Properties

Label 882.2.g.d.361.1
Level $882$
Weight $2$
Character 882.361
Analytic conductor $7.043$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,2,Mod(361,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 882.g (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.04280545828\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 14)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 882.361
Dual form 882.2.g.d.667.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +1.00000 q^{8} +O(q^{10})\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +1.00000 q^{8} +4.00000 q^{13} +(-0.500000 - 0.866025i) q^{16} +(-3.00000 + 5.19615i) q^{17} +(1.00000 + 1.73205i) q^{19} +(2.50000 - 4.33013i) q^{25} +(-2.00000 - 3.46410i) q^{26} +6.00000 q^{29} +(-2.00000 + 3.46410i) q^{31} +(-0.500000 + 0.866025i) q^{32} +6.00000 q^{34} +(-1.00000 - 1.73205i) q^{37} +(1.00000 - 1.73205i) q^{38} +6.00000 q^{41} +8.00000 q^{43} +(6.00000 + 10.3923i) q^{47} -5.00000 q^{50} +(-2.00000 + 3.46410i) q^{52} +(3.00000 - 5.19615i) q^{53} +(-3.00000 - 5.19615i) q^{58} +(3.00000 - 5.19615i) q^{59} +(4.00000 + 6.92820i) q^{61} +4.00000 q^{62} +1.00000 q^{64} +(2.00000 - 3.46410i) q^{67} +(-3.00000 - 5.19615i) q^{68} +(1.00000 - 1.73205i) q^{73} +(-1.00000 + 1.73205i) q^{74} -2.00000 q^{76} +(-4.00000 - 6.92820i) q^{79} +(-3.00000 - 5.19615i) q^{82} -6.00000 q^{83} +(-4.00000 - 6.92820i) q^{86} +(3.00000 + 5.19615i) q^{89} +(6.00000 - 10.3923i) q^{94} +10.0000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - q^{4} + 2 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - q^{2} - q^{4} + 2 q^{8} + 8 q^{13} - q^{16} - 6 q^{17} + 2 q^{19} + 5 q^{25} - 4 q^{26} + 12 q^{29} - 4 q^{31} - q^{32} + 12 q^{34} - 2 q^{37} + 2 q^{38} + 12 q^{41} + 16 q^{43} + 12 q^{47} - 10 q^{50} - 4 q^{52} + 6 q^{53} - 6 q^{58} + 6 q^{59} + 8 q^{61} + 8 q^{62} + 2 q^{64} + 4 q^{67} - 6 q^{68} + 2 q^{73} - 2 q^{74} - 4 q^{76} - 8 q^{79} - 6 q^{82} - 12 q^{83} - 8 q^{86} + 6 q^{89} + 12 q^{94} + 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(12\) 0 0
\(13\) 4.00000 1.10940 0.554700 0.832050i \(-0.312833\pi\)
0.554700 + 0.832050i \(0.312833\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −3.00000 + 5.19615i −0.727607 + 1.26025i 0.230285 + 0.973123i \(0.426034\pi\)
−0.957892 + 0.287129i \(0.907299\pi\)
\(18\) 0 0
\(19\) 1.00000 + 1.73205i 0.229416 + 0.397360i 0.957635 0.287984i \(-0.0929851\pi\)
−0.728219 + 0.685344i \(0.759652\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(24\) 0 0
\(25\) 2.50000 4.33013i 0.500000 0.866025i
\(26\) −2.00000 3.46410i −0.392232 0.679366i
\(27\) 0 0
\(28\) 0 0
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) −2.00000 + 3.46410i −0.359211 + 0.622171i −0.987829 0.155543i \(-0.950287\pi\)
0.628619 + 0.777714i \(0.283621\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 6.00000 1.02899
\(35\) 0 0
\(36\) 0 0
\(37\) −1.00000 1.73205i −0.164399 0.284747i 0.772043 0.635571i \(-0.219235\pi\)
−0.936442 + 0.350823i \(0.885902\pi\)
\(38\) 1.00000 1.73205i 0.162221 0.280976i
\(39\) 0 0
\(40\) 0 0
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) 8.00000 1.21999 0.609994 0.792406i \(-0.291172\pi\)
0.609994 + 0.792406i \(0.291172\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.00000 + 10.3923i 0.875190 + 1.51587i 0.856560 + 0.516047i \(0.172597\pi\)
0.0186297 + 0.999826i \(0.494070\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −5.00000 −0.707107
\(51\) 0 0
\(52\) −2.00000 + 3.46410i −0.277350 + 0.480384i
\(53\) 3.00000 5.19615i 0.412082 0.713746i −0.583036 0.812447i \(-0.698135\pi\)
0.995117 + 0.0987002i \(0.0314685\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) −3.00000 5.19615i −0.393919 0.682288i
