0 0
\(708\) 3.44949 + 0.317837i 0.129640 + 0.0119451i
\(709\) −13.7980 + 23.8988i −0.518193 + 0.897537i 0.481583 + 0.876400i \(0.340062\pi\)
−0.999777 + 0.0211367i \(0.993271\pi\)
\(710\) 0.0732141 0.126811i 0.00274768 0.00475911i
\(711\) 1.89898 + 5.37113i 0.0712173 + 0.201433i
\(712\) 8.44949 + 14.6349i 0.316658 + 0.548468i
\(713\) 3.00000 + 5.19615i 0.112351 + 0.194597i
\(714\) 0 0
\(715\) 7.10102 12.2993i 0.265563 0.459969i
\(716\) 20.6969 0.773481
\(717\) −11.7247 1.08032i −0.437869 0.0403454i
\(718\) −8.79796 −0.328337
\(719\) −4.89898 8.48528i −0.182701 0.316448i 0.760098 0.649808i \(-0.225151\pi\)
−0.942799 + 0.333360i \(0.891817\pi\)
\(720\) 1.44949 + 4.09978i 0.0540193 + 0.152790i
\(721\) 0 0
\(722\) 6.24745 + 10.8209i 0.232506 + 0.402712i
\(723\) 0.651531 + 1.41421i 0.0242307 + 0.0525952i
\(724\) 5.17423 + 8.96204i 0.192299 + 0.333071i
\(725\) −10.0000 17.3205i −0.371391 0.643268i
\(726\) 12.0732 + 1.11243i 0.448079 + 0.0412862i
\(727\) 4.24745 + 7.35680i 0.157529 + 0.272848i 0.933977 0.357333i \(-0.116314\pi\)
−0.776448 + 0.630181i \(0.782981\pi\)
\(728\) 0 0
\(729\) 23.0000 + 14.1421i 0.851852 + 0.523783i
\(730\) −5.00000 8.66025i −0.185058 0.320530i
\(731\) 13.7980 0.510336
\(732\) 4.74745 + 10.3048i 0.175471 + 0.380877i
\(733\) −17.4495 −0.644512 −0.322256 0.946653i \(-0.604441\pi\)
−0.322256 + 0.946653i \(0.604441\pi\)
\(734\) 6.89898 11.9494i 0.254646 0.441060i
\(735\) 0 0
\(736\) 0.500000 + 0.866025i 0.0184302 + 0.0319221i
\(737\) 12.8990 + 22.3417i 0.475140 + 0.822967i
\(738\) 28.8990 + 5.37113i 1.06379 + 0.197714i
\(739\) −6.79796 + 11.7744i −0.250067 + 0.433129i −0.963544 0.267550i \(-0.913786\pi\)
0.713477 + 0.700679i \(0.247119\pi\)
\(740\) 8.55051 14.8099i 0.314323 0.544423i
\(741\) 9.05561 + 19.6561i 0.332666 + 0.722086i
\(742\) 0 0
\(743\) −18.0000 + 31.1769i −0.660356 + 1.14377i 0.320166 + 0.947361i \(0.396261\pi\)
−0.980522 + 0.196409i \(0.937072\pi\)
\(744\) 6.00000 8.48528i 0.219971 0.311086i
\(745\) 8.69694 0.318631
\(746\) 3.44949 5.97469i 0.126295 0.218749i
\(747\) 5.89898 + 1.09638i 0.215832 + 0.0401143i
\(748\) 4.00000 0.146254
\(749\) 0 0
\(750\) −19.7474 1.81954i −0.721075 0.0664401i
\(751\) 1.40408 0.0512357 0.0256178 0.999672i \(-0.491845\pi\)
0.0256178 + 0.999672i \(0.491845\pi\)
\(752\) −4.89898 8.48528i −0.178647 0.309426i
\(753\) 12.6464 + 27.4504i 0.460861 + 1.00035i
