Properties

Label 882.2.f.f.295.1
Level $882$
Weight $2$
Character 882.295
Analytic conductor $7.043$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,2,Mod(295,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.295");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 882.f (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.04280545828\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 295.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 882.295
Dual form 882.2.f.f.589.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(-1.50000 - 0.866025i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(1.00000 + 1.73205i) q^{5} +(-1.50000 + 0.866025i) q^{6} -1.00000 q^{8} +(1.50000 + 2.59808i) q^{9} +2.00000 q^{10} +(-0.500000 + 0.866025i) q^{11} +1.73205i q^{12} +(-3.00000 - 5.19615i) q^{13} -3.46410i q^{15} +(-0.500000 + 0.866025i) q^{16} +5.00000 q^{17} +3.00000 q^{18} +7.00000 q^{19} +(1.00000 - 1.73205i) q^{20} +(0.500000 + 0.866025i) q^{22} +(-2.00000 - 3.46410i) q^{23} +(1.50000 + 0.866025i) q^{24} +(0.500000 - 0.866025i) q^{25} -6.00000 q^{26} -5.19615i q^{27} +(2.00000 - 3.46410i) q^{29} +(-3.00000 - 1.73205i) q^{30} +(-3.00000 - 5.19615i) q^{31} +(0.500000 + 0.866025i) q^{32} +(1.50000 - 0.866025i) q^{33} +(2.50000 - 4.33013i) q^{34} +(1.50000 - 2.59808i) q^{36} +2.00000 q^{37} +(3.50000 - 6.06218i) q^{38} +10.3923i q^{39} +(-1.00000 - 1.73205i) q^{40} +(1.50000 + 2.59808i) q^{41} +(0.500000 - 0.866025i) q^{43} +1.00000 q^{44} +(-3.00000 + 5.19615i) q^{45} -4.00000 q^{46} +(1.50000 - 0.866025i) q^{48} +(-0.500000 - 0.866025i) q^{50} +(-7.50000 - 4.33013i) q^{51} +(-3.00000 + 5.19615i) q^{52} +12.0000 q^{53} +(-4.50000 - 2.59808i) q^{54} -2.00000 q^{55} +(-10.5000 - 6.06218i) q^{57} +(-2.00000 - 3.46410i) q^{58} +(-3.50000 - 6.06218i) q^{59} +(-3.00000 + 1.73205i) q^{60} +(-6.00000 + 10.3923i) q^{61} -6.00000 q^{62} +1.00000 q^{64} +(6.00000 - 10.3923i) q^{65} -1.73205i q^{66} +(-6.50000 - 11.2583i) q^{67} +(-2.50000 - 4.33013i) q^{68} +6.92820i q^{69} -8.00000 q^{71} +(-1.50000 - 2.59808i) q^{72} -1.00000 q^{73} +(1.00000 - 1.73205i) q^{74} +(-1.50000 + 0.866025i) q^{75} +(-3.50000 - 6.06218i) q^{76} +(9.00000 + 5.19615i) q^{78} +(3.00000 - 5.19615i) q^{79} -2.00000 q^{80} +(-4.50000 + 7.79423i) q^{81} +3.00000 q^{82} +(8.00000 - 13.8564i) q^{83} +(5.00000 + 8.66025i) q^{85} +(-0.500000 - 0.866025i) q^{86} +(-6.00000 + 3.46410i) q^{87} +(0.500000 - 0.866025i) q^{88} +6.00000 q^{89} +(3.00000 + 5.19615i) q^{90} +(-2.00000 + 3.46410i) q^{92} +10.3923i q^{93} +(7.00000 + 12.1244i) q^{95} -1.73205i q^{96} +(-2.50000 + 4.33013i) q^{97} -3.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - 3 q^{3} - q^{4} + 2 q^{5} - 3 q^{6} - 2 q^{8} + 3 q^{9} + 4 q^{10} - q^{11} - 6 q^{13} - q^{16} + 10 q^{17} + 6 q^{18} + 14 q^{19} + 2 q^{20} + q^{22} - 4 q^{23} + 3 q^{24} + q^{25}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) −1.50000 0.866025i −0.866025 0.500000i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 1.00000 + 1.73205i 0.447214 + 0.774597i 0.998203 0.0599153i \(-0.0190830\pi\)
