Properties

Label 882.2.h.g.67.1
Level $882$
Weight $2$
Character 882.67
Analytic conductor $7.043$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,2,Mod(67,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.67");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 882.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.04280545828\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 67.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 882.67
Dual form 882.2.h.g.79.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} -1.73205i q^{3} +(-0.500000 - 0.866025i) q^{4} -2.00000 q^{5} +(-1.50000 - 0.866025i) q^{6} -1.00000 q^{8} -3.00000 q^{9} +(-1.00000 + 1.73205i) q^{10} +1.00000 q^{11} +(-1.50000 + 0.866025i) q^{12} +(-3.00000 + 5.19615i) q^{13} +3.46410i q^{15} +(-0.500000 + 0.866025i) q^{16} +(-2.50000 + 4.33013i) q^{17} +(-1.50000 + 2.59808i) q^{18} +(-3.50000 - 6.06218i) q^{19} +(1.00000 + 1.73205i) q^{20} +(0.500000 - 0.866025i) q^{22} +4.00000 q^{23} +1.73205i q^{24} -1.00000 q^{25} +(3.00000 + 5.19615i) q^{26} +5.19615i q^{27} +(2.00000 + 3.46410i) q^{29} +(3.00000 + 1.73205i) q^{30} +(-3.00000 - 5.19615i) q^{31} +(0.500000 + 0.866025i) q^{32} -1.73205i q^{33} +(2.50000 + 4.33013i) q^{34} +(1.50000 + 2.59808i) q^{36} +(-1.00000 - 1.73205i) q^{37} -7.00000 q^{38} +(9.00000 + 5.19615i) q^{39} +2.00000 q^{40} +(1.50000 - 2.59808i) q^{41} +(0.500000 + 0.866025i) q^{43} +(-0.500000 - 0.866025i) q^{44} +6.00000 q^{45} +(2.00000 - 3.46410i) q^{46} +(1.50000 + 0.866025i) q^{48} +(-0.500000 + 0.866025i) q^{50} +(7.50000 + 4.33013i) q^{51} +6.00000 q^{52} +(-6.00000 + 10.3923i) q^{53} +(4.50000 + 2.59808i) q^{54} -2.00000 q^{55} +(-10.5000 + 6.06218i) q^{57} +4.00000 q^{58} +(-3.50000 - 6.06218i) q^{59} +(3.00000 - 1.73205i) q^{60} +(-6.00000 + 10.3923i) q^{61} -6.00000 q^{62} +1.00000 q^{64} +(6.00000 - 10.3923i) q^{65} +(-1.50000 - 0.866025i) q^{66} +(-6.50000 - 11.2583i) q^{67} +5.00000 q^{68} -6.92820i q^{69} -8.00000 q^{71} +3.00000 q^{72} +(0.500000 - 0.866025i) q^{73} -2.00000 q^{74} +1.73205i q^{75} +(-3.50000 + 6.06218i) q^{76} +(9.00000 - 5.19615i) q^{78} +(3.00000 - 5.19615i) q^{79} +(1.00000 - 1.73205i) q^{80} +9.00000 q^{81} +(-1.50000 - 2.59808i) q^{82} +(8.00000 + 13.8564i) q^{83} +(5.00000 - 8.66025i) q^{85} +1.00000 q^{86} +(6.00000 - 3.46410i) q^{87} -1.00000 q^{88} +(-3.00000 - 5.19615i) q^{89} +(3.00000 - 5.19615i) q^{90} +(-2.00000 - 3.46410i) q^{92} +(-9.00000 + 5.19615i) q^{93} +(7.00000 + 12.1244i) q^{95} +(1.50000 - 0.866025i) q^{96} +(-2.50000 - 4.33013i) q^{97} -3.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - q^{4} - 4 q^{5} - 3 q^{6} - 2 q^{8} - 6 q^{9} - 2 q^{10} + 2 q^{11} - 3 q^{12} - 6 q^{13} - q^{16} - 5 q^{17} - 3 q^{18} - 7 q^{19} + 2 q^{20} + q^{22} + 8 q^{23} - 2 q^{25} + 6 q^{26}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) 1.73205i 1.00000i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −2.00000 −0.894427 −0.447214 0.894427i \(-0.647584\pi\)
−0.447214 + 0.894427i \(0.647584\pi\)
\(6\) −1.50000 0.866025i −0.612372 0.353553i
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) −3.00000 −1.00000
\(10\) −1.00000 + 1.73205i −0.316228 + 0.547723i
\(11\) 1.00000 0.301511 0.150756 0.988571i \(-0.451829\pi\)
0.150756 + 0.988571i \(0.451829\pi\)
\(12\) −1.50000 + 0.866025i −0.433013 + 0.250000i
\(13\) −3.00000 + 5.19615i −0.832050 + 1.44115i 0.0643593 + 0.997927i \(0.479500\pi\)
−0.896410 + 0.443227i \(0.853834\pi\)
\(14\) 0 0
\(15\) 3.46410i 0.894427i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −2.50000 + 4.33013i −0.606339 + 1.05021i 0.385499 + 0.922708i \(0.374029\pi\)
−0.991838 + 0.127502i \(0.959304\pi\)
\(18\) −1.50000 + 2.59808i −0.353553 + 0.612372i
\(19\) −3.50000 6.06218i −0.802955 1.39076i −0.917663 0.397360i \(-0.869927\pi\)
0.114708 0.993399i \(-0.463407\pi\)
\(20\) 1.00000 + 1.73205i 0.223607 + 0.387298i
\(21\) 0 0
\(22\) 0.500000 0.866025i 0.106600 0.184637i
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 1.73205i 0.353553i
\(25\) −1.00000 −0.200000
\(26\) 3.00000 + 5.19615i 0.588348 + 1.01905i
\(27\) 5.19615i 1.00000i
\(28\) 0 0
\(29\) 2.00000 + 3.46410i 0.371391 + 0.643268i 0.989780 0.142605i \(-0.0455477\pi\)
−0.618389 + 0.785872i \(0.712214\pi\)
\(30\) 3.00000 + 1.73205i 0.547723 + 0.316228i
\(31\) −3.00000 5.19615i −0.538816 0.933257i −0.998968 0.0454165i \(-0.985539\pi\)
0.460152 0.887840i \(-0.347795\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) 1.73205i 0.301511i
\(34\) 2.50000 + 4.33013i 0.428746 + 0.742611i
\(35\) 0 0
\(36\) 1.50000 + 2.59808i 0.250000 + 0.433013i
\(37\) −1.00000 1.73205i −0.164399 0.284747i 0.772043 0.635571i \(-0.219235\pi\)
−0.936442 + 0.350823i \(0.885902\pi\)
\(38\) −7.00000 −1.13555
\(39\) 9.00000 + 5.19615i 1.44115 + 0.832050i
\(40\) 2.00000 0.316228
\(41\) 1.50000 2.59808i 0.234261 0.405751i −0.724797 0.688963i \(-0.758066\pi\)
0.959058 + 0.283211i \(0.0913998\pi\)
\(42\) 0 0
\(43\) 0.500000 + 0.866025i 0.0762493 + 0.132068i 0.901629 0.432511i \(-0.142372\pi\)
−0.825380 + 0.564578i \(0.809039\pi\)
\(44\) −0.500000 0.866025i −0.0753778 0.130558i
\(45\) 6.00000 0.894427
\(46\) 2.00000 3.46410i 0.294884 0.510754i
\(47\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(48\) 1.50000 + 0.866025i 0.216506 + 0.125000i
\(49\) 0 0
\(50\) −0.500000 + 0.866025i −0.0707107 + 0.122474i
\(51\) 7.50000 + 4.33013i 1.05021 + 0.606339i
\(52\) 6.00000 0.832050
\(53\) −6.00000 + 10.3923i −0.824163 + 1.42749i 0.0783936 + 0.996922i \(0.475021\pi\)
−0.902557 + 0.430570i \(0.858312\pi\)
\(54\) 4.50000 + 2.59808i 0.612372 + 0.353553i
\(55\) −2.00000 −0.269680
\(56\) 0 0
\(57\) −10.5000 + 6.06218i −1.39076 + 0.802955i
\(58\) 4.00000 0.525226
\(59\) −3.50000 6.06218i −0.455661 0.789228i 0.543065 0.839691i \(-0.317264\pi\)
−0.998726 + 0.0504625i \(0.983930\pi\)
\(60\) 3.00000 1.73205i 0.387298 0.223607i
\(61\) −6.00000 + 10.3923i −0.768221 + 1.33060i 0.170305 + 0.985391i \(0.445525\pi\)
−0.938527 + 0.345207i \(0.887809\pi\)
\(62\) −6.00000 −0.762001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 6.00000 10.3923i 0.744208 1.28901i
\(66\) −1.50000 0.866025i −0.184637 0.106600i
\(67\) −6.50000 11.2583i −0.794101 1.37542i −0.923408 0.383819i \(-0.874609\pi\)
0.129307 0.991605i \(-0.458725\pi\)
\(68\) 5.00000 0.606339
\(69\) 6.92820i 0.834058i
\(70\) 0 0
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) 3.00000 0.353553
\(73\) 0.500000 0.866025i 0.0585206 0.101361i −0.835281 0.549823i \(-0.814695\pi\)
0.893801 + 0.448463i \(0.148028\pi\)
\(74\) −2.00000 −0.232495
\(75\) 1.73205i 0.200000i