\(754\) 16.8990 29.2699i 0.615425 1.06595i
\(755\) 7.24745 0.263762
\(756\) 0 0
\(757\) −35.3939 −1.28641 −0.643206 0.765693i \(-0.722396\pi\)
−0.643206 + 0.765693i \(0.722396\pi\)
\(758\) −11.2474 + 19.4812i −0.408526 + 0.707587i
\(759\) −1.44949 3.14626i −0.0526131 0.114202i
\(760\) 1.84847 + 3.20164i 0.0670510 + 0.116136i
\(761\) 2.00000 0.0724999 0.0362500 0.999343i \(-0.488459\pi\)
0.0362500 + 0.999343i \(0.488459\pi\)
\(762\) 5.17423 + 0.476756i 0.187443 + 0.0172710i
\(763\) 0 0
\(764\) 4.10102 0.148370
\(765\) 2.89898 + 8.19955i 0.104813 + 0.296455i
\(766\) 1.44949 2.51059i 0.0523722 0.0907113i
\(767\) −9.79796 −0.353784
\(768\) 1.00000 1.41421i 0.0360844 0.0510310i
\(769\) 17.0454 29.5235i 0.614673 1.06465i −0.375769 0.926714i \(-0.622621\pi\)
0.990442 0.137932i \(-0.0440454\pi\)
\(770\) 0 0
\(771\) 5.94439 + 12.9029i 0.214082 + 0.464686i
\(772\) 8.94949 15.5010i 0.322099 0.557892i
\(773\) −16.9722 + 29.3967i −0.610447 + 1.05733i 0.380718 + 0.924691i \(0.375677\pi\)
−0.991165 + 0.132635i \(0.957656\pi\)
\(774\) −13.4495 + 15.7313i −0.483432 + 0.565451i
\(775\) 8.69694 + 15.0635i 0.312403 + 0.541098i
\(776\) −1.44949 2.51059i −0.0520336 0.0901249i
\(777\) 0 0
\(778\) 12.4495 21.5631i 0.446336 0.773076i
\(779\) 24.9898 0.895352
\(780\) −5.14643 11.1708i −0.184272 0.399980i
\(781\) 0.202041 0.00722960
\(782\) 1.00000 + 1.73205i 0.0357599 + 0.0619380i
\(783\) −8.79796 34.7518i −0.314413 1.24193i
\(784\) 0 0
\(785\) −6.05051 10.4798i −0.215952 0.374040i
\(786\) 14.7474 + 1.35884i 0.526024 + 0.0484681i
\(787\) 5.69694 + 9.86739i 0.203074 + 0.351734i 0.949517 0.313715i \(-0.101573\pi\)
−0.746443 + 0.665449i \(0.768240\pi\)
\(788\) −8.34847 14.4600i −0.297402 0.515115i
\(789\) 18.7702 + 40.7425i 0.668235 + 1.45047i
\(790\) −1.37628 2.38378i −0.0489657 0.0848111i
\(791\) 0 0
\(792\) −3.89898 + 4.56048i −0.138544 + 0.162050i
\(793\) −16.0454 27.7915i −0.569789 0.986904i
\(794\) 38.6969 1.37330
\(795\) −27.2474 2.51059i −0.966367 0.0890414i
\(796\) −2.89898 −0.102752
\(797\) 8.97219 15.5403i 0.317811 0.550465i −0.662220 0.749310i \(-0.730385\pi\)
0.980031 + 0.198844i \(0.0637188\pi\)
\(798\) 0 0
\(799\) −9.79796 16.9706i −0.346627 0.600375i
\(800\) 1.44949 + 2.51059i 0.0512472 + 0.0887628i
\(801\) −49.8434 9.26382i −1.76113 0.327321i
\(802\) 9.94949 17.2330i 0.351329 0.608519i
\(803\) 6.89898 11.9494i 0.243460 0.421685i
\(804\) 22.2474 + 2.04989i 0.784607 + 0.0722940i