\(59\) 3.00000 5.19615i 0.390567 0.676481i −0.601958 0.798528i \(-0.705612\pi\)
0.992524 + 0.122047i \(0.0389457\pi\)
\(60\) 0 0
\(61\) 4.00000 + 6.92820i 0.512148 + 0.887066i 0.999901 + 0.0140840i \(0.00448323\pi\)
−0.487753 + 0.872982i \(0.662183\pi\)
\(62\) 4.00000 0.508001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 2.00000 3.46410i 0.244339 0.423207i −0.717607 0.696449i \(-0.754762\pi\)
0.961946 + 0.273241i \(0.0880957\pi\)
\(68\) −3.00000 5.19615i −0.363803 0.630126i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 1.00000 1.73205i 0.117041 0.202721i −0.801553 0.597924i \(-0.795992\pi\)
0.918594 + 0.395203i \(0.129326\pi\)
\(74\) −1.00000 + 1.73205i −0.116248 + 0.201347i
\(75\) 0 0
\(76\) −2.00000 −0.229416
\(77\) 0 0
\(78\) 0 0
\(79\) −4.00000 6.92820i −0.450035 0.779484i 0.548352 0.836247i \(-0.315255\pi\)
−0.998388 + 0.0567635i \(0.981922\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −3.00000 5.19615i −0.331295 0.573819i
\(83\) −6.00000 −0.658586 −0.329293 0.944228i \(-0.606810\pi\)
−0.329293 + 0.944228i \(0.606810\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −4.00000 6.92820i −0.431331 0.747087i
\(87\) 0 0
\(88\) 0 0
\(89\) 3.00000 + 5.19615i 0.317999 + 0.550791i 0.980071 0.198650i \(-0.0636557\pi\)
−0.662071 + 0.749441i \(0.730322\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 6.00000 10.3923i 0.618853 1.07188i
\(95\) 0 0
\(96\) 0 0
\(97\) 10.0000 1.01535 0.507673 0.861550i \(-0.330506\pi\)
0.507673 + 0.861550i \(0.330506\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 2.50000 + 4.33013i 0.250000 + 0.433013i
\(101\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(102\) 0 0
\(103\) −2.00000 3.46410i −0.197066 0.341328i 0.750510 0.660859i \(-0.229808\pi\)
−0.947576 + 0.319531i \(0.896475\pi\)
\(104\) 4.00000 0.392232
\(105\) 0 0
\(106\) −6.00000 −0.582772
\(107\) 6.00000 + 10.3923i 0.580042 + 1.00466i 0.995474 + 0.0950377i \(0.0302972\pi\)
−0.415432 + 0.909624i \(0.636370\pi\)
\(108\) 0 0
\(109\) −1.00000 + 1.73205i −0.0957826 + 0.165900i −0.909935 0.414751i \(-0.863869\pi\)
0.814152 + 0.580651i \(0.197202\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −3.00000 + 5.19615i −0.278543 + 0.482451i
\(117\) 0 0
\(118\) −6.00000 −0.552345
\(119\) 0 0
\(120\) 0 0
\(121\) 5.50000 + 9.52628i 0.500000 + 0.866025i
\(122\) 4.00000 6.92820i 0.362143 0.627250i
\(123\) 0 0
\(124\) −2.00000 3.46410i −0.179605 0.311086i
\(125\) 0 0
\(126\) 0 0
\(127\) −16.0000 −1.41977 −0.709885 0.704317i \(-0.751253\pi\)
−0.709885 + 0.704317i \(0.751253\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) 0 0
\(131\) −9.00000 15.5885i −0.786334 1.36197i −0.928199 0.372084i \(-0.878643\pi\)
0.141865 0.989886i \(-0.454690\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −4.00000 −0.345547
\(135\) 0 0
\(136\) −3.00000 + 5.19615i −0.257248 + 0.445566i
\(137\) 9.00000 15.5885i 0.768922 1.33181i −0.169226 0.985577i \(-0.554127\pi\)
0.938148 0.346235i \(-0.112540\pi\)
\(138\) 0 0
\(139\) −14.0000 −1.18746 −0.593732 0.804663i \(-0.702346\pi\)
−0.593732 + 0.804663i \(0.702346\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) −2.00000 −0.165521
\(147\) 0 0
\(148\) 2.00000 0.164399
\(149\) −9.00000 15.5885i −0.737309 1.27706i −0.953703 0.300750i \(-0.902763\pi\)
0.216394 0.976306i \(-0.430570\pi\)
\(150\) 0 0
\(151\) −4.00000 + 6.92820i −0.325515 + 0.563809i −0.981617 0.190864i \(-0.938871\pi\)
0.656101 + 0.754673i \(0.272204\pi\)
\(152\) 1.00000 + 1.73205i 0.0811107 + 0.140488i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −2.00000 + 3.46410i −0.159617 + 0.276465i −0.934731 0.355357i \(-0.884359\pi\)
0.775113 + 0.631822i \(0.217693\pi\)
\(158\) −4.00000 + 6.92820i −0.318223 + 0.551178i