\(76\) −3.50000 + 6.06218i −0.401478 + 0.695379i
\(77\) 0 0
\(78\) 9.00000 5.19615i 1.01905 0.588348i
\(79\) 3.00000 5.19615i 0.337526 0.584613i −0.646440 0.762964i \(-0.723743\pi\)
0.983967 + 0.178352i \(0.0570765\pi\)
\(80\) 1.00000 1.73205i 0.111803 0.193649i
\(81\) 9.00000 1.00000
\(82\) −1.50000 2.59808i −0.165647 0.286910i
\(83\) 8.00000 + 13.8564i 0.878114 + 1.52094i 0.853408 + 0.521243i \(0.174532\pi\)
0.0247060 + 0.999695i \(0.492135\pi\)
\(84\) 0 0
\(85\) 5.00000 8.66025i 0.542326 0.939336i
\(86\) 1.00000 0.107833
\(87\) 6.00000 3.46410i 0.643268 0.371391i
\(88\) −1.00000 −0.106600
\(89\) −3.00000 5.19615i −0.317999 0.550791i 0.662071 0.749441i \(-0.269678\pi\)
−0.980071 + 0.198650i \(0.936344\pi\)
\(90\) 3.00000 5.19615i 0.316228 0.547723i
\(91\) 0 0
\(92\) −2.00000 3.46410i −0.208514 0.361158i
\(93\) −9.00000 + 5.19615i −0.933257 + 0.538816i
\(94\) 0 0
\(95\) 7.00000 + 12.1244i 0.718185 + 1.24393i
\(96\) 1.50000 0.866025i 0.153093 0.0883883i
\(97\) −2.50000 4.33013i −0.253837 0.439658i 0.710742 0.703452i \(-0.248359\pi\)
−0.964579 + 0.263795i \(0.915026\pi\)
\(98\) 0 0
\(99\) −3.00000 −0.301511
\(100\) 0.500000 + 0.866025i 0.0500000 + 0.0866025i
\(101\) 4.00000 0.398015 0.199007 0.979998i \(-0.436228\pi\)
0.199007 + 0.979998i \(0.436228\pi\)
\(102\) 7.50000 4.33013i 0.742611 0.428746i
\(103\) −14.0000 −1.37946 −0.689730 0.724066i \(-0.742271\pi\)
−0.689730 + 0.724066i \(0.742271\pi\)
\(104\) 3.00000 5.19615i 0.294174 0.509525i
\(105\) 0 0
\(106\) 6.00000 + 10.3923i 0.582772 + 1.00939i
\(107\) −1.50000 2.59808i −0.145010 0.251166i 0.784366 0.620298i \(-0.212988\pi\)
−0.929377 + 0.369132i \(0.879655\pi\)
\(108\) 4.50000 2.59808i 0.433013 0.250000i
\(109\) 1.00000 1.73205i 0.0957826 0.165900i −0.814152 0.580651i \(-0.802798\pi\)
0.909935 + 0.414751i \(0.136131\pi\)
\(110\) −1.00000 + 1.73205i −0.0953463 + 0.165145i
\(111\) −3.00000 + 1.73205i −0.284747 + 0.164399i
\(112\) 0 0
\(113\) 5.00000 8.66025i 0.470360 0.814688i −0.529065 0.848581i \(-0.677457\pi\)
0.999425 + 0.0338931i \(0.0107906\pi\)
\(114\) 12.1244i 1.13555i
\(115\) −8.00000 −0.746004
\(116\) 2.00000 3.46410i 0.185695 0.321634i
\(117\) 9.00000 15.5885i 0.832050 1.44115i
\(118\) −7.00000 −0.644402
\(119\) 0 0
\(120\) 3.46410i 0.316228i
\(121\) −10.0000 −0.909091
\(122\) 6.00000 + 10.3923i 0.543214 + 0.940875i
\(123\) −4.50000 2.59808i −0.405751 0.234261i
\(124\) −3.00000 + 5.19615i −0.269408 + 0.466628i
\(125\) 12.0000 1.07331
\(126\) 0 0
\(127\) −12.0000 −1.06483 −0.532414 0.846484i \(-0.678715\pi\)
−0.532414 + 0.846484i \(0.678715\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) 1.50000 0.866025i 0.132068 0.0762493i
\(130\) −6.00000 10.3923i −0.526235 0.911465i
\(131\) 4.00000 0.349482 0.174741 0.984614i \(-0.444091\pi\)
0.174741 + 0.984614i \(0.444091\pi\)
\(132\) −1.50000 + 0.866025i −0.130558 + 0.0753778i
\(133\) 0 0
\(134\) −13.0000 −1.12303
\(135\) 10.3923i 0.894427i
\(136\) 2.50000 4.33013i 0.214373 0.371305i
\(137\) −19.0000 −1.62328 −0.811640 0.584158i \(-0.801425\pi\)
−0.811640 + 0.584158i \(0.801425\pi\)
\(138\) −6.00000 3.46410i −0.510754 0.294884i
\(139\) −2.50000 + 4.33013i −0.212047 + 0.367277i −0.952355 0.304991i \(-0.901346\pi\)
0.740308 + 0.672268i \(0.234680\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −4.00000 + 6.92820i −0.335673 + 0.581402i
\(143\) −3.00000 + 5.19615i −0.250873 + 0.434524i
\(144\) 1.50000 2.59808i 0.125000 0.216506i
\(145\) −4.00000 6.92820i −0.332182 0.575356i
\(146\) −0.500000 0.866025i −0.0413803 0.0716728i
\(147\) 0 0
\(148\) −1.00000 + 1.73205i −0.0821995 + 0.142374i
\(149\) −24.0000 −1.96616 −0.983078 0.183186i \(-0.941359\pi\)
−0.983078 + 0.183186i \(0.941359\pi\)
\(150\) 1.50000 + 0.866025i 0.122474 + 0.0707107i
\(151\) 10.0000 0.813788 0.406894 0.913475i \(-0.366612\pi\)
0.406894 + 0.913475i \(0.366612\pi\)
\(152\) 3.50000 + 6.06218i 0.283887 + 0.491708i
\(153\) 7.50000 12.9904i 0.606339 1.05021i
\(154\) 0 0
\(155\) 6.00000 + 10.3923i 0.481932 + 0.834730i
\(156\) 10.3923i 0.832050i
\(157\) 1.00000 + 1.73205i 0.0798087 + 0.138233i 0.903167 0.429289i \(-0.141236\pi\)
−0.823359 + 0.567521i \(0.807902\pi\)
\(158\) −3.00000 5.19615i −0.238667 0.413384i
\(159\) 18.0000 + 10.3923i 1.42749 + 0.824163i
\(160\) −1.00000 1.73205i −0.0790569 0.136931i
\(161\) 0 0
\(162\) 4.50000 7.79423i 0.353553 0.612372i
\(163\) 2.00000 + 3.46410i 0.156652 + 0.271329i 0.933659 0.358162i \(-0.116597\pi\)
−0.777007 + 0.629492i \(0.783263\pi\)
\(164\) −3.00000 −0.234261
\(165\) 3.46410i 0.269680i
\(166\) 16.0000 1.24184
\(167\) 10.0000 17.3205i 0.773823 1.34030i −0.161630 0.986851i \(-0.551675\pi\)
0.935454 0.353450i \(-0.114991\pi\)
\(168\) 0 0
\(169\) −11.5000 19.9186i −0.884615 1.53220i
\(170\) −5.00000 8.66025i −0.383482 0.664211i
\(171\) 10.5000 + 18.1865i 0.802955 + 1.39076i
\(172\) 0.500000 0.866025i 0.0381246 0.0660338i
\(173\) 1.00000 1.73205i 0.0760286 0.131685i −0.825505 0.564396i \(-0.809109\pi\)
0.901533 + 0.432710i \(0.142443\pi\)
\(174\) 6.92820i 0.525226i
\(175\) 0 0
\(176\) −0.500000 + 0.866025i −0.0376889 + 0.0652791i
\(177\) −10.5000 + 6.06218i −0.789228 + 0.455661i
\(178\) −6.00000 −0.449719
\(179\) −12.0000 + 20.7846i −0.896922 + 1.55351i −0.0655145 + 0.997852i \(0.520869\pi\)
−0.831408 + 0.555663i \(0.812464\pi\)
\(180\) −3.00000 5.19615i −0.223607 0.387298i
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 18.0000 + 10.3923i 1.33060 + 0.768221i
\(184\) −4.00000 −0.294884
\(185\) 2.00000 + 3.46410i 0.147043 + 0.254686i
\(186\) 10.3923i 0.762001i
\(187\) −2.50000 + 4.33013i −0.182818 + 0.316650i
\(188\) 0 0
\(189\) 0 0
\(190\) 14.0000 1.01567
\(191\) −6.00000 + 10.3923i −0.434145 + 0.751961i −0.997225 0.0744412i \(-0.976283\pi\)
0.563081 + 0.826402i \(0.309616\pi\)
\(192\) 1.73205i 0.125000i
\(193\) −8.50000 14.7224i −0.611843 1.05974i −0.990930 0.134382i \(-0.957095\pi\)
0.379086 0.925361i \(-0.376238\pi\)
\(194\) −5.00000 −0.358979
\(195\) −18.0000 10.3923i −1.28901 0.744208i
\(196\) 0 0
\(197\) 10.0000 0.712470 0.356235 0.934396i \(-0.384060\pi\)
0.356235 + 0.934396i \(0.384060\pi\)
\(198\) −1.50000 + 2.59808i −0.106600 + 0.184637i
\(199\) 7.00000 12.1244i 0.496217 0.859473i −0.503774 0.863836i \(-0.668055\pi\)
0.999990 + 0.00436292i \(0.00138876\pi\)
\(200\) 1.00000 0.0707107
\(201\) −19.5000 + 11.2583i −1.37542 + 0.794101i
\(202\) 2.00000 3.46410i 0.140720 0.243733i
\(203\) 0 0
\(204\) 8.66025i 0.606339i
\(205\) −3.00000 + 5.19615i −0.209529 + 0.362915i
\(206\) −7.00000 + 12.1244i −0.487713 + 0.844744i
\(207\) −12.0000 −0.834058
\(208\) −3.00000 5.19615i −0.208013 0.360288i