−0.550990 + 0.834512i \(0.685750\pi\)
\(6\) −1.50000 + 0.866025i −0.612372 + 0.353553i
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) 1.50000 + 2.59808i 0.500000 + 0.866025i
\(10\) 2.00000 0.632456
\(11\) −0.500000 + 0.866025i −0.150756 + 0.261116i −0.931505 0.363727i \(-0.881504\pi\)
0.780750 + 0.624844i \(0.214837\pi\)
\(12\) 1.73205i 0.500000i
\(13\) −3.00000 5.19615i −0.832050 1.44115i −0.896410 0.443227i \(-0.853834\pi\)
0.0643593 0.997927i \(-0.479500\pi\)
\(14\) 0 0
\(15\) 3.46410i 0.894427i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 5.00000 1.21268 0.606339 0.795206i \(-0.292637\pi\)
0.606339 + 0.795206i \(0.292637\pi\)
\(18\) 3.00000 0.707107
\(19\) 7.00000 1.60591 0.802955 0.596040i \(-0.203260\pi\)
0.802955 + 0.596040i \(0.203260\pi\)
\(20\) 1.00000 1.73205i 0.223607 0.387298i
\(21\) 0 0
\(22\) 0.500000 + 0.866025i 0.106600 + 0.184637i
\(23\) −2.00000 3.46410i −0.417029 0.722315i 0.578610 0.815604i \(-0.303595\pi\)
−0.995639 + 0.0932891i \(0.970262\pi\)
\(24\) 1.50000 + 0.866025i 0.306186 + 0.176777i
\(25\) 0.500000 0.866025i 0.100000 0.173205i
\(26\) −6.00000 −1.17670
\(27\) 5.19615i 1.00000i
\(28\) 0 0
\(29\) 2.00000 3.46410i 0.371391 0.643268i −0.618389 0.785872i \(-0.712214\pi\)
0.989780 + 0.142605i \(0.0455477\pi\)
\(30\) −3.00000 1.73205i −0.547723 0.316228i
\(31\) −3.00000 5.19615i −0.538816 0.933257i −0.998968 0.0454165i \(-0.985539\pi\)
0.460152 0.887840i \(-0.347795\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) 1.50000 0.866025i 0.261116 0.150756i
\(34\) 2.50000 4.33013i 0.428746 0.742611i
\(35\) 0 0
\(36\) 1.50000 2.59808i 0.250000 0.433013i
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 3.50000 6.06218i 0.567775 0.983415i
\(39\) 10.3923i 1.66410i
\(40\) −1.00000 1.73205i −0.158114 0.273861i
\(41\) 1.50000 + 2.59808i 0.234261 + 0.405751i 0.959058 0.283211i \(-0.0913998\pi\)
−0.724797 + 0.688963i \(0.758066\pi\)
\(42\) 0 0
\(43\) 0.500000 0.866025i 0.0762493 0.132068i −0.825380 0.564578i \(-0.809039\pi\)
0.901629 + 0.432511i \(0.142372\pi\)
\(44\) 1.00000 0.150756
\(45\) −3.00000 + 5.19615i −0.447214 + 0.774597i
\(46\) −4.00000 −0.589768
\(47\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(48\) 1.50000 0.866025i 0.216506 0.125000i
\(49\) 0 0
\(50\) −0.500000 0.866025i −0.0707107 0.122474i
\(51\) −7.50000 4.33013i −1.05021 0.606339i
\(52\) −3.00000 + 5.19615i −0.416025 + 0.720577i
\(53\) 12.0000 1.64833 0.824163 0.566352i \(-0.191646\pi\)
