# Properties

 Label 882.2.g.d Level $882$ Weight $2$ Character orbit 882.g Analytic conductor $7.043$ Analytic rank $0$ Dimension $2$ Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [882,2,Mod(361,882)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(882, base_ring=CyclotomicField(6))

chi = DirichletCharacter(H, H._module([0, 4]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("882.361");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$882 = 2 \cdot 3^{2} \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 882.g (of order $$3$$, degree $$2$$, not minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$7.04280545828$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} - x + 1$$ x^2 - x + 1 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 14) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q - \zeta_{6} q^{2} + (\zeta_{6} - 1) q^{4} + q^{8} +O(q^{10})$$ q - z * q^2 + (z - 1) * q^4 + q^8 $$q - \zeta_{6} q^{2} + (\zeta_{6} - 1) q^{4} + q^{8} + 4 q^{13} - \zeta_{6} q^{16} + (6 \zeta_{6} - 6) q^{17} + 2 \zeta_{6} q^{19} + ( - 5 \zeta_{6} + 5) q^{25} - 4 \zeta_{6} q^{26} + 6 q^{29} + (4 \zeta_{6} - 4) q^{31} + (\zeta_{6} - 1) q^{32} + 6 q^{34} - 2 \zeta_{6} q^{37} + ( - 2 \zeta_{6} + 2) q^{38} + 6 q^{41} + 8 q^{43} + 12 \zeta_{6} q^{47} - 5 q^{50} + (4 \zeta_{6} - 4) q^{52} + ( - 6 \zeta_{6} + 6) q^{53} - 6 \zeta_{6} q^{58} + ( - 6 \zeta_{6} + 6) q^{59} + 8 \zeta_{6} q^{61} + 4 q^{62} + q^{64} + ( - 4 \zeta_{6} + 4) q^{67} - 6 \zeta_{6} q^{68} + ( - 2 \zeta_{6} + 2) q^{73} + (2 \zeta_{6} - 2) q^{74} - 2 q^{76} - 8 \zeta_{6} q^{79} - 6 \zeta_{6} q^{82} - 6 q^{83} - 8 \zeta_{6} q^{86} + 6 \zeta_{6} q^{89} + ( - 12 \zeta_{6} + 12) q^{94} + 10 q^{97} +O(q^{100})$$ q - z * q^2 + (z - 1) * q^4 + q^8 + 4 * q^13 - z * q^16 + (6*z - 6) * q^17 + 2*z * q^19 + (-5*z + 5) * q^25 - 4*z * q^26 + 6 * q^29 + (4*z - 4) * q^31 + (z - 1) * q^32 + 6 * q^34 - 2*z * q^37 + (-2*z + 2) * q^38 + 6 * q^41 + 8 * q^43 + 12*z * q^47 - 5 * q^50 + (4*z - 4) * q^52 + (-6*z + 6) * q^53 - 6*z * q^58 + (-6*z + 6) * q^59 + 8*z * q^61 + 4 * q^62 + q^64 + (-4*z + 4) * q^67 - 6*z * q^68 + (-2*z + 2) * q^73 + (2*z - 2) * q^74 - 2 * q^76 - 8*z * q^79 - 6*z * q^82 - 6 * q^83 - 8*z * q^86 + 6*z * q^89 + (-12*z + 12) * q^94 + 10 * q^97 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - q^{2} - q^{4} + 2 q^{8}+O(q^{10})$$ 2 * q - q^2 - q^4 + 2 * q^8 $$2 q - q^{2} - q^{4} + 2 q^{8} + 8 q^{13} - q^{16} - 6 q^{17} + 2 q^{19} + 5 q^{25} - 4 q^{26} + 12 q^{29} - 4 q^{31} - q^{32} + 12 q^{34} - 2 q^{37} + 2 q^{38} + 12 q^{41} + 16 q^{43} + 12 q^{47} - 10 q^{50} - 4 q^{52} + 6 q^{53} - 6 q^{58} + 6 q^{59} + 8 q^{61} + 8 q^{62} + 2 q^{64} + 4 q^{67} - 6 q^{68} + 2 q^{73} - 2 q^{74} - 4 q^{76} - 8 q^{79} - 6 q^{82} - 12 q^{83} - 8 q^{86} + 6 q^{89} + 12 q^{94} + 20 q^{97}+O(q^{100})$$ 2 * q - q^2 - q^4 + 2 * q^8 + 8 * q^13 - q^16 - 6 * q^17 + 2 * q^19 + 5 * q^25 - 4 * q^26 + 12 * q^29 - 4 * q^31 - q^32 + 12 * q^34 - 2 * q^37 + 2 * q^38 + 12 * q^41 + 16 * q^43 + 12 * q^47 - 10 * q^50 - 4 * q^52 + 6 * q^53 - 6 * q^58 + 6 * q^59 + 8 * q^61 + 8 * q^62 + 2 * q^64 + 4 * q^67 - 6 * q^68 + 2 * q^73 - 2 * q^74 - 4 * q^76 - 8 * q^79 - 6 * q^82 - 12 * q^83 - 8 * q^86 + 6 * q^89 + 12 * q^94 + 20 * q^97

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/882\mathbb{Z}\right)^\times$$.