\(209\) −3.50000 6.06218i −0.242100 0.419330i
\(210\) 0 0
\(211\) 8.00000 13.8564i 0.550743 0.953914i −0.447478 0.894295i \(-0.647678\pi\)
0.998221 0.0596196i \(-0.0189888\pi\)
\(212\) 12.0000 0.824163
\(213\) 13.8564i 0.949425i
\(214\) −3.00000 −0.205076
\(215\) −1.00000 1.73205i −0.0681994 0.118125i
\(216\) 5.19615i 0.353553i
\(217\) 0 0
\(218\) −1.00000 1.73205i −0.0677285 0.117309i
\(219\) −1.50000 0.866025i −0.101361 0.0585206i
\(220\) 1.00000 + 1.73205i 0.0674200 + 0.116775i
\(221\) −15.0000 25.9808i −1.00901 1.74766i
\(222\) 3.46410i 0.232495i
\(223\) −2.00000 3.46410i −0.133930 0.231973i 0.791258 0.611482i \(-0.209426\pi\)
−0.925188 + 0.379509i \(0.876093\pi\)
\(224\) 0 0
\(225\) 3.00000 0.200000
\(226\) −5.00000 8.66025i −0.332595 0.576072i
\(227\) −3.00000 −0.199117 −0.0995585 0.995032i \(-0.531743\pi\)
−0.0995585 + 0.995032i \(0.531743\pi\)
\(228\) 10.5000 + 6.06218i 0.695379 + 0.401478i
\(229\) 26.0000 1.71813 0.859064 0.511868i \(-0.171046\pi\)
0.859064 + 0.511868i \(0.171046\pi\)
\(230\) −4.00000 + 6.92820i −0.263752 + 0.456832i
\(231\) 0 0
\(232\) −2.00000 3.46410i −0.131306 0.227429i
\(233\) 14.5000 + 25.1147i 0.949927 + 1.64532i 0.745573 + 0.666424i \(0.232176\pi\)
0.204354 + 0.978897i \(0.434491\pi\)
\(234\) −9.00000 15.5885i −0.588348 1.01905i
\(235\) 0 0
\(236\) −3.50000 + 6.06218i −0.227831 + 0.394614i
\(237\) −9.00000 5.19615i −0.584613 0.337526i
\(238\) 0 0
\(239\) −3.00000 + 5.19615i −0.194054 + 0.336111i −0.946590 0.322440i \(-0.895497\pi\)
0.752536 + 0.658551i \(0.228830\pi\)
\(240\) −3.00000 1.73205i −0.193649 0.111803i
\(241\) −23.0000 −1.48156 −0.740780 0.671748i \(-0.765544\pi\)
−0.740780 + 0.671748i \(0.765544\pi\)
\(242\) −5.00000 + 8.66025i −0.321412 + 0.556702i
\(243\) 15.5885i 1.00000i
\(244\) 12.0000 0.768221
\(245\) 0 0
\(246\) −4.50000 + 2.59808i −0.286910 + 0.165647i
\(247\) 42.0000 2.67240
\(248\) 3.00000 + 5.19615i 0.190500 + 0.329956i
\(249\) 24.0000 13.8564i 1.52094 0.878114i
\(250\) 6.00000 10.3923i 0.379473 0.657267i
\(251\) −3.00000 −0.189358 −0.0946792 0.995508i \(-0.530183\pi\)
−0.0946792 + 0.995508i \(0.530183\pi\)
\(252\) 0 0
\(253\) 4.00000 0.251478
\(254\) −6.00000 + 10.3923i −0.376473 + 0.652071i
\(255\) −15.0000 8.66025i −0.939336 0.542326i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 15.0000 0.935674 0.467837 0.883815i \(-0.345033\pi\)
0.467837 + 0.883815i \(0.345033\pi\)
\(258\) 1.73205i 0.107833i
\(259\) 0 0
\(260\) −12.0000 −0.744208
\(261\) −6.00000 10.3923i −0.371391 0.643268i
\(262\) 2.00000 3.46410i 0.123560 0.214013i
\(263\) 18.0000 1.10993 0.554964 0.831875i \(-0.312732\pi\)
0.554964 + 0.831875i \(0.312732\pi\)
\(264\) 1.73205i 0.106600i
\(265\) 12.0000 20.7846i 0.737154 1.27679i
\(266\) 0 0
\(267\) −9.00000 + 5.19615i −0.550791 + 0.317999i
\(268\) −6.50000 + 11.2583i −0.397051 + 0.687712i
\(269\) 10.0000 17.3205i 0.609711 1.05605i −0.381577 0.924337i \(-0.624619\pi\)
0.991288 0.131713i \(-0.0420477\pi\)
\(270\) −9.00000 5.19615i −0.547723 0.316228i
\(271\) −3.00000 5.19615i −0.182237 0.315644i 0.760405 0.649449i \(-0.225000\pi\)
−0.942642 + 0.333805i \(0.891667\pi\)
\(272\) −2.50000 4.33013i −0.151585 0.262553i
\(273\) 0 0
\(274\) −9.50000 + 16.4545i −0.573916 + 0.994052i
\(275\) −1.00000 −0.0603023
\(276\) −6.00000 + 3.46410i −0.361158 + 0.208514i
\(277\) 2.00000 0.120168 0.0600842 0.998193i \(-0.480863\pi\)
0.0600842 + 0.998193i \(0.480863\pi\)
\(278\) 2.50000 + 4.33013i 0.149940 + 0.259704i
\(279\) 9.00000 + 15.5885i 0.538816 + 0.933257i
\(280\) 0 0
\(281\) −11.0000 19.0526i −0.656205 1.13658i −0.981590 0.190999i \(-0.938827\pi\)
0.325385 0.945582i \(-0.394506\pi\)
\(282\) 0 0
\(283\) 2.00000 + 3.46410i 0.118888 + 0.205919i 0.919327 0.393494i \(-0.128734\pi\)
−0.800439 + 0.599414i \(0.795400\pi\)
\(284\) 4.00000 + 6.92820i 0.237356 + 0.411113i
\(285\) 21.0000 12.1244i 1.24393 0.718185i
\(286\) 3.00000 + 5.19615i 0.177394 + 0.307255i
\(287\) 0 0
\(288\) −1.50000 2.59808i −0.0883883 0.153093i
\(289\) −4.00000 6.92820i −0.235294 0.407541i
\(290\) −8.00000 −0.469776
\(291\) −7.50000 + 4.33013i −0.439658 + 0.253837i
\(292\) −1.00000 −0.0585206
\(293\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(294\) 0 0
\(295\) 7.00000 + 12.1244i 0.407556 + 0.705907i
\(296\) 1.00000 + 1.73205i 0.0581238 + 0.100673i
\(297\) 5.19615i 0.301511i
\(298\) −12.0000 + 20.7846i −0.695141 + 1.20402i
\(299\) −12.0000 + 20.7846i −0.693978 + 1.20201i
\(300\) 1.50000 0.866025i 0.0866025 0.0500000i
\(301\) 0 0
\(302\) 5.00000 8.66025i 0.287718 0.498342i
\(303\) 6.92820i 0.398015i
\(304\) 7.00000 0.401478
\(305\) 12.0000 20.7846i 0.687118 1.19012i
\(306\) −7.50000 12.9904i −0.428746 0.742611i
\(307\) −7.00000 −0.399511 −0.199756 0.979846i \(-0.564015\pi\)
−0.199756 + 0.979846i \(0.564015\pi\)
\(308\) 0 0
\(309\) 24.2487i 1.37946i
\(310\) 12.0000 0.681554
\(311\) 1.00000 + 1.73205i 0.0567048 + 0.0982156i 0.892984 0.450088i \(-0.148607\pi\)
−0.836280 + 0.548303i \(0.815274\pi\)
\(312\) −9.00000 5.19615i −0.509525 0.294174i
\(313\) −8.50000 + 14.7224i −0.480448 + 0.832161i −0.999748 0.0224310i \(-0.992859\pi\)
0.519300 + 0.854592i \(0.326193\pi\)
\(314\) 2.00000 0.112867
\(315\) 0 0
\(316\) −6.00000 −0.337526
\(317\) 3.00000 5.19615i 0.168497 0.291845i −0.769395 0.638774i \(-0.779442\pi\)
0.937892 + 0.346929i \(0.112775\pi\)
\(318\) 18.0000 10.3923i 1.00939 0.582772i
\(319\) 2.00000 + 3.46410i 0.111979 + 0.193952i
\(320\) −2.00000 −0.111803
\(321\) −4.50000 + 2.59808i −0.251166 + 0.145010i
\(322\) 0 0
\(323\) 35.0000 1.94745
\(324\) −4.50000 7.79423i −0.250000 0.433013i
\(325\) 3.00000 5.19615i 0.166410 0.288231i
\(326\) 4.00000 0.221540
\(327\) −3.00000 1.73205i −0.165900 0.0957826i
\(328\) −1.50000 + 2.59808i −0.0828236 + 0.143455i
\(329\) 0 0
\(330\) 3.00000 + 1.73205i 0.165145 + 0.0953463i
\(331\) −4.00000 + 6.92820i −0.219860 + 0.380808i −0.954765 0.297361i \(-0.903893\pi\)
0.734905 + 0.678170i \(0.237227\pi\)
\(332\) 8.00000 13.8564i 0.439057 0.760469i
\(333\) 3.00000 + 5.19615i 0.164399 + 0.284747i
\(334\) −10.0000 17.3205i −0.547176 0.947736i
\(335\) 13.0000 + 22.5167i 0.710266 + 1.23022i
\(336\) 0 0
\(337\) 4.50000 7.79423i 0.245131 0.424579i −0.717038 0.697034i \(-0.754502\pi\)
0.962168 + 0.272456i \(0.0878358\pi\)
\(338\) −23.0000 −1.25104
\(339\) −15.0000 8.66025i −0.814688 0.470360i
\(340\) −10.0000 −0.542326
\(341\) −3.00000 5.19615i −0.162459 0.281387i
\(342\) 21.0000 1.13555
\(343\) 0 0
\(344\) −0.500000 0.866025i −0.0269582 0.0466930i
\(345\) 13.8564i 0.746004i
\(346\) −1.00000 1.73205i −0.0537603 0.0931156i