\(805\) 0 0
\(806\) −14.6969 + 25.4558i −0.517678 + 0.896644i
\(807\) 31.6464 + 2.91591i 1.11401 + 0.102645i
\(808\) −17.2474 −0.606763
\(809\) 8.10102 14.0314i 0.284817 0.493317i −0.687748 0.725950i \(-0.741401\pi\)
0.972565 + 0.232632i \(0.0747339\pi\)
\(810\) −12.1742 4.68729i −0.427759 0.164695i
\(811\) −2.00000 −0.0702295 −0.0351147 0.999383i \(-0.511180\pi\)
−0.0351147 + 0.999383i \(0.511180\pi\)
\(812\) 0 0
\(813\) 7.10102 10.0424i 0.249044 0.352201i
\(814\) 23.5959 0.827036
\(815\) −14.3485 24.8523i −0.502605 0.870537i
\(816\) 2.00000 2.82843i 0.0700140 0.0990148i
\(817\) −8.79796 + 15.2385i −0.307802 + 0.533128i
\(818\) −13.7980 −0.482434
\(819\) 0 0
\(820\) −14.2020 −0.495957
\(821\) −0.202041 + 0.349945i −0.00705128 + 0.0122132i −0.869530 0.493881i \(-0.835578\pi\)
0.862478 + 0.506094i \(0.168911\pi\)
\(822\) −13.4495 1.23924i −0.469105 0.0432235i
\(823\) 6.69694 + 11.5994i 0.233441 + 0.404331i 0.958818 0.284020i \(-0.0916682\pi\)
−0.725378 + 0.688351i \(0.758335\pi\)
\(824\) 14.0000 0.487713
\(825\) −4.20204 9.12096i −0.146296 0.317551i
\(826\) 0 0
\(827\) −36.4949 −1.26905 −0.634526 0.772902i \(-0.718805\pi\)
−0.634526 + 0.772902i \(0.718805\pi\)
\(828\) −2.94949 0.548188i −0.102502 0.0190509i
\(829\) −0.651531 + 1.12848i −0.0226286 + 0.0391939i −0.877118 0.480275i \(-0.840537\pi\)
0.854489 + 0.519469i \(0.173870\pi\)
\(830\) −2.89898 −0.100625
\(831\) −13.5505 29.4128i −0.470062 1.02032i
\(832\) −2.44949 + 4.24264i −0.0849208 + 0.147087i
\(833\) 0 0
\(834\) 4.55051 6.43539i 0.157571 0.222839i
\(835\) −7.75255 + 13.4278i −0.268288 + 0.464689i
\(836\) −2.55051 + 4.41761i −0.0882112 + 0.152786i
\(837\) 7.65153 + 30.2234i 0.264476 + 1.04467i
\(838\) −14.7247 25.5040i −0.508658 0.881021i
\(839\) 17.5505 + 30.3984i 0.605911 + 1.04947i 0.991907 + 0.126968i \(0.0405245\pi\)
−0.385996 + 0.922500i \(0.626142\pi\)
\(840\) 0 0
\(841\) −9.29796 + 16.1045i −0.320619 + 0.555329i
\(842\) 22.8990 0.789151
\(843\) −19.0000 + 26.8701i −0.654395 + 0.925454i
\(844\) 12.8990 0.444001
\(845\) 7.97219 + 13.8082i 0.274252 + 0.475018i
\(846\) 28.8990 + 5.37113i 0.993567 + 0.184663i
\(847\) 0 0
\(848\) 5.44949 + 9.43879i 0.187136 + 0.324129i
\(849\) −25.4495 + 35.9910i −0.873424 + 1.23521i
\(850\) 2.89898 + 5.02118i 0.0994342 + 0.172225i
\(851\) 5.89898 + 10.2173i 0.202214 + 0.350246i
\(852\) 0.101021 0.142865i 0.00346091 0.00489446i