 $$n$$ $$199$$ $$785$$ $$\chi(n)$$ $$-\zeta_{6}$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
361.1
 0.5 + 0.866025i 0.5 − 0.866025i
−0.500000 0.866025i 0 −0.500000 + 0.866025i 0 0 0 1.00000 0 0
667.1 −0.500000 + 0.866025i 0 −0.500000 0.866025i 0 0 0 1.00000 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 882.2.g.d 2
3.b odd 2 1 98.2.c.a 2
7.b odd 2 1 882.2.g.c 2
7.c even 3 1 882.2.a.i 1
7.c even 3 1 inner 882.2.g.d 2
7.d odd 6 1 126.2.a.b 1
7.d odd 6 1 882.2.g.c 2
12.b even 2 1 784.2.i.i 2
21.c even 2 1 98.2.c.b 2
21.g even 6 1 14.2.a.a 1
21.g even 6 1 98.2.c.b 2
21.h odd 6 1 98.2.a.a 1
21.h odd 6 1 98.2.c.a 2
28.f even 6 1 1008.2.a.h 1
28.g odd 6 1 7056.2.a.bd 1
35.i odd 6 1 3150.2.a.i 1
35.k even 12 2 3150.2.g.j 2
56.j odd 6 1 4032.2.a.w 1
56.m even 6 1 4032.2.a.r 1
63.i even 6 1 1134.2.f.l 2
63.k odd 6 1 1134.2.f.f 2
63.s even 6 1 1134.2.f.l 2
63.t odd 6 1 1134.2.f.f 2
84.h odd 2 1 784.2.i.c 2
84.j odd 6 1 112.2.a.c 1
84.j odd 6 1 784.2.i.c 2
84.n even 6 1 784.2.a.b 1
84.n even 6 1 784.2.i.i 2
105.o odd 6 1 2450.2.a.t 1
105.p even 6 1 350.2.a.f 1
105.w odd 12 2 350.2.c.d 2
105.x even 12 2 2450.2.c.c 2
168.s odd 6 1 3136.2.a.e 1
168.v even 6 1 3136.2.a.z 1
168.ba even 6 1 448.2.a.g 1
168.be odd 6 1 448.2.a.a 1
231.k odd 6 1 1694.2.a.e 1
273.ba even 6 1 2366.2.a.j 1
273.cb odd 12 2 2366.2.d.b 2
336.bo even 12 2 1792.2.b.c 2
336.br odd 12 2 1792.2.b.g 2
357.s even 6 1 4046.2.a.f 1
399.s odd 6 1 5054.2.a.c 1
420.be odd 6 1 2800.2.a.g 1
420.br even 12 2 2800.2.g.h 2
483.o odd 6 1 7406.2.a.a 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
14.2.a.a 1 21.g even 6 1
98.2.a.a 1 21.h odd 6 1
98.2.c.a 2 3.b odd 2 1
98.2.c.a 2 21.h odd 6 1
98.2.c.b 2 21.c even 2 1
98.2.c.b 2 21.g even 6 1
112.2.a.c 1 84.j odd 6 1
126.2.a.b 1 7.d odd 6 1
350.2.a.f 1 105.p even 6 1
350.2.c.d 2 105.w odd 12 2
448.2.a.a 1 168.be odd 6 1
448.2.a.g 1 168.ba even 6 1
784.2.a.b 1 84.n even 6 1
784.2.i.c 2 84.h odd 2 1
784.2.i.c 2 84.j odd 6 1
784.2.i.i 2 12.b even 2 1
784.2.i.i 2 84.n even 6 1
882.2.a.i 1 7.c even 3 1
882.2.g.c 2 7.b odd 2 1
882.2.g.c 2 7.d odd 6 1
882.2.g.d 2 1.a even 1 1 trivial
882.2.g.d 2 7.c even 3 1 inner
1008.2.a.h 1 28.f even 6 1
1134.2.f.f 2 63.k odd 6 1
1134.2.f.f 2 63.t odd 6 1
1134.2.f.l 2 63.i even 6 1
1134.2.f.l 2 63.s even 6 1
1694.2.a.e 1 231.k odd 6 1
1792.2.b.c 2 336.bo even 12 2
1792.2.b.g 2 336.br odd 12 2
2366.2.a.j 1 273.ba even 6 1
2366.2.d.b 2 273.cb odd 12 2
2450.2.a.t 1 105.o odd 6 1
2450.2.c.c 2 105.x even 12 2
2800.2.a.g 1 420.be odd 6 1
2800.2.g.h 2 420.br even 12 2
3136.2.a.e 1 168.s odd 6 1
3136.2.a.z 1 168.v even 6 1
3150.2.a.i 1 35.i odd 6 1
3150.2.g.j 2 35.k even 12 2
4032.2.a.r 1 56.m even 6 1
4032.2.a.w 1 56.j odd 6 1
4046.2.a.f 1 357.s even 6 1
5054.2.a.c 1 399.s odd 6 1
7056.2.a.bd 1 28.g odd 6 1
7406.2.a.a 1 483.o odd 6 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(882, [\chi])$$:

 $$T_{5}$$ T5 $$T_{11}$$ T11 $$T_{13} - 4$$ T13 - 4

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2} + T + 1$$
$3$ $$T^{2}$$
$5$ $$T^{2}$$
$7$ $$T^{2}$$
$11$ $$T^{2}$$
$13$ $$(T - 4)^{2}$$
$17$ $$T^{2} + 6T + 36$$
$19$ $$T^{2} - 2T + 4$$
$23$ $$T^{2}$$
$29$ $$(T - 6)^{2}$$
$31$ $$T^{2} + 4T + 16$$
$37$ $$T^{2} + 2T + 4$$
$41$ $$(T - 6)^{2}$$
$43$ $$(T - 8)^{2}$$
$47$ $$T^{2} - 12T + 144$$
$53$ $$T^{2} - 6T + 36$$
$59$ $$T^{2} - 6T + 36$$
$61$ $$T^{2} - 8T + 64$$
$67$ $$T^{2} - 4T + 16$$
$71$ $$T^{2}$$
$73$ $$T^{2} - 2T + 4$$
$79$ $$T^{2} + 8T + 64$$
$83$ $$(T + 6)^{2}$$
$89$ $$T^{2} - 6T + 36$$
$97$ $$(T - 10)^{2}$$