0.824163 + 0.566352i \(0.191646\pi\)
\(54\) −4.50000 2.59808i −0.612372 0.353553i
\(55\) −2.00000 −0.269680
\(56\) 0 0
\(57\) −10.5000 6.06218i −1.39076 0.802955i
\(58\) −2.00000 3.46410i −0.262613 0.454859i
\(59\) −3.50000 6.06218i −0.455661 0.789228i 0.543065 0.839691i \(-0.317264\pi\)
−0.998726 + 0.0504625i \(0.983930\pi\)
\(60\) −3.00000 + 1.73205i −0.387298 + 0.223607i
\(61\) −6.00000 + 10.3923i −0.768221 + 1.33060i 0.170305 + 0.985391i \(0.445525\pi\)
−0.938527 + 0.345207i \(0.887809\pi\)
\(62\) −6.00000 −0.762001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 6.00000 10.3923i 0.744208 1.28901i
\(66\) 1.73205i 0.213201i
\(67\) −6.50000 11.2583i −0.794101 1.37542i −0.923408 0.383819i \(-0.874609\pi\)
0.129307 0.991605i \(-0.458725\pi\)
\(68\) −2.50000 4.33013i −0.303170 0.525105i
\(69\) 6.92820i 0.834058i
\(70\) 0 0
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) −1.50000 2.59808i −0.176777 0.306186i
\(73\) −1.00000 −0.117041 −0.0585206 0.998286i \(-0.518638\pi\)
−0.0585206 + 0.998286i \(0.518638\pi\)
\(74\) 1.00000 1.73205i 0.116248 0.201347i
\(75\) −1.50000 + 0.866025i −0.173205 + 0.100000i
\(76\) −3.50000 6.06218i −0.401478 0.695379i
\(77\) 0 0
\(78\) 9.00000 + 5.19615i 1.01905 + 0.588348i
\(79\) 3.00000 5.19615i 0.337526 0.584613i −0.646440 0.762964i \(-0.723743\pi\)
0.983967 + 0.178352i \(0.0570765\pi\)
\(80\) −2.00000 −0.223607
\(81\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(82\) 3.00000 0.331295
\(83\) 8.00000 13.8564i 0.878114 1.52094i 0.0247060 0.999695i \(-0.492135\pi\)
0.853408 0.521243i \(-0.174532\pi\)
\(84\) 0 0
\(85\) 5.00000 + 8.66025i 0.542326 + 0.939336i
\(86\) −0.500000 0.866025i −0.0539164 0.0933859i
\(87\) −6.00000 + 3.46410i −0.643268 + 0.371391i
\(88\) 0.500000 0.866025i 0.0533002 0.0923186i
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 3.00000 + 5.19615i 0.316228 + 0.547723i
\(91\) 0 0
\(92\) −2.00000 + 3.46410i −0.208514 + 0.361158i
\(93\) 10.3923i 1.07763i
\(94\) 0 0
\(95\) 7.00000 + 12.1244i 0.718185 + 1.24393i
\(96\) 1.73205i 0.176777i
\(97\) −2.50000 + 4.33013i −0.253837 + 0.439658i −0.964579 0.263795i \(-0.915026\pi\)
0.710742 + 0.703452i \(0.248359\pi\)
\(98\) 0 0
\(99\) −3.00000 −0.301511
\(100\) −1.00000 −0.100000
\(101\) −2.00000 + 3.46410i −0.199007 + 0.344691i −0.948207 0.317653i \(-0.897105\pi\)
0.749199 + 0.662344i \(0.230438\pi\)
\(102\) −7.50000 + 4.33013i −0.742611 + 0.428746i
\(103\) 7.00000 + 12.1244i 0.689730 + 1.19465i 0.971925 + 0.235291i \(0.0756043\pi\)
−0.282194 + 0.959357i \(0.591062\pi\)
\(104\) 3.00000 + 5.19615i 0.294174 + 0.509525i
\(105\) 0 0
\(106\) 6.00000 10.3923i 0.582772 1.00939i
\(107\) 3.00000 0.290021 0.145010 0.989430i \(-0.453678\pi\)
0.145010 + 0.989430i \(0.453678\pi\)