\(853\) −12.4217 21.5150i −0.425310 0.736659i 0.571139 0.820853i \(-0.306502\pi\)
−0.996449 + 0.0841942i \(0.973168\pi\)
\(854\) 0 0
\(855\) −10.9041 2.02662i −0.372912 0.0693089i
\(856\) 6.00000 + 10.3923i 0.205076 + 0.355202i
\(857\) −34.8990 −1.19213 −0.596063 0.802938i \(-0.703269\pi\)
−0.596063 + 0.802938i \(0.703269\pi\)
\(858\) 9.79796 13.8564i 0.334497 0.473050i
\(859\) −10.0000 −0.341196 −0.170598 0.985341i \(-0.554570\pi\)
−0.170598 + 0.985341i \(0.554570\pi\)
\(860\) 5.00000 8.66025i 0.170499 0.295312i
\(861\) 0 0
\(862\) −15.7980 27.3629i −0.538081 0.931983i
\(863\) −5.94949 10.3048i −0.202523 0.350780i 0.746818 0.665029i \(-0.231581\pi\)
−0.949341 + 0.314249i \(0.898247\pi\)
\(864\) 1.27526 + 5.03723i 0.0433851 + 0.171370i
\(865\) −2.24745 + 3.89270i −0.0764155 + 0.132356i
\(866\) 3.89898 6.75323i 0.132493 0.229484i
\(867\) −13.0000 + 18.3848i −0.441503 + 0.624380i
\(868\) 0 0
\(869\) 1.89898 3.28913i 0.0644185 0.111576i
\(870\) 7.24745 + 15.7313i 0.245712 + 0.533342i
\(871\) −63.1918 −2.14117
\(872\) −6.34847 + 10.9959i −0.214986 + 0.372367i
\(873\) 8.55051 + 1.58919i 0.289391 + 0.0537858i
\(874\) −2.55051 −0.0862723
\(875\) 0 0
\(876\) −5.00000 10.8530i −0.168934 0.366689i
\(877\) 22.4949 0.759599 0.379799 0.925069i \(-0.375993\pi\)
0.379799 + 0.925069i \(0.375993\pi\)
\(878\) −1.10102 1.90702i −0.0371576 0.0643589i
\(879\) −4.74745 0.437432i −0.160127 0.0147542i
\(880\) 1.44949 2.51059i 0.0488623 0.0846320i
\(881\) 19.5959 0.660203 0.330102 0.943945i \(-0.392917\pi\)
0.330102 + 0.943945i \(0.392917\pi\)
\(882\) 0 0
\(883\) −19.7980 −0.666254 −0.333127 0.942882i \(-0.608104\pi\)
−0.333127 + 0.942882i \(0.608104\pi\)
\(884\) −4.89898 + 8.48528i −0.164771 + 0.285391i
\(885\) 2.89898 4.09978i 0.0974481 0.137812i
\(886\) 7.44949 + 12.9029i 0.250271 + 0.433481i
\(887\) −14.2020 −0.476858 −0.238429 0.971160i \(-0.576632\pi\)
−0.238429 + 0.971160i \(0.576632\pi\)
\(888\) 11.7980 16.6848i 0.395914 0.559906i
\(889\) 0 0
\(890\) 24.4949 0.821071
\(891\) −2.79796 17.7812i −0.0937352 0.595693i
\(892\) 5.55051 9.61377i 0.185845 0.321893i
\(893\) 24.9898 0.836252
\(894\) 10.3485 + 0.953512i 0.346105 + 0.0318902i
\(895\) 15.0000 25.9808i 0.501395 0.868441i
\(896\) 0 0
\(897\) 8.44949 + 0.778539i 0.282120 + 0.0259947i
\(898\) −10.2980 + 17.8366i −0.343647 + 0.595215i
\(899\) 20.6969 35.8481i 0.690282 1.19560i