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 8.00000 + 13.8564i 0.626608 + 1.08532i 0.988227 + 0.152992i \(0.0488907\pi\)
−0.361619 + 0.932326i \(0.617776\pi\)
\(164\) −3.00000 + 5.19615i −0.234261 + 0.405751i
\(165\) 0 0
\(166\) 3.00000 + 5.19615i 0.232845 + 0.403300i
\(167\) −12.0000 −0.928588 −0.464294 0.885681i \(-0.653692\pi\)
−0.464294 + 0.885681i \(0.653692\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) 0 0
\(172\) −4.00000 + 6.92820i −0.304997 + 0.528271i
\(173\) 6.00000 + 10.3923i 0.456172 + 0.790112i 0.998755 0.0498898i \(-0.0158870\pi\)
−0.542583 + 0.840002i \(0.682554\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 3.00000 5.19615i 0.224860 0.389468i
\(179\) −6.00000 + 10.3923i −0.448461 + 0.776757i −0.998286 0.0585225i \(-0.981361\pi\)
0.549825 + 0.835280i \(0.314694\pi\)
\(180\) 0 0
\(181\) −20.0000 −1.48659 −0.743294 0.668965i \(-0.766738\pi\)
−0.743294 + 0.668965i \(0.766738\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) −12.0000 −0.875190
\(189\) 0 0
\(190\) 0 0
\(191\) 12.0000 + 20.7846i 0.868290 + 1.50392i 0.863743 + 0.503932i \(0.168114\pi\)
0.00454614 + 0.999990i \(0.498553\pi\)
\(192\) 0 0
\(193\) −7.00000 + 12.1244i −0.503871 + 0.872730i 0.496119 + 0.868255i \(0.334758\pi\)
−0.999990 + 0.00447566i \(0.998575\pi\)
\(194\) −5.00000 8.66025i −0.358979 0.621770i
\(195\) 0 0
\(196\) 0 0
\(197\) 18.0000 1.28245 0.641223 0.767354i \(-0.278427\pi\)
0.641223 + 0.767354i \(0.278427\pi\)
\(198\) 0 0
\(199\) 10.0000 17.3205i 0.708881 1.22782i −0.256391 0.966573i \(-0.582534\pi\)
0.965272 0.261245i \(-0.0841331\pi\)
\(200\) 2.50000 4.33013i 0.176777 0.306186i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) −2.00000 + 3.46410i −0.139347 + 0.241355i
\(207\) 0 0
\(208\) −2.00000 3.46410i −0.138675 0.240192i
\(209\) 0 0
\(210\) 0 0
\(211\) −4.00000 −0.275371 −0.137686 0.990476i \(-0.543966\pi\)
−0.137686 + 0.990476i \(0.543966\pi\)
\(212\) 3.00000 + 5.19615i 0.206041 + 0.356873i
\(213\) 0 0
\(214\) 6.00000 10.3923i 0.410152 0.710403i
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 2.00000 0.135457
\(219\) 0 0
\(220\) 0 0
\(221\) −12.0000 + 20.7846i −0.807207 + 1.39812i
\(222\) 0 0
\(223\) −8.00000 −0.535720 −0.267860 0.963458i \(-0.586316\pi\)
−0.267860 + 0.963458i \(0.586316\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 3.00000 + 5.19615i 0.199557 + 0.345643i
\(227\) −9.00000 + 15.5885i −0.597351 + 1.03464i 0.395860 + 0.918311i \(0.370447\pi\)
−0.993210 + 0.116331i \(0.962887\pi\)
\(228\) 0 0
\(229\) −2.00000 3.46410i −0.132164 0.228914i 0.792347 0.610071i \(-0.208859\pi\)
−0.924510 + 0.381157i \(0.875526\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 6.00000 0.393919
\(233\) −3.00000 5.19615i −0.196537 0.340411i 0.750867 0.660454i \(-0.229636\pi\)
−0.947403 + 0.320043i \(0.896303\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 3.00000 + 5.19615i 0.195283 + 0.338241i
\(237\) 0 0
\(238\) 0 0
\(239\) −24.0000 −1.55243 −0.776215 0.630468i \(-0.782863\pi\)
−0.776215 + 0.630468i \(0.782863\pi\)
\(240\) 0 0
\(241\) −5.00000 + 8.66025i −0.322078 + 0.557856i −0.980917 0.194429i \(-0.937715\pi\)
0.658838 + 0.752285i \(0.271048\pi\)
\(242\) 5.50000 9.52628i 0.353553 0.612372i
\(243\) 0 0
\(244\) −8.00000 −0.512148
\(245\) 0 0
\(246\) 0 0
\(247\) 4.00000 + 6.92820i 0.254514 + 0.440831i
\(248\) −2.00000 + 3.46410i −0.127000 + 0.219971i
\(249\) 0 0
\(250\) 0 0
\(251\) −18.0000 −1.13615 −0.568075 0.822977i \(-0.692312\pi\)
−0.568075 + 0.822977i \(0.692312\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 8.00000 + 13.8564i 0.501965 + 0.869428i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −9.00000 15.5885i −0.561405 0.972381i −0.997374 0.0724199i \(-0.976928\pi\)