\(108\) −4.50000 + 2.59808i −0.433013 + 0.250000i
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) −1.00000 + 1.73205i −0.0953463 + 0.165145i
\(111\) −3.00000 1.73205i −0.284747 0.164399i
\(112\) 0 0
\(113\) 5.00000 + 8.66025i 0.470360 + 0.814688i 0.999425 0.0338931i \(-0.0107906\pi\)
−0.529065 + 0.848581i \(0.677457\pi\)
\(114\) −10.5000 + 6.06218i −0.983415 + 0.567775i
\(115\) 4.00000 6.92820i 0.373002 0.646058i
\(116\) −4.00000 −0.371391
\(117\) 9.00000 15.5885i 0.832050 1.44115i
\(118\) −7.00000 −0.644402
\(119\) 0 0
\(120\) 3.46410i 0.316228i
\(121\) 5.00000 + 8.66025i 0.454545 + 0.787296i
\(122\) 6.00000 + 10.3923i 0.543214 + 0.940875i
\(123\) 5.19615i 0.468521i
\(124\) −3.00000 + 5.19615i −0.269408 + 0.466628i
\(125\) 12.0000 1.07331
\(126\) 0 0
\(127\) −12.0000 −1.06483 −0.532414 0.846484i \(-0.678715\pi\)
−0.532414 + 0.846484i \(0.678715\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) −1.50000 + 0.866025i −0.132068 + 0.0762493i
\(130\) −6.00000 10.3923i −0.526235 0.911465i
\(131\) −2.00000 3.46410i −0.174741 0.302660i 0.765331 0.643637i \(-0.222575\pi\)
−0.940072 + 0.340977i \(0.889242\pi\)
\(132\) −1.50000 0.866025i −0.130558 0.0753778i
\(133\) 0 0
\(134\) −13.0000 −1.12303
\(135\) 9.00000 5.19615i 0.774597 0.447214i
\(136\) −5.00000 −0.428746
\(137\) 9.50000 16.4545i 0.811640 1.40580i −0.100076 0.994980i \(-0.531909\pi\)
0.911716 0.410822i \(-0.134758\pi\)
\(138\) 6.00000 + 3.46410i 0.510754 + 0.294884i
\(139\) −2.50000 4.33013i −0.212047 0.367277i 0.740308 0.672268i \(-0.234680\pi\)
−0.952355 + 0.304991i \(0.901346\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −4.00000 + 6.92820i −0.335673 + 0.581402i
\(143\) 6.00000 0.501745
\(144\) −3.00000 −0.250000
\(145\) 8.00000 0.664364
\(146\) −0.500000 + 0.866025i −0.0413803 + 0.0716728i
\(147\) 0 0
\(148\) −1.00000 1.73205i −0.0821995 0.142374i
\(149\) 12.0000 + 20.7846i 0.983078 + 1.70274i 0.650183 + 0.759778i \(0.274692\pi\)
0.332896 + 0.942964i \(0.391974\pi\)
\(150\) 1.73205i 0.141421i
\(151\) −5.00000 + 8.66025i −0.406894 + 0.704761i −0.994540 0.104357i \(-0.966722\pi\)
0.587646 + 0.809118i \(0.300055\pi\)
\(152\) −7.00000 −0.567775
\(153\) 7.50000 + 12.9904i 0.606339 + 1.05021i
\(154\) 0 0
\(155\) 6.00000 10.3923i 0.481932 0.834730i
\(156\) 9.00000 5.19615i 0.720577 0.416025i
\(157\) 1.00000 + 1.73205i 0.0798087 + 0.138233i 0.903167 0.429289i \(-0.141236\pi\)
−0.823359 + 0.567521i \(0.807902\pi\)
\(158\) −3.00000 5.19615i −0.238667 0.413384i
\(159\) −18.0000 10.3923i −1.42749 0.824163i
\(160\) −1.00000 + 1.73205i −0.0790569 + 0.136931i
\(161\) 0 0
\(162\) 4.50000 + 7.79423i 0.353553 + 0.612372i
\(163\) −4.00000 −0.313304 −0.156652 0.987654i \(-0.550070\pi\)
−0.156652 + 0.987654i \(0.550070\pi\)
\(164\) 1.50000 2.59808i 0.117130 0.202876i