\(347\) 1.50000 + 2.59808i 0.0805242 + 0.139472i 0.903475 0.428640i \(-0.141007\pi\)
−0.822951 + 0.568112i \(0.807674\pi\)
\(348\) −6.00000 3.46410i −0.321634 0.185695i
\(349\) −7.00000 12.1244i −0.374701 0.649002i 0.615581 0.788074i \(-0.288921\pi\)
−0.990282 + 0.139072i \(0.955588\pi\)
\(350\) 0 0
\(351\) −27.0000 15.5885i −1.44115 0.832050i
\(352\) 0.500000 + 0.866025i 0.0266501 + 0.0461593i
\(353\) 15.0000 0.798369 0.399185 0.916871i \(-0.369293\pi\)
0.399185 + 0.916871i \(0.369293\pi\)
\(354\) 12.1244i 0.644402i
\(355\) 16.0000 0.849192
\(356\) −3.00000 + 5.19615i −0.159000 + 0.275396i
\(357\) 0 0
\(358\) 12.0000 + 20.7846i 0.634220 + 1.09850i
\(359\) −1.00000 1.73205i −0.0527780 0.0914141i 0.838429 0.545010i \(-0.183474\pi\)
−0.891207 + 0.453596i \(0.850141\pi\)
\(360\) −6.00000 −0.316228
\(361\) −15.0000 + 25.9808i −0.789474 + 1.36741i
\(362\) 0 0
\(363\) 17.3205i 0.909091i
\(364\) 0 0
\(365\) −1.00000 + 1.73205i −0.0523424 + 0.0906597i
\(366\) 18.0000 10.3923i 0.940875 0.543214i
\(367\) 22.0000 1.14839 0.574195 0.818718i \(-0.305315\pi\)
0.574195 + 0.818718i \(0.305315\pi\)
\(368\) −2.00000 + 3.46410i −0.104257 + 0.180579i
\(369\) −4.50000 + 7.79423i −0.234261 + 0.405751i
\(370\) 4.00000 0.207950
\(371\) 0 0
\(372\) 9.00000 + 5.19615i 0.466628 + 0.269408i
\(373\) 22.0000 1.13912 0.569558 0.821951i \(-0.307114\pi\)
0.569558 + 0.821951i \(0.307114\pi\)
\(374\) 2.50000 + 4.33013i 0.129272 + 0.223906i
\(375\) 20.7846i 1.07331i
\(376\) 0 0
\(377\) −24.0000 −1.23606
\(378\) 0 0
\(379\) −17.0000 −0.873231 −0.436616 0.899648i \(-0.643823\pi\)
−0.436616 + 0.899648i \(0.643823\pi\)
\(380\) 7.00000 12.1244i 0.359092 0.621966i
\(381\) 20.7846i 1.06483i
\(382\) 6.00000 + 10.3923i 0.306987 + 0.531717i
\(383\) −4.00000 −0.204390 −0.102195 0.994764i \(-0.532587\pi\)
−0.102195 + 0.994764i \(0.532587\pi\)
\(384\) −1.50000 0.866025i −0.0765466 0.0441942i
\(385\) 0 0
\(386\) −17.0000 −0.865277
\(387\) −1.50000 2.59808i −0.0762493 0.132068i
\(388\) −2.50000 + 4.33013i −0.126918 + 0.219829i
\(389\) 8.00000 0.405616 0.202808 0.979219i \(-0.434993\pi\)
0.202808 + 0.979219i \(0.434993\pi\)
\(390\) −18.0000 + 10.3923i −0.911465 + 0.526235i
\(391\) −10.0000 + 17.3205i −0.505722 + 0.875936i
\(392\) 0 0
\(393\) 6.92820i 0.349482i
\(394\) 5.00000 8.66025i 0.251896 0.436297i
\(395\) −6.00000 + 10.3923i −0.301893 + 0.522894i
\(396\) 1.50000 + 2.59808i 0.0753778 + 0.130558i
\(397\) 9.00000 + 15.5885i 0.451697 + 0.782362i 0.998492 0.0549046i \(-0.0174855\pi\)
−0.546795 + 0.837267i \(0.684152\pi\)
\(398\) −7.00000 12.1244i −0.350878 0.607739i
\(399\) 0 0
\(400\) 0.500000 0.866025i 0.0250000 0.0433013i
\(401\) 9.00000 0.449439 0.224719 0.974424i \(-0.427853\pi\)
0.224719 + 0.974424i \(0.427853\pi\)
\(402\) 22.5167i 1.12303i
\(403\) 36.0000 1.79329
\(404\) −2.00000 3.46410i −0.0995037 0.172345i
\(405\) −18.0000 −0.894427
\(406\) 0 0
\(407\) −1.00000 1.73205i −0.0495682 0.0858546i
\(408\) −7.50000 4.33013i −0.371305 0.214373i
\(409\) 5.50000 + 9.52628i 0.271957 + 0.471044i 0.969363 0.245633i \(-0.0789957\pi\)
−0.697406 + 0.716677i \(0.745662\pi\)
\(410\) 3.00000 + 5.19615i 0.148159 + 0.256620i
\(411\) 32.9090i 1.62328i
\(412\) 7.00000 + 12.1244i 0.344865 + 0.597324i
\(413\) 0 0
\(414\) −6.00000 + 10.3923i −0.294884 + 0.510754i
\(415\) −16.0000 27.7128i −0.785409 1.36037i
\(416\) −6.00000 −0.294174
\(417\) 7.50000 + 4.33013i 0.367277 + 0.212047i
\(418\) −7.00000 −0.342381
\(419\) −6.00000 + 10.3923i −0.293119 + 0.507697i −0.974546 0.224189i \(-0.928027\pi\)
0.681426 + 0.731887i \(0.261360\pi\)
\(420\) 0 0
\(421\) 6.00000 + 10.3923i 0.292422 + 0.506490i 0.974382 0.224900i \(-0.0722054\pi\)
−0.681960 + 0.731390i \(0.738872\pi\)
\(422\) −8.00000 13.8564i −0.389434 0.674519i
\(423\) 0 0
\(424\) 6.00000 10.3923i 0.291386 0.504695i
\(425\) 2.50000 4.33013i 0.121268 0.210042i
\(426\) 12.0000 + 6.92820i 0.581402 + 0.335673i
\(427\) 0 0
\(428\) −1.50000 + 2.59808i −0.0725052 + 0.125583i
\(429\) 9.00000 + 5.19615i 0.434524 + 0.250873i
\(430\) −2.00000 −0.0964486
\(431\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(432\) −4.50000 2.59808i −0.216506 0.125000i
\(433\) 25.0000 1.20142 0.600712 0.799466i \(-0.294884\pi\)
0.600712 + 0.799466i \(0.294884\pi\)
\(434\) 0 0
\(435\) −12.0000 + 6.92820i −0.575356 + 0.332182i
\(436\) −2.00000 −0.0957826
\(437\) −14.0000 24.2487i −0.669711 1.15997i
\(438\) −1.50000 + 0.866025i −0.0716728 + 0.0413803i
\(439\) −12.0000 + 20.7846i −0.572729 + 0.991995i 0.423556 + 0.905870i \(0.360782\pi\)
−0.996284 + 0.0861252i \(0.972552\pi\)
\(440\) 2.00000 0.0953463
\(441\) 0 0
\(442\) −30.0000 −1.42695
\(443\) −3.50000 + 6.06218i −0.166290 + 0.288023i −0.937113 0.349027i \(-0.886512\pi\)
0.770823 + 0.637050i \(0.219845\pi\)
\(444\) 3.00000 + 1.73205i 0.142374 + 0.0821995i
\(445\) 6.00000 + 10.3923i 0.284427 + 0.492642i
\(446\) −4.00000 −0.189405
\(447\) 41.5692i 1.96616i
\(448\) 0 0
\(449\) 17.0000 0.802280 0.401140 0.916017i \(-0.368614\pi\)
0.401140 + 0.916017i \(0.368614\pi\)
\(450\) 1.50000 2.59808i 0.0707107 0.122474i
\(451\) 1.50000 2.59808i 0.0706322 0.122339i
\(452\) −10.0000 −0.470360
\(453\) 17.3205i 0.813788i
\(454\) −1.50000 + 2.59808i −0.0703985 + 0.121934i
\(455\) 0 0
\(456\) 10.5000 6.06218i 0.491708 0.283887i
\(457\) −0.500000 + 0.866025i −0.0233890 + 0.0405110i −0.877483 0.479608i \(-0.840779\pi\)
0.854094 + 0.520119i \(0.174112\pi\)
\(458\) 13.0000 22.5167i 0.607450 1.05213i
\(459\) −22.5000 12.9904i −1.05021 0.606339i
\(460\) 4.00000 + 6.92820i 0.186501 + 0.323029i
\(461\) 7.00000 + 12.1244i 0.326023 + 0.564688i 0.981719 0.190337i \(-0.0609581\pi\)
−0.655696 + 0.755025i \(0.727625\pi\)
\(462\) 0 0
\(463\) 4.00000 6.92820i 0.185896 0.321981i −0.757982 0.652275i \(-0.773815\pi\)
0.943878 + 0.330294i \(0.107148\pi\)
\(464\) −4.00000 −0.185695
\(465\) 18.0000 10.3923i 0.834730 0.481932i
\(466\) 29.0000 1.34340
\(467\) −6.50000 11.2583i −0.300784 0.520973i 0.675530 0.737333i \(-0.263915\pi\)
−0.976314 + 0.216359i \(0.930582\pi\)
\(468\) −18.0000 −0.832050
\(469\) 0 0
\(470\) 0 0
\(471\) 3.00000 1.73205i 0.138233 0.0798087i
\(472\) 3.50000 + 6.06218i 0.161101 + 0.279034i
\(473\) 0.500000 + 0.866025i 0.0229900 + 0.0398199i
\(474\) −9.00000 + 5.19615i −0.413384 + 0.238667i
\(475\) 3.50000 + 6.06218i 0.160591 + 0.278152i
\(476\) 0 0
\(477\) 18.0000 31.1769i 0.824163 1.42749i
\(478\) 3.00000 + 5.19615i 0.137217 + 0.237666i
\(479\) 20.0000 0.913823 0.456912 0.889512i \(-0.348956\pi\)
0.456912 + 0.889512i \(0.348956\pi\)
\(480\) −3.00000 + 1.73205i −0.136931 + 0.0790569i
\(481\) 12.0000 0.547153
\(482\) −11.5000 + 19.9186i −0.523811 + 0.907267i