0.435970 0.899961i \(-0.356405\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) −9.00000 + 15.5885i −0.556022 + 0.963058i
\(263\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 2.00000 + 3.46410i 0.122169 + 0.211604i
\(269\) 6.00000 10.3923i 0.365826 0.633630i −0.623082 0.782157i \(-0.714120\pi\)
0.988908 + 0.148527i \(0.0474530\pi\)
\(270\) 0 0
\(271\) −8.00000 13.8564i −0.485965 0.841717i 0.513905 0.857847i \(-0.328199\pi\)
−0.999870 + 0.0161307i \(0.994865\pi\)
\(272\) 6.00000 0.363803
\(273\) 0 0
\(274\) −18.0000 −1.08742
\(275\) 0 0
\(276\) 0 0
\(277\) 5.00000 8.66025i 0.300421 0.520344i −0.675810 0.737075i \(-0.736206\pi\)
0.976231 + 0.216731i \(0.0695395\pi\)
\(278\) 7.00000 + 12.1244i 0.419832 + 0.727171i
\(279\) 0 0
\(280\) 0 0
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 0 0
\(283\) −11.0000 + 19.0526i −0.653882 + 1.13256i 0.328291 + 0.944577i \(0.393527\pi\)
−0.982173 + 0.187980i \(0.939806\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −9.50000 16.4545i −0.558824 0.967911i
\(290\) 0 0
\(291\) 0 0
\(292\) 1.00000 + 1.73205i 0.0585206 + 0.101361i
\(293\) 24.0000 1.40209 0.701047 0.713115i \(-0.252716\pi\)
0.701047 + 0.713115i \(0.252716\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −1.00000 1.73205i −0.0581238 0.100673i
\(297\) 0 0
\(298\) −9.00000 + 15.5885i −0.521356 + 0.903015i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 8.00000 0.460348
\(303\) 0 0
\(304\) 1.00000 1.73205i 0.0573539 0.0993399i
\(305\) 0 0
\(306\) 0 0
\(307\) −2.00000 −0.114146 −0.0570730 0.998370i \(-0.518177\pi\)
−0.0570730 + 0.998370i \(0.518177\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 12.0000 20.7846i 0.680458 1.17859i −0.294384 0.955687i \(-0.595114\pi\)
0.974841 0.222900i \(-0.0715523\pi\)
\(312\) 0 0
\(313\) −5.00000 8.66025i −0.282617 0.489506i 0.689412 0.724370i \(-0.257869\pi\)
−0.972028 + 0.234863i \(0.924536\pi\)
\(314\) 4.00000 0.225733
\(315\) 0 0
\(316\) 8.00000 0.450035
\(317\) 3.00000 + 5.19615i 0.168497 + 0.291845i 0.937892 0.346929i \(-0.112775\pi\)
−0.769395 + 0.638774i \(0.779442\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −12.0000 −0.667698
\(324\) 0 0
\(325\) 10.0000 17.3205i 0.554700 0.960769i
\(326\) 8.00000 13.8564i 0.443079 0.767435i
\(327\) 0 0
\(328\) 6.00000 0.331295
\(329\) 0 0
\(330\) 0 0
\(331\) −4.00000 6.92820i −0.219860 0.380808i 0.734905 0.678170i \(-0.237227\pi\)
−0.954765 + 0.297361i \(0.903893\pi\)
\(332\) 3.00000 5.19615i 0.164646 0.285176i
\(333\) 0 0
\(334\) 6.00000 + 10.3923i 0.328305 + 0.568642i
\(335\) 0 0
\(336\) 0 0
\(337\) 14.0000 0.762629 0.381314 0.924445i \(-0.375472\pi\)
0.381314 + 0.924445i \(0.375472\pi\)
\(338\) −1.50000 2.59808i −0.0815892 0.141317i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 8.00000 0.431331
\(345\) 0 0
\(346\) 6.00000 10.3923i 0.322562 0.558694i
\(347\) −12.0000 + 20.7846i −0.644194 + 1.11578i 0.340293 + 0.940319i \(0.389474\pi\)
−0.984487 + 0.175457i \(0.943860\pi\)
\(348\) 0 0
\(349\) 28.0000 1.49881 0.749403 0.662114i \(-0.230341\pi\)
0.749403 + 0.662114i \(0.230341\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −9.00000 + 15.5885i −0.479022 + 0.829690i −0.999711 0.0240566i \(-0.992342\pi\)
0.520689 + 0.853746i \(0.325675\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −6.00000 −0.317999
\(357\) 0 0
\(358\) 12.0000 0.634220
\(359\) −12.0000 20.7846i −0.633336 1.09697i −0.986865 0.161546i \(-0.948352\pi\)
0.353529 0.935423i \(-0.384981\pi\)
\(360\) 0 0
\(361\) 7.50000 12.9904i 0.394737 0.683704i
\(362\) 10.0000 + 17.3205i 0.525588 + 0.910346i
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 4.00000 6.92820i 0.208798 0.361649i −0.742538 0.669804i \(-0.766378\pi\)
0.951336 + 0.308155i \(0.0997115\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −7.00000 12.1244i −0.362446 0.627775i 0.625917 0.779890i \(-0.284725\pi\)