\(900\) −8.55051 1.58919i −0.285017 0.0529729i
\(901\) 10.8990 + 18.8776i 0.363098 + 0.628904i
\(902\) −9.79796 16.9706i −0.326236 0.565058i
\(903\) 0 0
\(904\) 3.05051 5.28364i 0.101458 0.175731i
\(905\) 15.0000 0.498617
\(906\) 8.62372 + 0.794593i 0.286504 + 0.0263986i
\(907\) 2.69694 0.0895504 0.0447752 0.998997i \(-0.485743\pi\)
0.0447752 + 0.998997i \(0.485743\pi\)
\(908\) 2.72474 + 4.71940i 0.0904238 + 0.156619i
\(909\) 33.6237 39.3283i 1.11523 1.30444i
\(910\) 0 0
\(911\) −25.9949 45.0245i −0.861249 1.49173i −0.870724 0.491773i \(-0.836349\pi\)
0.00947432 0.999955i \(-0.496984\pi\)
\(912\) 1.84847 + 4.01229i 0.0612089 + 0.132860i
\(913\) −2.00000 3.46410i −0.0661903 0.114645i
\(914\) 8.74745 + 15.1510i 0.289340 + 0.501151i
\(915\) 16.3763 + 1.50892i 0.541383 + 0.0498832i
\(916\) −0.623724 1.08032i −0.0206084 0.0356949i
\(917\) 0 0
\(918\) 2.55051 + 10.0745i 0.0841794 + 0.332507i
\(919\) 12.8485 + 22.2542i 0.423832 + 0.734098i 0.996311 0.0858213i \(-0.0273514\pi\)
−0.572479 + 0.819920i \(0.694018\pi\)
\(920\) 1.44949 0.0477883
\(921\) 18.2980 + 39.7176i 0.602938 + 1.30874i
\(922\) 5.65153 0.186123
\(923\) −0.247449 + 0.428594i −0.00814487 + 0.0141073i
\(924\) 0 0
\(925\) 17.1010 + 29.6198i 0.562278 + 0.973894i
\(926\) −1.84847 3.20164i −0.0607445 0.105213i
\(927\) −27.2929 + 31.9233i −0.896415 + 1.04850i
\(928\) 3.44949 5.97469i 0.113235 0.196129i
\(929\) −17.1464 + 29.6985i −0.562556 + 0.974376i 0.434716 + 0.900567i \(0.356849\pi\)
−0.997272 + 0.0738083i \(0.976485\pi\)
\(930\) −6.30306 13.6814i −0.206686 0.448632i
\(931\) 0 0
\(932\) 3.50000 6.06218i 0.114646 0.198573i
\(933\) 30.6969 43.4120i 1.00497 1.42125i
\(934\) 10.0000 0.327210
\(935\) 2.89898 5.02118i 0.0948068 0.164210i
\(936\) −4.89898 13.8564i −0.160128 0.452911i
\(937\) 45.5959 1.48955 0.744777 0.667314i \(-0.232556\pi\)
0.744777 + 0.667314i \(0.232556\pi\)
\(938\) 0 0
\(939\) 8.10102 + 0.746431i 0.264367 + 0.0243589i
\(940\) −14.2020 −0.463220
\(941\) 0.724745 + 1.25529i 0.0236260 + 0.0409214i 0.877597 0.479400i \(-0.159146\pi\)
−0.853971 + 0.520321i \(0.825812\pi\)
\(942\) −6.05051 13.1332i −0.197136 0.427904i
\(943\) 4.89898 8.48528i 0.159533 0.276319i
\(944\) −2.00000 −0.0650945
\(945\) 0 0
\(946\) 13.7980 0.448610
\(947\) −26.2474 + 45.4619i −0.852927 + 1.47731i 0.0256270 + 0.999672i \(0.491842\pi\)
−0.878554 + 0.477642i \(0.841492\pi\)