\(483\) 0 0
\(484\) 5.00000 + 8.66025i 0.227273 + 0.393648i
\(485\) 5.00000 + 8.66025i 0.227038 + 0.393242i
\(486\) −13.5000 7.79423i −0.612372 0.353553i
\(487\) 5.00000 8.66025i 0.226572 0.392434i −0.730218 0.683214i \(-0.760582\pi\)
0.956790 + 0.290780i \(0.0939149\pi\)
\(488\) 6.00000 10.3923i 0.271607 0.470438i
\(489\) 6.00000 3.46410i 0.271329 0.156652i
\(490\) 0 0
\(491\) −16.5000 + 28.5788i −0.744635 + 1.28974i 0.205731 + 0.978609i \(0.434043\pi\)
−0.950365 + 0.311136i \(0.899290\pi\)
\(492\) 5.19615i 0.234261i
\(493\) −20.0000 −0.900755
\(494\) 21.0000 36.3731i 0.944835 1.63650i
\(495\) 6.00000 0.269680
\(496\) 6.00000 0.269408
\(497\) 0 0
\(498\) 27.7128i 1.24184i
\(499\) −29.0000 −1.29822 −0.649109 0.760695i \(-0.724858\pi\)
−0.649109 + 0.760695i \(0.724858\pi\)
\(500\) −6.00000 10.3923i −0.268328 0.464758i
\(501\) −30.0000 17.3205i −1.34030 0.773823i
\(502\) −1.50000 + 2.59808i −0.0669483 + 0.115958i
\(503\) −6.00000 −0.267527 −0.133763 0.991013i \(-0.542706\pi\)
−0.133763 + 0.991013i \(0.542706\pi\)
\(504\) 0 0
\(505\) −8.00000 −0.355995
\(506\) 2.00000 3.46410i 0.0889108 0.153998i
\(507\) −34.5000 + 19.9186i −1.53220 + 0.884615i
\(508\) 6.00000 + 10.3923i 0.266207 + 0.461084i
\(509\) −30.0000 −1.32973 −0.664863 0.746965i \(-0.731510\pi\)
−0.664863 + 0.746965i \(0.731510\pi\)
\(510\) −15.0000 + 8.66025i −0.664211 + 0.383482i
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 31.5000 18.1865i 1.39076 0.802955i
\(514\) 7.50000 12.9904i 0.330811 0.572981i
\(515\) 28.0000 1.23383
\(516\) −1.50000 0.866025i −0.0660338 0.0381246i
\(517\) 0 0
\(518\) 0 0
\(519\) −3.00000 1.73205i −0.131685 0.0760286i
\(520\) −6.00000 + 10.3923i −0.263117 + 0.455733i
\(521\) −4.50000 + 7.79423i −0.197149 + 0.341471i −0.947603 0.319451i \(-0.896501\pi\)
0.750454 + 0.660922i \(0.229835\pi\)
\(522\) −12.0000 −0.525226
\(523\) −14.0000 24.2487i −0.612177 1.06032i −0.990873 0.134801i \(-0.956961\pi\)
0.378695 0.925521i \(-0.376373\pi\)
\(524\) −2.00000 3.46410i −0.0873704 0.151330i
\(525\) 0 0
\(526\) 9.00000 15.5885i 0.392419 0.679689i
\(527\) 30.0000 1.30682
\(528\) 1.50000 + 0.866025i 0.0652791 + 0.0376889i
\(529\) −7.00000 −0.304348
\(530\) −12.0000 20.7846i −0.521247 0.902826i
\(531\) 10.5000 + 18.1865i 0.455661 + 0.789228i
\(532\) 0 0
\(533\) 9.00000 + 15.5885i 0.389833 + 0.675211i
\(534\) 10.3923i 0.449719i
\(535\) 3.00000 + 5.19615i 0.129701 + 0.224649i
\(536\) 6.50000 + 11.2583i 0.280757 + 0.486286i
\(537\) 36.0000 + 20.7846i 1.55351 + 0.896922i
\(538\) −10.0000 17.3205i −0.431131 0.746740i
\(539\) 0 0
\(540\) −9.00000 + 5.19615i −0.387298 + 0.223607i
\(541\) 12.0000 + 20.7846i 0.515920 + 0.893600i 0.999829 + 0.0184818i \(0.00588327\pi\)
−0.483909 + 0.875118i \(0.660783\pi\)
\(542\) −6.00000 −0.257722
\(543\) 0 0
\(544\) −5.00000 −0.214373
\(545\) −2.00000 + 3.46410i −0.0856706 + 0.148386i
\(546\) 0 0
\(547\) 10.5000 + 18.1865i 0.448948 + 0.777600i 0.998318 0.0579790i \(-0.0184657\pi\)
−0.549370 + 0.835579i \(0.685132\pi\)
\(548\) 9.50000 + 16.4545i 0.405820 + 0.702901i
\(549\) 18.0000 31.1769i 0.768221 1.33060i
\(550\) −0.500000 + 0.866025i −0.0213201 + 0.0369274i
\(551\) 14.0000 24.2487i 0.596420 1.03303i
\(552\) 6.92820i 0.294884i
\(553\) 0 0
\(554\) 1.00000 1.73205i 0.0424859 0.0735878i
\(555\) 6.00000 3.46410i 0.254686 0.147043i
\(556\) 5.00000 0.212047
\(557\) 14.0000 24.2487i 0.593199 1.02745i −0.400599 0.916253i \(-0.631198\pi\)
0.993798 0.111198i \(-0.0354686\pi\)
\(558\) 18.0000 0.762001
\(559\) −6.00000 −0.253773
\(560\) 0 0
\(561\) 7.50000 + 4.33013i 0.316650 + 0.182818i
\(562\) −22.0000 −0.928014
\(563\) 15.5000 + 26.8468i 0.653247 + 1.13146i 0.982330 + 0.187156i \(0.0599271\pi\)
−0.329083 + 0.944301i \(0.606740\pi\)
\(564\) 0 0
\(565\) −10.0000 + 17.3205i −0.420703 + 0.728679i
\(566\) 4.00000 0.168133
\(567\) 0 0
\(568\) 8.00000 0.335673
\(569\) 7.50000 12.9904i 0.314416 0.544585i −0.664897 0.746935i \(-0.731525\pi\)
0.979313 + 0.202350i \(0.0648579\pi\)
\(570\) 24.2487i 1.01567i
\(571\) 16.5000 + 28.5788i 0.690504 + 1.19599i 0.971673 + 0.236329i \(0.0759443\pi\)
−0.281170 + 0.959658i \(0.590722\pi\)
\(572\) 6.00000 0.250873
\(573\) 18.0000 + 10.3923i 0.751961 + 0.434145i
\(574\) 0 0
\(575\) −4.00000 −0.166812
\(576\) −3.00000 −0.125000
\(577\) −17.5000 + 30.3109i −0.728535 + 1.26186i 0.228968 + 0.973434i \(0.426465\pi\)
−0.957503 + 0.288425i \(0.906868\pi\)
\(578\) −8.00000 −0.332756
\(579\) −25.5000 + 14.7224i −1.05974 + 0.611843i
\(580\) −4.00000 + 6.92820i −0.166091 + 0.287678i
\(581\) 0 0
\(582\) 8.66025i 0.358979i
\(583\) −6.00000 + 10.3923i −0.248495 + 0.430405i
\(584\) −0.500000 + 0.866025i −0.0206901 + 0.0358364i
\(585\) −18.0000 + 31.1769i −0.744208 + 1.28901i
\(586\) 0 0
\(587\) −23.5000 40.7032i −0.969949 1.68000i −0.695686 0.718346i \(-0.744900\pi\)
−0.274263 0.961655i \(-0.588434\pi\)
\(588\) 0 0
\(589\) −21.0000 + 36.3731i −0.865290 + 1.49873i
\(590\) 14.0000 0.576371
\(591\) 17.3205i 0.712470i
\(592\) 2.00000 0.0821995
\(593\) −3.00000 5.19615i −0.123195 0.213380i 0.797831 0.602881i \(-0.205981\pi\)
−0.921026 + 0.389501i \(0.872647\pi\)
\(594\) 4.50000 + 2.59808i 0.184637 + 0.106600i
\(595\) 0 0
\(596\) 12.0000 + 20.7846i 0.491539 + 0.851371i
\(597\) −21.0000 12.1244i −0.859473 0.496217i
\(598\) 12.0000 + 20.7846i 0.490716 + 0.849946i
\(599\) −12.0000 20.7846i −0.490307 0.849236i 0.509631 0.860393i \(-0.329782\pi\)
−0.999938 + 0.0111569i \(0.996449\pi\)
\(600\) 1.73205i 0.0707107i
\(601\) −9.50000 16.4545i −0.387513 0.671192i 0.604601 0.796528i \(-0.293332\pi\)
−0.992114 + 0.125336i \(0.959999\pi\)
\(602\) 0 0
\(603\) 19.5000 + 33.7750i 0.794101 + 1.37542i
\(604\) −5.00000 8.66025i −0.203447 0.352381i
\(605\) 20.0000 0.813116
\(606\) −6.00000 3.46410i −0.243733 0.140720i
\(607\) 24.0000 0.974130 0.487065 0.873366i \(-0.338067\pi\)
0.487065 + 0.873366i \(0.338067\pi\)
\(608\) 3.50000 6.06218i 0.141944 0.245854i
\(609\) 0 0
\(610\) −12.0000 20.7846i −0.485866 0.841544i
\(611\) 0 0
\(612\) −15.0000 −0.606339
\(613\) −21.0000 + 36.3731i −0.848182 + 1.46909i 0.0346469 + 0.999400i \(0.488969\pi\)
−0.882829 + 0.469695i \(0.844364\pi\)
\(614\) −3.50000 + 6.06218i −0.141249 + 0.244650i
\(615\) 9.00000 + 5.19615i 0.362915 + 0.209529i
\(616\) 0 0
\(617\) 8.50000 14.7224i 0.342197 0.592703i −0.642643 0.766165i \(-0.722162\pi\)
0.984840 + 0.173463i \(0.0554956\pi\)
\(618\) 21.0000 + 12.1244i 0.844744 + 0.487713i
\(619\) −37.0000 −1.48716 −0.743578 0.668649i \(-0.766873\pi\)
−0.743578 + 0.668649i \(0.766873\pi\)
\(620\) 6.00000 10.3923i 0.240966 0.417365i