−0.988363 + 0.152115i \(0.951392\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 6.00000 + 10.3923i 0.309426 + 0.535942i
\(377\) 24.0000 1.23606
\(378\) 0 0
\(379\) −16.0000 −0.821865 −0.410932 0.911666i \(-0.634797\pi\)
−0.410932 + 0.911666i \(0.634797\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 12.0000 20.7846i 0.613973 1.06343i
\(383\) −18.0000 31.1769i −0.919757 1.59307i −0.799783 0.600289i \(-0.795052\pi\)
−0.119974 0.992777i \(-0.538281\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 14.0000 0.712581
\(387\) 0 0
\(388\) −5.00000 + 8.66025i −0.253837 + 0.439658i
\(389\) 9.00000 15.5885i 0.456318 0.790366i −0.542445 0.840091i \(-0.682501\pi\)
0.998763 + 0.0497253i \(0.0158346\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) −9.00000 15.5885i −0.453413 0.785335i
\(395\) 0 0
\(396\) 0 0
\(397\) 10.0000 + 17.3205i 0.501886 + 0.869291i 0.999998 + 0.00217869i \(0.000693499\pi\)
−0.498112 + 0.867113i \(0.665973\pi\)
\(398\) −20.0000 −1.00251
\(399\) 0 0
\(400\) −5.00000 −0.250000
\(401\) −9.00000 15.5885i −0.449439 0.778450i 0.548911 0.835881i \(-0.315043\pi\)
−0.998350 + 0.0574304i \(0.981709\pi\)
\(402\) 0 0
\(403\) −8.00000 + 13.8564i −0.398508 + 0.690237i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 7.00000 12.1244i 0.346128 0.599511i −0.639430 0.768849i \(-0.720830\pi\)
0.985558 + 0.169338i \(0.0541630\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 4.00000 0.197066
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) −2.00000 + 3.46410i −0.0980581 + 0.169842i
\(417\) 0 0
\(418\) 0 0
\(419\) 6.00000 0.293119 0.146560 0.989202i \(-0.453180\pi\)
0.146560 + 0.989202i \(0.453180\pi\)
\(420\) 0 0
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) 2.00000 + 3.46410i 0.0973585 + 0.168630i
\(423\) 0 0
\(424\) 3.00000 5.19615i 0.145693 0.252347i
\(425\) 15.0000 + 25.9808i 0.727607 + 1.26025i
\(426\) 0 0
\(427\) 0 0
\(428\) −12.0000 −0.580042
\(429\) 0 0
\(430\) 0 0
\(431\) 12.0000 20.7846i 0.578020 1.00116i −0.417687 0.908591i \(-0.637159\pi\)
0.995706 0.0925683i \(-0.0295076\pi\)
\(432\) 0 0
\(433\) 34.0000 1.63394 0.816968 0.576683i \(-0.195653\pi\)
0.816968 + 0.576683i \(0.195653\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −1.00000 1.73205i −0.0478913 0.0829502i
\(437\) 0 0
\(438\) 0 0
\(439\) 4.00000 + 6.92820i 0.190910 + 0.330665i 0.945552 0.325471i \(-0.105523\pi\)
−0.754642 + 0.656136i \(0.772190\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 24.0000 1.14156
\(443\) −6.00000 10.3923i −0.285069 0.493753i 0.687557 0.726130i \(-0.258683\pi\)
−0.972626 + 0.232377i \(0.925350\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 4.00000 + 6.92820i 0.189405 + 0.328060i
\(447\) 0 0
\(448\) 0 0
\(449\) −18.0000 −0.849473 −0.424736 0.905317i \(-0.639633\pi\)
−0.424736 + 0.905317i \(0.639633\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 3.00000 5.19615i 0.141108 0.244406i
\(453\) 0 0
\(454\) 18.0000 0.844782
\(455\) 0 0
\(456\) 0 0
\(457\) 5.00000 + 8.66025i 0.233890 + 0.405110i 0.958950 0.283577i \(-0.0915211\pi\)
−0.725059 + 0.688686i \(0.758188\pi\)
\(458\) −2.00000 + 3.46410i −0.0934539 + 0.161867i
\(459\) 0 0
\(460\) 0 0
\(461\) 12.0000 0.558896 0.279448 0.960161i \(-0.409849\pi\)
0.279448 + 0.960161i \(0.409849\pi\)
\(462\) 0 0
\(463\) 32.0000 1.48717 0.743583 0.668644i \(-0.233125\pi\)
0.743583 + 0.668644i \(0.233125\pi\)
\(464\) −3.00000 5.19615i −0.139272 0.241225i
\(465\) 0 0
\(466\) −3.00000 + 5.19615i −0.138972 + 0.240707i
\(467\) 3.00000 + 5.19615i 0.138823 + 0.240449i 0.927052 0.374934i \(-0.122335\pi\)
−0.788228 + 0.615383i \(0.789001\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 3.00000 5.19615i 0.138086 0.239172i