\(948\) −1.37628 2.98735i −0.0446994 0.0970245i
\(949\) 16.8990 + 29.2699i 0.548564 + 0.950141i
\(950\) −7.39388 −0.239889
\(951\) −35.6969 3.28913i −1.15755 0.106657i
\(952\) 0 0
\(953\) −3.39388 −0.109938 −0.0549692 0.998488i \(-0.517506\pi\)
−0.0549692 + 0.998488i \(0.517506\pi\)
\(954\) −32.1464 5.97469i −1.04078 0.193438i
\(955\) 2.97219 5.14799i 0.0961779 0.166585i
\(956\) 6.79796 0.219862
\(957\) −13.7980 + 19.5133i −0.446025 + 0.630774i
\(958\) −4.79796 + 8.31031i −0.155015 + 0.268494i
\(959\) 0 0
\(960\) −1.05051 2.28024i −0.0339051 0.0735944i
\(961\) −2.50000 + 4.33013i −0.0806452 + 0.139682i
\(962\) −28.8990 + 50.0545i −0.931740 + 1.61382i
\(963\) −35.3939 6.57826i −1.14055 0.211981i
\(964\) −0.449490 0.778539i −0.0144771 0.0250751i
\(965\) −12.9722 22.4685i −0.417590 0.723287i
\(966\) 0 0
\(967\) −12.2980 + 21.3007i −0.395476 + 0.684984i −0.993162 0.116746i \(-0.962754\pi\)
0.597686 + 0.801730i \(0.296087\pi\)
\(968\) −7.00000 −0.224989
\(969\) 3.69694 + 8.02458i 0.118763 + 0.257787i
\(970\) −4.20204 −0.134919
\(971\) 0.0278064 + 0.0481621i 0.000892350 + 0.00154560i 0.866471 0.499227i \(-0.166383\pi\)
−0.865579 + 0.500773i \(0.833049\pi\)
\(972\) −13.9722 6.91215i −0.448158 0.221707i
\(973\) 0 0
\(974\) 18.1969 + 31.5180i 0.583068 + 1.00990i
\(975\) 24.4949 + 2.25697i 0.784465 + 0.0722808i
\(976\) −3.27526 5.67291i −0.104838 0.181585i
\(977\) 18.7980 + 32.5590i 0.601400 + 1.04166i 0.992609 + 0.121354i \(0.0387235\pi\)
−0.391209 + 0.920302i \(0.627943\pi\)
\(978\) −14.3485 31.1448i −0.458813 0.995901i
\(979\) 16.8990 + 29.2699i 0.540094 + 0.935470i
\(980\) 0 0
\(981\) −12.6969 35.9124i −0.405382 1.14659i
\(982\) −7.89898 13.6814i −0.252067 0.436592i
\(983\) −33.1918 −1.05866 −0.529328 0.848418i \(-0.677556\pi\)
−0.529328 + 0.848418i \(0.677556\pi\)
\(984\) −16.8990 1.55708i −0.538720 0.0496378i
\(985\) −24.2020 −0.771141
\(986\) 6.89898 11.9494i 0.219708 0.380546i
\(987\) 0 0
\(988\) −6.24745 10.8209i −0.198758 0.344259i
\(989\) 3.44949 + 5.97469i 0.109687 + 0.189984i
\(990\) 2.89898 + 8.19955i 0.0921356 + 0.260599i
\(991\) 0.898979 1.55708i 0.0285570 0.0494622i −0.851394 0.524527i \(-0.824242\pi\)
0.879951 + 0.475065i \(0.157575\pi\)
\(992\) −3.00000 + 5.19615i −0.0952501 + 0.164978i
\(993\) −8.10102 0.746431i −0.257078 0.0236873i
\(994\) 0 0
\(995\) −2.10102 + 3.63907i −0.0666068 + 0.115366i
\(996\) −3.44949 0.317837i −0.109301 0.0100711i