\(621\) 20.7846i 0.834058i
\(622\) 2.00000 0.0801927
\(623\) 0 0
\(624\) −9.00000 + 5.19615i −0.360288 + 0.208013i
\(625\) −19.0000 −0.760000
\(626\) 8.50000 + 14.7224i 0.339728 + 0.588427i
\(627\) −10.5000 + 6.06218i −0.419330 + 0.242100i
\(628\) 1.00000 1.73205i 0.0399043 0.0691164i
\(629\) 10.0000 0.398726
\(630\) 0 0
\(631\) 8.00000 0.318475 0.159237 0.987240i \(-0.449096\pi\)
0.159237 + 0.987240i \(0.449096\pi\)
\(632\) −3.00000 + 5.19615i −0.119334 + 0.206692i
\(633\) −24.0000 13.8564i −0.953914 0.550743i
\(634\) −3.00000 5.19615i −0.119145 0.206366i
\(635\) 24.0000 0.952411
\(636\) 20.7846i 0.824163i
\(637\) 0 0
\(638\) 4.00000 0.158362
\(639\) 24.0000 0.949425
\(640\) −1.00000 + 1.73205i −0.0395285 + 0.0684653i
\(641\) 1.00000 0.0394976 0.0197488 0.999805i \(-0.493713\pi\)
0.0197488 + 0.999805i \(0.493713\pi\)
\(642\) 5.19615i 0.205076i
\(643\) −3.50000 + 6.06218i −0.138027 + 0.239069i −0.926750 0.375680i \(-0.877409\pi\)
0.788723 + 0.614749i \(0.210743\pi\)
\(644\) 0 0
\(645\) −3.00000 + 1.73205i −0.118125 + 0.0681994i
\(646\) 17.5000 30.3109i 0.688528 1.19257i
\(647\) 6.00000 10.3923i 0.235884 0.408564i −0.723645 0.690172i \(-0.757535\pi\)
0.959529 + 0.281609i \(0.0908680\pi\)
\(648\) −9.00000 −0.353553
\(649\) −3.50000 6.06218i −0.137387 0.237961i
\(650\) −3.00000 5.19615i −0.117670 0.203810i
\(651\) 0 0
\(652\) 2.00000 3.46410i 0.0783260 0.135665i
\(653\) −6.00000 −0.234798 −0.117399 0.993085i \(-0.537456\pi\)
−0.117399 + 0.993085i \(0.537456\pi\)
\(654\) −3.00000 + 1.73205i −0.117309 + 0.0677285i
\(655\) −8.00000 −0.312586
\(656\) 1.50000 + 2.59808i 0.0585652 + 0.101438i
\(657\) −1.50000 + 2.59808i −0.0585206 + 0.101361i
\(658\) 0 0
\(659\) −8.00000 13.8564i −0.311636 0.539769i 0.667081 0.744985i \(-0.267544\pi\)
−0.978717 + 0.205216i \(0.934210\pi\)
\(660\) 3.00000 1.73205i 0.116775 0.0674200i
\(661\) 14.0000 + 24.2487i 0.544537 + 0.943166i 0.998636 + 0.0522143i \(0.0166279\pi\)
−0.454099 + 0.890951i \(0.650039\pi\)
\(662\) 4.00000 + 6.92820i 0.155464 + 0.269272i
\(663\) −45.0000 + 25.9808i −1.74766 + 1.00901i
\(664\) −8.00000 13.8564i −0.310460 0.537733i
\(665\) 0 0
\(666\) 6.00000 0.232495
\(667\) 8.00000 + 13.8564i 0.309761 + 0.536522i
\(668\) −20.0000 −0.773823
\(669\) −6.00000 + 3.46410i −0.231973 + 0.133930i
\(670\) 26.0000 1.00447
\(671\) −6.00000 + 10.3923i −0.231627 + 0.401190i
\(672\) 0 0
\(673\) −7.00000 12.1244i −0.269830 0.467360i 0.698988 0.715134i \(-0.253634\pi\)
−0.968818 + 0.247774i \(0.920301\pi\)
\(674\) −4.50000 7.79423i −0.173334 0.300222i
\(675\) 5.19615i 0.200000i
\(676\) −11.5000 + 19.9186i −0.442308 + 0.766099i
\(677\) 15.0000 25.9808i 0.576497 0.998522i −0.419380 0.907811i \(-0.637753\pi\)
0.995877 0.0907112i \(-0.0289140\pi\)
\(678\) −15.0000 + 8.66025i −0.576072 + 0.332595i
\(679\) 0 0
\(680\) −5.00000 + 8.66025i −0.191741 + 0.332106i
\(681\) 5.19615i 0.199117i
\(682\) −6.00000 −0.229752
\(683\) −19.5000 + 33.7750i −0.746147 + 1.29236i 0.203510 + 0.979073i \(0.434765\pi\)
−0.949657 + 0.313291i \(0.898568\pi\)
\(684\) 10.5000 18.1865i 0.401478 0.695379i
\(685\) 38.0000 1.45191
\(686\) 0 0
\(687\) 45.0333i 1.71813i
\(688\) −1.00000 −0.0381246
\(689\) −36.0000 62.3538i −1.37149 2.37549i
\(690\) 12.0000 + 6.92820i 0.456832 + 0.263752i
\(691\) 16.0000 27.7128i 0.608669 1.05425i −0.382791 0.923835i \(-0.625037\pi\)
0.991460 0.130410i \(-0.0416295\pi\)
\(692\) −2.00000 −0.0760286
\(693\) 0 0
\(694\) 3.00000 0.113878
\(695\) 5.00000 8.66025i 0.189661 0.328502i
\(696\) −6.00000 + 3.46410i −0.227429 + 0.131306i
\(697\) 7.50000 + 12.9904i 0.284083 + 0.492046i
\(698\) −14.0000 −0.529908
\(699\) 43.5000 25.1147i 1.64532 0.949927i
\(700\) 0 0
\(701\) 8.00000 0.302156 0.151078 0.988522i \(-0.451726\pi\)
0.151078 + 0.988522i \(0.451726\pi\)
\(702\) −27.0000 + 15.5885i −1.01905 + 0.588348i
\(703\) −7.00000 + 12.1244i −0.264010 + 0.457279i
\(704\) 1.00000 0.0376889
\(705\) 0 0
\(706\) 7.50000 12.9904i 0.282266 0.488899i
\(707\) 0 0
\(708\) 10.5000 + 6.06218i 0.394614 + 0.227831i
\(709\) 2.00000 3.46410i 0.0751116 0.130097i −0.826023 0.563636i \(-0.809402\pi\)
0.901135 + 0.433539i \(0.142735\pi\)
\(710\) 8.00000 13.8564i 0.300235 0.520022i
\(711\) −9.00000 + 15.5885i −0.337526 + 0.584613i
\(712\) 3.00000 + 5.19615i 0.112430 + 0.194734i
\(713\) −12.0000 20.7846i −0.449404 0.778390i
\(714\) 0 0
\(715\) 6.00000 10.3923i 0.224387 0.388650i
\(716\) 24.0000 0.896922
\(717\) 9.00000 + 5.19615i 0.336111 + 0.194054i
\(718\) −2.00000 −0.0746393
\(719\) 3.00000 + 5.19615i 0.111881 + 0.193784i 0.916529 0.399969i \(-0.130979\pi\)
−0.804648 + 0.593753i \(0.797646\pi\)
\(720\) −3.00000 + 5.19615i −0.111803 + 0.193649i
\(721\) 0 0
\(722\) 15.0000 + 25.9808i 0.558242 + 0.966904i
\(723\) 39.8372i 1.48156i
\(724\) 0 0
\(725\) −2.00000 3.46410i −0.0742781 0.128654i
\(726\) 15.0000 + 8.66025i 0.556702 + 0.321412i
\(727\) −7.00000 12.1244i −0.259616 0.449667i 0.706523 0.707690i \(-0.250263\pi\)
−0.966139 + 0.258022i \(0.916929\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 1.00000 + 1.73205i 0.0370117 + 0.0641061i
\(731\) −5.00000 −0.184932
\(732\) 20.7846i 0.768221i
\(733\) 18.0000 0.664845 0.332423 0.943131i \(-0.392134\pi\)
0.332423 + 0.943131i \(0.392134\pi\)
\(734\) 11.0000 19.0526i 0.406017 0.703243i
\(735\) 0 0
\(736\) 2.00000 + 3.46410i 0.0737210 + 0.127688i
\(737\) −6.50000 11.2583i −0.239431 0.414706i
\(738\) 4.50000 + 7.79423i 0.165647 + 0.286910i
\(739\) 16.5000 28.5788i 0.606962 1.05129i −0.384776 0.923010i \(-0.625721\pi\)
0.991738 0.128279i \(-0.0409454\pi\)
\(740\) 2.00000 3.46410i 0.0735215 0.127343i
\(741\) 72.7461i 2.67240i
\(742\) 0 0
\(743\) 3.00000 5.19615i 0.110059 0.190628i −0.805735 0.592277i \(-0.798229\pi\)
0.915794 + 0.401648i \(0.131563\pi\)
\(744\) 9.00000 5.19615i 0.329956 0.190500i
\(745\) 48.0000 1.75858
\(746\) 11.0000 19.0526i 0.402739 0.697564i
\(747\) −24.0000 41.5692i −0.878114 1.52094i
\(748\) 5.00000 0.182818
\(749\) 0 0
\(750\) −18.0000 10.3923i −0.657267 0.379473i
\(751\) −18.0000 −0.656829 −0.328415 0.944534i \(-0.606514\pi\)
−0.328415 + 0.944534i \(0.606514\pi\)
\(752\) 0 0
\(753\) 5.19615i 0.189358i
\(754\) −12.0000 + 20.7846i −0.437014 + 0.756931i
\(755\) −20.0000 −0.727875
\(756\) 0 0
\(757\) −48.0000 −1.74459 −0.872295 0.488980i \(-0.837369\pi\)
−0.872295 + 0.488980i \(0.837369\pi\)
\(758\) −8.50000 + 14.7224i −0.308734 + 0.534743i
\(759\) 6.92820i 0.251478i
\(760\) −7.00000 12.1244i −0.253917 0.439797i
\(761\) −10.0000 −0.362500 −0.181250 0.983437i \(-0.558014\pi\)
−0.181250 + 0.983437i \(0.558014\pi\)
\(762\) 18.0000 + 10.3923i 0.652071 + 0.376473i