\(473\) 0 0
\(474\) 0 0
\(475\) 10.0000 0.458831
\(476\) 0 0
\(477\) 0 0
\(478\) 12.0000 + 20.7846i 0.548867 + 0.950666i
\(479\) 18.0000 31.1769i 0.822441 1.42451i −0.0814184 0.996680i \(-0.525945\pi\)
0.903859 0.427830i \(-0.140722\pi\)
\(480\) 0 0
\(481\) −4.00000 6.92820i −0.182384 0.315899i
\(482\) 10.0000 0.455488
\(483\) 0 0
\(484\) −11.0000 −0.500000
\(485\) 0 0
\(486\) 0 0
\(487\) 8.00000 13.8564i 0.362515 0.627894i −0.625859 0.779936i \(-0.715252\pi\)
0.988374 + 0.152042i \(0.0485850\pi\)
\(488\) 4.00000 + 6.92820i 0.181071 + 0.313625i
\(489\) 0 0
\(490\) 0 0
\(491\) 12.0000 0.541552 0.270776 0.962642i \(-0.412720\pi\)
0.270776 + 0.962642i \(0.412720\pi\)
\(492\) 0 0
\(493\) −18.0000 + 31.1769i −0.810679 + 1.40414i
\(494\) 4.00000 6.92820i 0.179969 0.311715i
\(495\) 0 0
\(496\) 4.00000 0.179605
\(497\) 0 0
\(498\) 0 0
\(499\) 2.00000 + 3.46410i 0.0895323 + 0.155074i 0.907314 0.420455i \(-0.138129\pi\)
−0.817781 + 0.575529i \(0.804796\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 9.00000 + 15.5885i 0.401690 + 0.695747i
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 8.00000 13.8564i 0.354943 0.614779i
\(509\) −18.0000 31.1769i −0.797836 1.38189i −0.921023 0.389509i \(-0.872645\pi\)
0.123187 0.992384i \(-0.460689\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −9.00000 + 15.5885i −0.396973 + 0.687577i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −3.00000 + 5.19615i −0.131432 + 0.227648i −0.924229 0.381839i \(-0.875291\pi\)
0.792797 + 0.609486i \(0.208624\pi\)
\(522\) 0 0
\(523\) 1.00000 + 1.73205i 0.0437269 + 0.0757373i 0.887061 0.461653i \(-0.152744\pi\)
−0.843334 + 0.537390i \(0.819410\pi\)
\(524\) 18.0000 0.786334
\(525\) 0 0
\(526\) 0 0
\(527\) −12.0000 20.7846i −0.522728 0.905392i
\(528\) 0 0
\(529\) 11.5000 19.9186i 0.500000 0.866025i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 24.0000 1.03956
\(534\) 0 0
\(535\) 0 0
\(536\) 2.00000 3.46410i 0.0863868 0.149626i
\(537\) 0 0
\(538\) −12.0000 −0.517357
\(539\) 0 0
\(540\) 0 0
\(541\) −19.0000 32.9090i −0.816874 1.41487i −0.907975 0.419025i \(-0.862372\pi\)
0.0911008 0.995842i \(-0.470961\pi\)
\(542\) −8.00000 + 13.8564i −0.343629 + 0.595184i
\(543\) 0 0
\(544\) −3.00000 5.19615i −0.128624 0.222783i
\(545\) 0 0
\(546\) 0 0
\(547\) 8.00000 0.342055 0.171028 0.985266i \(-0.445291\pi\)
0.171028 + 0.985266i \(0.445291\pi\)
\(548\) 9.00000 + 15.5885i 0.384461 + 0.665906i
\(549\) 0 0
\(550\) 0 0
\(551\) 6.00000 + 10.3923i 0.255609 + 0.442727i
\(552\) 0 0
\(553\) 0 0
\(554\) −10.0000 −0.424859
\(555\) 0 0
\(556\) 7.00000 12.1244i 0.296866 0.514187i
\(557\) 3.00000 5.19615i 0.127114 0.220168i −0.795443 0.606028i \(-0.792762\pi\)
0.922557 + 0.385860i \(0.126095\pi\)
\(558\) 0 0
\(559\) 32.0000 1.35346
\(560\) 0 0
\(561\) 0 0
\(562\) −3.00000 5.19615i −0.126547 0.219186i
\(563\) −15.0000 + 25.9808i −0.632175 + 1.09496i 0.354932 + 0.934892i \(0.384504\pi\)
−0.987106 + 0.160066i \(0.948829\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 22.0000 0.924729
\(567\) 0 0
\(568\) 0 0
\(569\) 3.00000 + 5.19615i 0.125767 + 0.217834i 0.922032 0.387113i \(-0.126528\pi\)
−0.796266 + 0.604947i \(0.793194\pi\)
\(570\) 0 0
\(571\) −16.0000 + 27.7128i −0.669579 + 1.15975i 0.308443 + 0.951243i \(0.400192\pi\)
−0.978022 + 0.208502i \(0.933141\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 1.00000 1.73205i 0.0416305 0.0721062i −0.844459 0.535620i \(-0.820078\pi\)
0.886090 + 0.463513i \(0.153411\pi\)
\(578\) −9.50000 + 16.4545i −0.395148 + 0.684416i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 1.00000 1.73205i 0.0413803 0.0716728i
\(585\) 0 0
\(586\) −12.0000 20.7846i −0.495715 0.858604i
\(587\) −42.0000 −1.73353 −0.866763 0.498721i \(-0.833803\pi\)