\(165\) 3.00000 + 1.73205i 0.233550 + 0.134840i
\(166\) −8.00000 13.8564i −0.620920 1.07547i
\(167\) 10.0000 + 17.3205i 0.773823 + 1.34030i 0.935454 + 0.353450i \(0.114991\pi\)
−0.161630 + 0.986851i \(0.551675\pi\)
\(168\) 0 0
\(169\) −11.5000 + 19.9186i −0.884615 + 1.53220i
\(170\) 10.0000 0.766965
\(171\) 10.5000 + 18.1865i 0.802955 + 1.39076i
\(172\) −1.00000 −0.0762493
\(173\) 1.00000 1.73205i 0.0760286 0.131685i −0.825505 0.564396i \(-0.809109\pi\)
0.901533 + 0.432710i \(0.142443\pi\)
\(174\) 6.92820i 0.525226i
\(175\) 0 0
\(176\) −0.500000 0.866025i −0.0376889 0.0652791i
\(177\) 12.1244i 0.911322i
\(178\) 3.00000 5.19615i 0.224860 0.389468i
\(179\) 24.0000 1.79384 0.896922 0.442189i \(-0.145798\pi\)
0.896922 + 0.442189i \(0.145798\pi\)
\(180\) 6.00000 0.447214
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 18.0000 10.3923i 1.33060 0.768221i
\(184\) 2.00000 + 3.46410i 0.147442 + 0.255377i
\(185\) 2.00000 + 3.46410i 0.147043 + 0.254686i
\(186\) 9.00000 + 5.19615i 0.659912 + 0.381000i
\(187\) −2.50000 + 4.33013i −0.182818 + 0.316650i
\(188\) 0 0
\(189\) 0 0
\(190\) 14.0000 1.01567
\(191\) −6.00000 + 10.3923i −0.434145 + 0.751961i −0.997225 0.0744412i \(-0.976283\pi\)
0.563081 + 0.826402i \(0.309616\pi\)
\(192\) −1.50000 0.866025i −0.108253 0.0625000i
\(193\) −8.50000 14.7224i −0.611843 1.05974i −0.990930 0.134382i \(-0.957095\pi\)
0.379086 0.925361i \(-0.376238\pi\)
\(194\) 2.50000 + 4.33013i 0.179490 + 0.310885i
\(195\) −18.0000 + 10.3923i −1.28901 + 0.744208i
\(196\) 0 0
\(197\) 10.0000 0.712470 0.356235 0.934396i \(-0.384060\pi\)
0.356235 + 0.934396i \(0.384060\pi\)
\(198\) −1.50000 + 2.59808i −0.106600 + 0.184637i
\(199\) −14.0000 −0.992434 −0.496217 0.868199i \(-0.665278\pi\)
−0.496217 + 0.868199i \(0.665278\pi\)
\(200\) −0.500000 + 0.866025i −0.0353553 + 0.0612372i
\(201\) 22.5167i 1.58820i
\(202\) 2.00000 + 3.46410i 0.140720 + 0.243733i
\(203\) 0 0
\(204\) 8.66025i 0.606339i
\(205\) −3.00000 + 5.19615i −0.209529 + 0.362915i
\(206\) 14.0000 0.975426
\(207\) 6.00000 10.3923i 0.417029 0.722315i
\(208\) 6.00000 0.416025
\(209\) −3.50000 + 6.06218i −0.242100 + 0.419330i
\(210\) 0 0
\(211\) 8.00000 + 13.8564i 0.550743 + 0.953914i 0.998221 + 0.0596196i \(0.0189888\pi\)
−0.447478 + 0.894295i \(0.647678\pi\)
\(212\) −6.00000 10.3923i −0.412082 0.713746i
\(213\) 12.0000 + 6.92820i 0.822226 + 0.474713i
\(214\) 1.50000 2.59808i 0.102538 0.177601i
\(215\) 2.00000 0.136399
\(216\) 5.19615i 0.353553i
\(217\) 0 0
\(218\) −1.00000 + 1.73205i −0.0677285 + 0.117309i
\(219\) 1.50000 + 0.866025i 0.101361 + 0.0585206i
\(220\) 1.00000 + 1.73205i 0.0674200 + 0.116775i
\(221\) −15.0000 25.9808i −1.00901 1.74766i
\(222\) −3.00000 + 1.73205i −0.201347 + 0.116248i