\(763\) 0 0
\(764\) 12.0000 0.434145
\(765\) −15.0000 + 25.9808i −0.542326 + 0.939336i
\(766\) −2.00000 + 3.46410i −0.0722629 + 0.125163i
\(767\) 42.0000 1.51653
\(768\) −1.50000 + 0.866025i −0.0541266 + 0.0312500i
\(769\) 11.0000 19.0526i 0.396670 0.687053i −0.596643 0.802507i \(-0.703499\pi\)
0.993313 + 0.115454i \(0.0368323\pi\)
\(770\) 0 0
\(771\) 25.9808i 0.935674i
\(772\) −8.50000 + 14.7224i −0.305922 + 0.529872i
\(773\) −26.0000 + 45.0333i −0.935155 + 1.61974i −0.160798 + 0.986987i \(0.551407\pi\)
−0.774357 + 0.632749i \(0.781927\pi\)
\(774\) −3.00000 −0.107833
\(775\) 3.00000 + 5.19615i 0.107763 + 0.186651i
\(776\) 2.50000 + 4.33013i 0.0897448 + 0.155443i
\(777\) 0 0
\(778\) 4.00000 6.92820i 0.143407 0.248388i
\(779\) −21.0000 −0.752403
\(780\) 20.7846i 0.744208i
\(781\) −8.00000 −0.286263
\(782\) 10.0000 + 17.3205i 0.357599 + 0.619380i
\(783\) −18.0000 + 10.3923i −0.643268 + 0.371391i
\(784\) 0 0
\(785\) −2.00000 3.46410i −0.0713831 0.123639i
\(786\) −6.00000 3.46410i −0.214013 0.123560i
\(787\) −6.00000 10.3923i −0.213877 0.370446i 0.739048 0.673653i \(-0.235276\pi\)
−0.952925 + 0.303207i \(0.901942\pi\)
\(788\) −5.00000 8.66025i −0.178118 0.308509i
\(789\) 31.1769i 1.10993i
\(790\) 6.00000 + 10.3923i 0.213470 + 0.369742i
\(791\) 0 0
\(792\) 3.00000 0.106600
\(793\) −36.0000 62.3538i −1.27840 2.21425i
\(794\) 18.0000 0.638796
\(795\) −36.0000 20.7846i −1.27679 0.737154i
\(796\) −14.0000 −0.496217
\(797\) −6.00000 + 10.3923i −0.212531 + 0.368114i −0.952506 0.304520i \(-0.901504\pi\)
0.739975 + 0.672634i \(0.234837\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −0.500000 0.866025i −0.0176777 0.0306186i
\(801\) 9.00000 + 15.5885i 0.317999 + 0.550791i
\(802\) 4.50000 7.79423i 0.158901 0.275224i
\(803\) 0.500000 0.866025i 0.0176446 0.0305614i
\(804\) 19.5000 + 11.2583i 0.687712 + 0.397051i
\(805\) 0 0
\(806\) 18.0000 31.1769i 0.634023 1.09816i
\(807\) −30.0000 17.3205i −1.05605 0.609711i
\(808\) −4.00000 −0.140720
\(809\) 21.5000 37.2391i 0.755900 1.30926i −0.189026 0.981972i \(-0.560533\pi\)
0.944926 0.327285i \(-0.106134\pi\)
\(810\) −9.00000 + 15.5885i −0.316228 + 0.547723i
\(811\) −31.0000 −1.08856 −0.544279 0.838905i \(-0.683197\pi\)
−0.544279 + 0.838905i \(0.683197\pi\)
\(812\) 0 0
\(813\) −9.00000 + 5.19615i −0.315644 + 0.182237i
\(814\) −2.00000 −0.0701000
\(815\) −4.00000 6.92820i −0.140114 0.242684i
\(816\) −7.50000 + 4.33013i −0.262553 + 0.151585i
\(817\) 3.50000 6.06218i 0.122449 0.212089i
\(818\) 11.0000 0.384606
\(819\) 0 0
\(820\) 6.00000 0.209529
\(821\) −23.0000 + 39.8372i −0.802706 + 1.39033i 0.115124 + 0.993351i \(0.463274\pi\)
−0.917829 + 0.396976i \(0.870060\pi\)
\(822\) 28.5000 + 16.4545i 0.994052 + 0.573916i
\(823\) −17.0000 29.4449i −0.592583 1.02638i −0.993883 0.110437i \(-0.964775\pi\)
0.401300 0.915947i \(-0.368558\pi\)
\(824\) 14.0000 0.487713
\(825\) 1.73205i 0.0603023i
\(826\) 0 0
\(827\) 12.0000 0.417281 0.208640 0.977992i \(-0.433096\pi\)
0.208640 + 0.977992i \(0.433096\pi\)
\(828\) 6.00000 + 10.3923i 0.208514 + 0.361158i
\(829\) 2.00000 3.46410i 0.0694629 0.120313i −0.829202 0.558949i \(-0.811205\pi\)
0.898665 + 0.438636i \(0.144538\pi\)
\(830\) −32.0000 −1.11074
\(831\) 3.46410i 0.120168i
\(832\) −3.00000 + 5.19615i −0.104006 + 0.180144i
\(833\) 0 0
\(834\) 7.50000 4.33013i 0.259704 0.149940i
\(835\) −20.0000 + 34.6410i −0.692129 + 1.19880i
\(836\) −3.50000 + 6.06218i −0.121050 + 0.209665i
\(837\) 27.0000 15.5885i 0.933257 0.538816i
\(838\) 6.00000 + 10.3923i 0.207267 + 0.358996i
\(839\) −10.0000 17.3205i −0.345238 0.597970i 0.640159 0.768243i \(-0.278869\pi\)
−0.985397 + 0.170272i \(0.945535\pi\)
\(840\) 0 0
\(841\) 6.50000 11.2583i 0.224138 0.388218i
\(842\) 12.0000 0.413547
\(843\) −33.0000 + 19.0526i −1.13658 + 0.656205i
\(844\) −16.0000 −0.550743
\(845\) 23.0000 + 39.8372i 0.791224 + 1.37044i
\(846\) 0 0
\(847\) 0 0
\(848\) −6.00000 10.3923i −0.206041 0.356873i
\(849\) 6.00000 3.46410i 0.205919 0.118888i
\(850\) −2.50000 4.33013i −0.0857493 0.148522i
\(851\) −4.00000 6.92820i −0.137118 0.237496i
\(852\) 12.0000 6.92820i 0.411113 0.237356i
\(853\) 22.0000 + 38.1051i 0.753266 + 1.30469i 0.946232 + 0.323489i \(0.104856\pi\)
−0.192966 + 0.981205i \(0.561811\pi\)
\(854\) 0 0
\(855\) −21.0000 36.3731i −0.718185 1.24393i
\(856\) 1.50000 + 2.59808i 0.0512689 + 0.0888004i
\(857\) −30.0000 −1.02478 −0.512390 0.858753i \(-0.671240\pi\)
−0.512390 + 0.858753i \(0.671240\pi\)
\(858\) 9.00000 5.19615i 0.307255 0.177394i
\(859\) −29.0000 −0.989467 −0.494734 0.869045i \(-0.664734\pi\)
−0.494734 + 0.869045i \(0.664734\pi\)
\(860\) −1.00000 + 1.73205i −0.0340997 + 0.0590624i
\(861\) 0 0
\(862\) 0 0
\(863\) −19.0000 32.9090i −0.646768 1.12023i −0.983890 0.178774i \(-0.942787\pi\)
0.337123 0.941461i \(-0.390546\pi\)
\(864\) −4.50000 + 2.59808i −0.153093 + 0.0883883i
\(865\) −2.00000 + 3.46410i −0.0680020 + 0.117783i
\(866\) 12.5000 21.6506i 0.424767 0.735719i
\(867\) −12.0000 + 6.92820i −0.407541 + 0.235294i
\(868\) 0 0
\(869\) 3.00000 5.19615i 0.101768 0.176267i
\(870\) 13.8564i 0.469776i
\(871\) 78.0000 2.64293
\(872\) −1.00000 + 1.73205i −0.0338643 + 0.0586546i
\(873\) 7.50000 + 12.9904i 0.253837 + 0.439658i
\(874\) −28.0000 −0.947114
\(875\) 0 0
\(876\) 1.73205i 0.0585206i
\(877\) 16.0000 0.540282 0.270141 0.962821i \(-0.412930\pi\)
0.270141 + 0.962821i \(0.412930\pi\)
\(878\) 12.0000 + 20.7846i 0.404980 + 0.701447i
\(879\) 0 0
\(880\) 1.00000 1.73205i 0.0337100 0.0583874i
\(881\) −42.0000 −1.41502 −0.707508 0.706705i \(-0.750181\pi\)
−0.707508 + 0.706705i \(0.750181\pi\)
\(882\) 0 0
\(883\) 53.0000 1.78359 0.891796 0.452438i \(-0.149446\pi\)
0.891796 + 0.452438i \(0.149446\pi\)
\(884\) −15.0000 + 25.9808i −0.504505 + 0.873828i
\(885\) 21.0000 12.1244i 0.705907 0.407556i
\(886\) 3.50000 + 6.06218i 0.117585 + 0.203663i
\(887\) 6.00000 0.201460 0.100730 0.994914i \(-0.467882\pi\)
0.100730 + 0.994914i \(0.467882\pi\)
\(888\) 3.00000 1.73205i 0.100673 0.0581238i
\(889\) 0 0
\(890\) 12.0000 0.402241
\(891\) 9.00000 0.301511
\(892\) −2.00000 + 3.46410i −0.0669650 + 0.115987i
\(893\) 0 0
\(894\) 36.0000 + 20.7846i 1.20402 + 0.695141i
\(895\) 24.0000 41.5692i 0.802232 1.38951i
\(896\) 0 0
\(897\) 36.0000 + 20.7846i 1.20201 + 0.693978i
\(898\) 8.50000 14.7224i 0.283649 0.491294i
\(899\) 12.0000 20.7846i 0.400222 0.693206i
\(900\) −1.50000 2.59808i −0.0500000 0.0866025i
\(901\) −30.0000 51.9615i −0.999445 1.73109i
\(902\) −1.50000 2.59808i −0.0499445 0.0865065i
\(903\) 0 0
\(904\) −5.00000 + 8.66025i −0.166298 + 0.288036i
\(905\) 0 0
\(906\) −15.0000 8.66025i −0.498342 0.287718i