−0.866763 + 0.498721i \(0.833803\pi\)
\(588\) 0 0
\(589\) −8.00000 −0.329634
\(590\) 0 0
\(591\) 0 0
\(592\) −1.00000 + 1.73205i −0.0410997 + 0.0711868i
\(593\) 3.00000 + 5.19615i 0.123195 + 0.213380i 0.921026 0.389501i \(-0.127353\pi\)
−0.797831 + 0.602881i \(0.794019\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 18.0000 0.737309
\(597\) 0 0
\(598\) 0 0
\(599\) −12.0000 + 20.7846i −0.490307 + 0.849236i −0.999938 0.0111569i \(-0.996449\pi\)
0.509631 + 0.860393i \(0.329782\pi\)
\(600\) 0 0
\(601\) −26.0000 −1.06056 −0.530281 0.847822i \(-0.677914\pi\)
−0.530281 + 0.847822i \(0.677914\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −4.00000 6.92820i −0.162758 0.281905i
\(605\) 0 0
\(606\) 0 0
\(607\) 16.0000 + 27.7128i 0.649420 + 1.12483i 0.983262 + 0.182199i \(0.0583216\pi\)
−0.333842 + 0.942629i \(0.608345\pi\)
\(608\) −2.00000 −0.0811107
\(609\) 0 0
\(610\) 0 0
\(611\) 24.0000 + 41.5692i 0.970936 + 1.68171i
\(612\) 0 0
\(613\) −1.00000 + 1.73205i −0.0403896 + 0.0699569i −0.885514 0.464614i \(-0.846193\pi\)
0.845124 + 0.534570i \(0.179527\pi\)
\(614\) 1.00000 + 1.73205i 0.0403567 + 0.0698999i
\(615\) 0 0
\(616\) 0 0
\(617\) −6.00000 −0.241551 −0.120775 0.992680i \(-0.538538\pi\)
−0.120775 + 0.992680i \(0.538538\pi\)
\(618\) 0 0
\(619\) 13.0000 22.5167i 0.522514 0.905021i −0.477143 0.878826i \(-0.658328\pi\)
0.999657 0.0261952i \(-0.00833914\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −24.0000 −0.962312
\(623\) 0 0
\(624\) 0 0
\(625\) −12.5000 21.6506i −0.500000 0.866025i
\(626\) −5.00000 + 8.66025i −0.199840 + 0.346133i
\(627\) 0 0
\(628\) −2.00000 3.46410i −0.0798087 0.138233i
\(629\) 12.0000 0.478471
\(630\) 0 0
\(631\) −16.0000 −0.636950 −0.318475 0.947931i \(-0.603171\pi\)
−0.318475 + 0.947931i \(0.603171\pi\)
\(632\) −4.00000 6.92820i −0.159111 0.275589i
\(633\) 0 0
\(634\) 3.00000 5.19615i 0.119145 0.206366i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −9.00000 + 15.5885i −0.355479 + 0.615707i −0.987200 0.159489i \(-0.949015\pi\)
0.631721 + 0.775196i \(0.282349\pi\)
\(642\) 0 0
\(643\) −14.0000 −0.552106 −0.276053 0.961142i \(-0.589027\pi\)
−0.276053 + 0.961142i \(0.589027\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 6.00000 + 10.3923i 0.236067 + 0.408880i
\(647\) 6.00000 10.3923i 0.235884 0.408564i −0.723645 0.690172i \(-0.757535\pi\)
0.959529 + 0.281609i \(0.0908680\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) −20.0000 −0.784465
\(651\) 0 0
\(652\) −16.0000 −0.626608
\(653\) 9.00000 + 15.5885i 0.352197 + 0.610023i 0.986634 0.162951i \(-0.0521013\pi\)
−0.634437 + 0.772975i \(0.718768\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −3.00000 5.19615i −0.117130 0.202876i
\(657\) 0 0
\(658\) 0 0
\(659\) 24.0000 0.934907 0.467454 0.884018i \(-0.345171\pi\)
0.467454 + 0.884018i \(0.345171\pi\)
\(660\) 0 0
\(661\) −20.0000 + 34.6410i −0.777910 + 1.34738i 0.155235 + 0.987878i \(0.450387\pi\)
−0.933144 + 0.359502i \(0.882947\pi\)
\(662\) −4.00000 + 6.92820i −0.155464 + 0.269272i
\(663\) 0 0
\(664\) −6.00000 −0.232845
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 6.00000 10.3923i 0.232147 0.402090i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 26.0000 1.00223 0.501113 0.865382i \(-0.332924\pi\)
0.501113 + 0.865382i \(0.332924\pi\)
\(674\) −7.00000 12.1244i −0.269630 0.467013i
\(675\) 0 0
\(676\) −1.50000 + 2.59808i −0.0576923 + 0.0999260i
\(677\) 6.00000 + 10.3923i 0.230599 + 0.399409i 0.957984 0.286820i \(-0.0925982\pi\)
−0.727386 + 0.686229i \(0.759265\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −6.00000 + 10.3923i −0.229584 + 0.397650i −0.957685 0.287819i \(-0.907070\pi\)
0.728101 + 0.685470i \(0.240403\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) −4.00000 6.92820i −0.152499 0.264135i