\(997\) 52.1464 1.65149 0.825747 0.564041i \(-0.190754\pi\)
0.825747 + 0.564041i \(0.190754\pi\)
\(998\) 12.6969 21.9917i 0.401915 0.696136i
\(999\) 15.0454 + 59.4291i 0.476016 + 1.88025i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.2.h.k.67.2 4
3.2 odd 2 2646.2.h.m.361.2 4
7.2 even 3 882.2.e.m.373.1 4
7.3 odd 6 882.2.f.j.589.2 4
7.4 even 3 126.2.f.c.85.1 yes 4
7.5 odd 6 882.2.e.n.373.2 4
7.6 odd 2 882.2.h.l.67.1 4
9.2 odd 6 2646.2.e.l.2125.1 4
9.7 even 3 882.2.e.m.655.1 4
21.2 odd 6 2646.2.e.l.1549.1 4
21.5 even 6 2646.2.e.k.1549.2 4
21.11 odd 6 378.2.f.d.253.1 4
21.17 even 6 2646.2.f.k.1765.2 4
21.20 even 2 2646.2.h.n.361.1 4
28.11 odd 6 1008.2.r.e.337.2 4
63.2 odd 6 2646.2.h.m.667.2 4
63.4 even 3 1134.2.a.p.1.1 2
63.11 odd 6 378.2.f.d.127.1 4
63.16 even 3 inner 882.2.h.k.79.2 4
63.20 even 6 2646.2.e.k.2125.2 4
63.25 even 3 126.2.f.c.43.2 4
63.31 odd 6 7938.2.a.bn.1.2 2
63.32 odd 6 1134.2.a.i.1.2 2
63.34 odd 6 882.2.e.n.655.2 4
63.38 even 6 2646.2.f.k.883.2 4
63.47 even 6 2646.2.h.n.667.1 4
63.52 odd 6 882.2.f.j.295.1 4
63.59 even 6 7938.2.a.bm.1.1 2
63.61 odd 6 882.2.h.l.79.1 4
84.11 even 6 3024.2.r.e.1009.1 4
252.11 even 6 3024.2.r.e.2017.1 4
252.67 odd 6 9072.2.a.bk.1.1 2
252.95 even 6 9072.2.a.bd.1.2 2
252.151 odd 6 1008.2.r.e.673.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.f.c.43.2 4 63.25 even 3
126.2.f.c.85.1 yes 4 7.4 even 3
378.2.f.d.127.1 4 63.11 odd 6
378.2.f.d.253.1 4 21.11 odd 6
882.2.e.m.373.1 4 7.2 even 3
882.2.e.m.655.1 4 9.7 even 3
882.2.e.n.373.2 4 7.5 odd 6
882.2.e.n.655.2 4 63.34 odd 6
882.2.f.j.295.1 4 63.52 odd 6
882.2.f.j.589.2 4 7.3 odd 6
882.2.h.k.67.2 4 1.1 even 1 trivial
882.2.h.k.79.2 4 63.16 even 3 inner
882.2.h.l.67.1 4 7.6 odd 2
882.2.h.l.79.1 4 63.61 odd 6
1008.2.r.e.337.2 4 28.11 odd 6
1008.2.r.e.673.1 4 252.151 odd 6
1134.2.a.i.1.2 2 63.32 odd 6
1134.2.a.p.1.1 2 63.4 even 3
2646.2.e.k.1549.2 4 21.5 even 6
2646.2.e.k.2125.2 4 63.20 even 6
2646.2.e.l.1549.1 4 21.2 odd 6
2646.2.e.l.2125.1 4 9.2 odd 6
2646.2.f.k.883.2 4 63.38 even 6
2646.2.f.k.1765.2 4 21.17 even 6
2646.2.h.m.361.2 4 3.2 odd 2
2646.2.h.m.667.2 4 63.2 odd 6
2646.2.h.n.361.1 4 21.20 even 2
2646.2.h.n.667.1 4 63.47 even 6
3024.2.r.e.1009.1 4 84.11 even 6
3024.2.r.e.2017.1 4 252.11 even 6
7938.2.a.bm.1.1 2 63.59 even 6
7938.2.a.bn.1.2 2 63.31 odd 6
9072.2.a.bd.1.2 2 252.95 even 6
9072.2.a.bk.1.1 2 252.67 odd 6