\(907\) −27.0000 −0.896520 −0.448260 0.893903i \(-0.647956\pi\)
−0.448260 + 0.893903i \(0.647956\pi\)
\(908\) 1.50000 + 2.59808i 0.0497792 + 0.0862202i
\(909\) −12.0000 −0.398015
\(910\) 0 0
\(911\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(912\) 12.1244i 0.401478i
\(913\) 8.00000 + 13.8564i 0.264761 + 0.458580i
\(914\) 0.500000 + 0.866025i 0.0165385 + 0.0286456i
\(915\) −36.0000 20.7846i −1.19012 0.687118i
\(916\) −13.0000 22.5167i −0.429532 0.743971i
\(917\) 0 0
\(918\) −22.5000 + 12.9904i −0.742611 + 0.428746i
\(919\) −8.00000 13.8564i −0.263896 0.457081i 0.703378 0.710816i \(-0.251674\pi\)
−0.967274 + 0.253735i \(0.918341\pi\)
\(920\) 8.00000 0.263752
\(921\) 12.1244i 0.399511i
\(922\) 14.0000 0.461065
\(923\) 24.0000 41.5692i 0.789970 1.36827i
\(924\) 0 0
\(925\) 1.00000 + 1.73205i 0.0328798 + 0.0569495i
\(926\) −4.00000 6.92820i −0.131448 0.227675i
\(927\) 42.0000 1.37946
\(928\) −2.00000 + 3.46410i −0.0656532 + 0.113715i
\(929\) −9.00000 + 15.5885i −0.295280 + 0.511441i −0.975050 0.221985i \(-0.928746\pi\)
0.679770 + 0.733426i \(0.262080\pi\)
\(930\) 20.7846i 0.681554i
\(931\) 0 0
\(932\) 14.5000 25.1147i 0.474963 0.822661i
\(933\) 3.00000 1.73205i 0.0982156 0.0567048i
\(934\) −13.0000 −0.425373
\(935\) 5.00000 8.66025i 0.163517 0.283221i
\(936\) −9.00000 + 15.5885i −0.294174 + 0.509525i
\(937\) −2.00000 −0.0653372 −0.0326686 0.999466i \(-0.510401\pi\)
−0.0326686 + 0.999466i \(0.510401\pi\)
\(938\) 0 0
\(939\) 25.5000 + 14.7224i 0.832161 + 0.480448i
\(940\) 0 0
\(941\) 10.0000 + 17.3205i 0.325991 + 0.564632i 0.981712 0.190370i \(-0.0609689\pi\)
−0.655722 + 0.755003i \(0.727636\pi\)
\(942\) 3.46410i 0.112867i
\(943\) 6.00000 10.3923i 0.195387 0.338420i
\(944\) 7.00000 0.227831
\(945\) 0 0
\(946\) 1.00000 0.0325128
\(947\) 18.5000 32.0429i 0.601169 1.04126i −0.391475 0.920189i \(-0.628035\pi\)
0.992644 0.121067i \(-0.0386316\pi\)
\(948\) 10.3923i 0.337526i
\(949\) 3.00000 + 5.19615i 0.0973841 + 0.168674i
\(950\) 7.00000 0.227110
\(951\) −9.00000 5.19615i −0.291845 0.168497i
\(952\) 0 0
\(953\) −35.0000 −1.13376 −0.566881 0.823800i \(-0.691850\pi\)
−0.566881 + 0.823800i \(0.691850\pi\)
\(954\) −18.0000 31.1769i −0.582772 1.00939i
\(955\) 12.0000 20.7846i 0.388311 0.672574i
\(956\) 6.00000 0.194054
\(957\) 6.00000 3.46410i 0.193952 0.111979i
\(958\) 10.0000 17.3205i 0.323085 0.559600i
\(959\) 0 0
\(960\) 3.46410i 0.111803i
\(961\) −2.50000 + 4.33013i −0.0806452 + 0.139682i
\(962\) 6.00000 10.3923i 0.193448 0.335061i
\(963\) 4.50000 + 7.79423i 0.145010 + 0.251166i
\(964\) 11.5000 + 19.9186i 0.370390 + 0.641534i
\(965\) 17.0000 + 29.4449i 0.547249 + 0.947864i
\(966\) 0 0
\(967\) −7.00000 + 12.1244i −0.225105 + 0.389893i −0.956351 0.292221i \(-0.905606\pi\)
0.731246 + 0.682114i \(0.238939\pi\)
\(968\) 10.0000 0.321412
\(969\) 60.6218i 1.94745i
\(970\) 10.0000 0.321081
\(971\) −6.00000 10.3923i −0.192549 0.333505i 0.753545 0.657396i \(-0.228342\pi\)
−0.946094 + 0.323891i \(0.895009\pi\)
\(972\) −13.5000 + 7.79423i −0.433013 + 0.250000i
\(973\) 0 0
\(974\) −5.00000 8.66025i −0.160210 0.277492i
\(975\) −9.00000 5.19615i −0.288231 0.166410i
\(976\) −6.00000 10.3923i −0.192055 0.332650i
\(977\) 7.50000 + 12.9904i 0.239946 + 0.415599i 0.960699 0.277594i \(-0.0895368\pi\)
−0.720752 + 0.693193i \(0.756204\pi\)
\(978\) 6.92820i 0.221540i
\(979\) −3.00000 5.19615i −0.0958804 0.166070i
\(980\) 0 0
\(981\) −3.00000 + 5.19615i −0.0957826 + 0.165900i
\(982\) 16.5000 + 28.5788i 0.526536 + 0.911987i
\(983\) 60.0000 1.91370 0.956851 0.290578i \(-0.0938475\pi\)
0.956851 + 0.290578i \(0.0938475\pi\)
\(984\) 4.50000 + 2.59808i 0.143455 + 0.0828236i
\(985\) −20.0000 −0.637253
\(986\) −10.0000 + 17.3205i −0.318465 + 0.551597i
\(987\) 0 0
\(988\) −21.0000 36.3731i −0.668099 1.15718i
\(989\) 2.00000 + 3.46410i 0.0635963 + 0.110152i
\(990\) 3.00000 5.19615i 0.0953463 0.165145i
\(991\) 14.0000 24.2487i 0.444725 0.770286i −0.553308 0.832977i \(-0.686635\pi\)
0.998033 + 0.0626908i \(0.0199682\pi\)
\(992\) 3.00000 5.19615i 0.0952501 0.164978i
\(993\) 12.0000 + 6.92820i 0.380808 + 0.219860i
\(994\) 0 0
\(995\) −14.0000 + 24.2487i −0.443830 + 0.768736i
\(996\) −24.0000 13.8564i −0.760469 0.439057i
\(997\) −2.00000 −0.0633406 −0.0316703 0.999498i \(-0.510083\pi\)
−0.0316703 + 0.999498i \(0.510083\pi\)
\(998\) −14.5000 + 25.1147i −0.458989 + 0.794993i
\(999\) 9.00000 5.19615i 0.284747 0.164399i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.2.h.g.67.1 2
3.2 odd 2 2646.2.h.c.361.1 2
7.2 even 3 882.2.e.e.373.1 2
7.3 odd 6 126.2.f.b.85.1 yes 2
7.4 even 3 882.2.f.f.589.1 2
7.5 odd 6 882.2.e.a.373.1 2
7.6 odd 2 882.2.h.h.67.1 2
9.2 odd 6 2646.2.e.h.2125.1 2
9.7 even 3 882.2.e.e.655.1 2
21.2 odd 6 2646.2.e.h.1549.1 2
21.5 even 6 2646.2.e.i.1549.1 2
21.11 odd 6 2646.2.f.b.1765.1 2
21.17 even 6 378.2.f.b.253.1 2
21.20 even 2 2646.2.h.b.361.1 2
28.3 even 6 1008.2.r.a.337.1 2
63.2 odd 6 2646.2.h.c.667.1 2
63.4 even 3 7938.2.a.e.1.1 1
63.11 odd 6 2646.2.f.b.883.1 2
63.16 even 3 inner 882.2.h.g.79.1 2
63.20 even 6 2646.2.e.i.2125.1 2
63.25 even 3 882.2.f.f.295.1 2
63.31 odd 6 1134.2.a.c.1.1 1
63.32 odd 6 7938.2.a.bb.1.1 1
63.34 odd 6 882.2.e.a.655.1 2
63.38 even 6 378.2.f.b.127.1 2
63.47 even 6 2646.2.h.b.667.1 2
63.52 odd 6 126.2.f.b.43.1 2
63.59 even 6 1134.2.a.f.1.1 1
63.61 odd 6 882.2.h.h.79.1 2
84.59 odd 6 3024.2.r.c.1009.1 2
252.31 even 6 9072.2.a.t.1.1 1
252.59 odd 6 9072.2.a.f.1.1 1
252.115 even 6 1008.2.r.a.673.1 2
252.227 odd 6 3024.2.r.c.2017.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.f.b.43.1 2 63.52 odd 6
126.2.f.b.85.1 yes 2 7.3 odd 6
378.2.f.b.127.1 2 63.38 even 6
378.2.f.b.253.1 2 21.17 even 6
882.2.e.a.373.1 2 7.5 odd 6
882.2.e.a.655.1 2 63.34 odd 6
882.2.e.e.373.1 2 7.2 even 3
882.2.e.e.655.1 2 9.7 even 3
882.2.f.f.295.1 2 63.25 even 3
882.2.f.f.589.1 2 7.4 even 3
882.2.h.g.67.1 2 1.1 even 1 trivial
882.2.h.g.79.1 2 63.16 even 3 inner
882.2.h.h.67.1 2 7.6 odd 2
882.2.h.h.79.1 2 63.61 odd 6
1008.2.r.a.337.1 2 28.3 even 6
1008.2.r.a.673.1 2 252.115 even 6
1134.2.a.c.1.1 1 63.31 odd 6
1134.2.a.f.1.1 1 63.59 even 6
2646.2.e.h.1549.1 2 21.2 odd 6
2646.2.e.h.2125.1 2 9.2 odd 6
2646.2.e.i.1549.1 2 21.5 even 6
2646.2.e.i.2125.1 2 63.20 even 6
2646.2.f.b.883.1 2 63.11 odd 6
2646.2.f.b.1765.1 2 21.11 odd 6
2646.2.h.b.361.1 2 21.20 even 2
2646.2.h.b.667.1 2 63.47 even 6
2646.2.h.c.361.1 2 3.2 odd 2
2646.2.h.c.667.1 2 63.2 odd 6
3024.2.r.c.1009.1 2 84.59 odd 6
3024.2.r.c.2017.1 2 252.227 odd 6
7938.2.a.e.1.1 1 63.4 even 3
7938.2.a.bb.1.1 1 63.32 odd 6
9072.2.a.f.1.1 1 252.59 odd 6
9072.2.a.t.1.1 1 252.31 even 6