\(689\) 12.0000 20.7846i 0.457164 0.791831i
\(690\) 0 0
\(691\) −23.0000 39.8372i −0.874961 1.51548i −0.856804 0.515642i \(-0.827553\pi\)
−0.0181572 0.999835i \(-0.505780\pi\)
\(692\) −12.0000 −0.456172
\(693\) 0 0
\(694\) 24.0000 0.911028
\(695\) 0 0
\(696\) 0 0
\(697\) −18.0000 + 31.1769i −0.681799 + 1.18091i
\(698\) −14.0000 24.2487i −0.529908 0.917827i
\(699\) 0 0
\(700\) 0 0
\(701\) −18.0000 −0.679851 −0.339925 0.940452i \(-0.610402\pi\)
−0.339925 + 0.940452i \(0.610402\pi\)
\(702\) 0 0
\(703\) 2.00000 3.46410i 0.0754314 0.130651i
\(704\) 0 0
\(705\) 0 0
\(706\) 18.0000 0.677439
\(707\) 0 0
\(708\) 0 0
\(709\) 23.0000 + 39.8372i 0.863783 + 1.49612i 0.868250 + 0.496126i \(0.165245\pi\)
−0.00446726 + 0.999990i \(0.501422\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 3.00000 + 5.19615i 0.112430 + 0.194734i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −6.00000 10.3923i −0.224231 0.388379i
\(717\) 0 0
\(718\) −12.0000 + 20.7846i −0.447836 + 0.775675i
\(719\) −6.00000 10.3923i −0.223762 0.387568i 0.732185 0.681106i \(-0.238501\pi\)
−0.955947 + 0.293538i \(0.905167\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −15.0000 −0.558242
\(723\) 0 0
\(724\) 10.0000 17.3205i 0.371647 0.643712i
\(725\) 15.0000 25.9808i 0.557086 0.964901i
\(726\) 0 0
\(727\) −44.0000 −1.63187 −0.815935 0.578144i \(-0.803777\pi\)
−0.815935 + 0.578144i \(0.803777\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −24.0000 + 41.5692i −0.887672 + 1.53749i
\(732\) 0 0
\(733\) −20.0000 34.6410i −0.738717 1.27950i −0.953073 0.302740i \(-0.902099\pi\)
0.214356 0.976756i \(-0.431235\pi\)
\(734\) −8.00000 −0.295285
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 8.00000 13.8564i 0.294285 0.509716i −0.680534 0.732717i \(-0.738252\pi\)
0.974818 + 0.223001i \(0.0715853\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −24.0000 −0.880475 −0.440237 0.897881i \(-0.645106\pi\)
−0.440237 + 0.897881i \(0.645106\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −7.00000 + 12.1244i −0.256288 + 0.443904i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 20.0000 + 34.6410i 0.729810 + 1.26407i 0.956963 + 0.290209i \(0.0937250\pi\)
−0.227153 + 0.973859i \(0.572942\pi\)
\(752\) 6.00000 10.3923i 0.218797 0.378968i
\(753\) 0 0
\(754\) −12.0000 20.7846i −0.437014 0.756931i
\(755\) 0 0
\(756\) 0 0
\(757\) 2.00000 0.0726912 0.0363456 0.999339i \(-0.488428\pi\)
0.0363456 + 0.999339i \(0.488428\pi\)
\(758\) 8.00000 + 13.8564i 0.290573 + 0.503287i
\(759\) 0 0
\(760\) 0 0
\(761\) 9.00000 + 15.5885i 0.326250 + 0.565081i 0.981764 0.190101i \(-0.0608816\pi\)
−0.655515 + 0.755182i \(0.727548\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −24.0000 −0.868290
\(765\) 0 0
\(766\) −18.0000 + 31.1769i −0.650366 + 1.12647i
\(767\) 12.0000 20.7846i 0.433295 0.750489i
\(768\) 0 0
\(769\) −14.0000 −0.504853 −0.252426 0.967616i \(-0.581229\pi\)
−0.252426 + 0.967616i \(0.581229\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −7.00000 12.1244i −0.251936 0.436365i
\(773\) −12.0000 + 20.7846i −0.431610 + 0.747570i −0.997012 0.0772449i \(-0.975388\pi\)
0.565402 + 0.824815i \(0.308721\pi\)
\(774\) 0 0
\(775\) 10.0000 + 17.3205i 0.359211 + 0.622171i
\(776\) 10.0000 0.358979
\(777\) 0 0
\(778\) −18.0000 −0.645331
\(779\) 6.00000 + 10.3923i 0.214972 + 0.372343i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −11.0000 + 19.0526i −0.392108 + 0.679150i −0.992727 0.120384i \(-0.961587\pi\)
0.600620 + 0.799535i \(0.294921\pi\)
\(788\) −9.00000 + 15.5885i −0.320612 + 0.555316i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 16.0000 + 27.7128i 0.568177 + 0.984111i
\(794\) 10.0000 17.3205i 0.354887 0.614682i
\(795\) 0 0
\(796\)