\(223\) −2.00000 + 3.46410i −0.133930 + 0.231973i −0.925188 0.379509i \(-0.876093\pi\)
0.791258 + 0.611482i \(0.209426\pi\)
\(224\) 0 0
\(225\) 3.00000 0.200000
\(226\) 10.0000 0.665190
\(227\) 1.50000 2.59808i 0.0995585 0.172440i −0.811943 0.583736i \(-0.801590\pi\)
0.911502 + 0.411296i \(0.134924\pi\)
\(228\) 12.1244i 0.802955i
\(229\) −13.0000 22.5167i −0.859064 1.48794i −0.872823 0.488037i \(-0.837713\pi\)
0.0137585 0.999905i \(-0.495620\pi\)
\(230\) −4.00000 6.92820i −0.263752 0.456832i
\(231\) 0 0
\(232\) −2.00000 + 3.46410i −0.131306 + 0.227429i
\(233\) −29.0000 −1.89985 −0.949927 0.312473i \(-0.898843\pi\)
−0.949927 + 0.312473i \(0.898843\pi\)
\(234\) −9.00000 15.5885i −0.588348 1.01905i
\(235\) 0 0
\(236\) −3.50000 + 6.06218i −0.227831 + 0.394614i
\(237\) −9.00000 + 5.19615i −0.584613 + 0.337526i
\(238\) 0 0
\(239\) −3.00000 5.19615i −0.194054 0.336111i 0.752536 0.658551i \(-0.228830\pi\)
−0.946590 + 0.322440i \(0.895497\pi\)
\(240\) 3.00000 + 1.73205i 0.193649 + 0.111803i
\(241\) 11.5000 19.9186i 0.740780 1.28307i −0.211360 0.977408i \(-0.567789\pi\)
0.952141 0.305661i \(-0.0988773\pi\)
\(242\) 10.0000 0.642824
\(243\) 13.5000 7.79423i 0.866025 0.500000i
\(244\) 12.0000 0.768221
\(245\) 0 0
\(246\) −4.50000 2.59808i −0.286910 0.165647i
\(247\) −21.0000 36.3731i −1.33620 2.31436i
\(248\) 3.00000 + 5.19615i 0.190500 + 0.329956i
\(249\) −24.0000 + 13.8564i −1.52094 + 0.878114i
\(250\) 6.00000 10.3923i 0.379473 0.657267i
\(251\) −3.00000 −0.189358 −0.0946792 0.995508i \(-0.530183\pi\)
−0.0946792 + 0.995508i \(0.530183\pi\)
\(252\) 0 0
\(253\) 4.00000 0.251478
\(254\) −6.00000 + 10.3923i −0.376473 + 0.652071i
\(255\) 17.3205i 1.08465i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −7.50000 12.9904i −0.467837 0.810318i 0.531487 0.847066i \(-0.321633\pi\)
−0.999325 + 0.0367485i \(0.988300\pi\)
\(258\) 1.73205i 0.107833i
\(259\) 0 0
\(260\) −12.0000 −0.744208
\(261\) 12.0000 0.742781
\(262\) −4.00000 −0.247121
\(263\) −9.00000 + 15.5885i −0.554964 + 0.961225i 0.442943 + 0.896550i \(0.353935\pi\)
−0.997906 + 0.0646755i \(0.979399\pi\)
\(264\) −1.50000 + 0.866025i −0.0923186 + 0.0533002i
\(265\) 12.0000 + 20.7846i 0.737154 + 1.27679i
\(266\) 0 0
\(267\) −9.00000 5.19615i −0.550791 0.317999i
\(268\) −6.50000 + 11.2583i −0.397051 + 0.687712i
\(269\) −20.0000 −1.21942 −0.609711 0.792624i \(-0.708714\pi\)
−0.609711 + 0.792624i \(0.708714\pi\)
\(270\) 10.3923i 0.632456i
\(271\) 6.00000 0.364474 0.182237 0.983255i \(-0.441666\pi\)
0.182237 + 0.983255i \(0.441666\pi\)
\(272\) −2.50000 + 4.33013i −0.151585 + 0.262553i
\(273\) 0 0
\(274\) −9.50000 16.4545i −0.573916 0.994052i
\(275\) 0.500000 + 0.866025i 0.0301511 + 0.0522233i
\(276\) 6.00000 3.46410i 0.361158 0.208514i
\(277\) −1.00000 + 1.73205i −0.0600842 + 0.104069i −0.894503 0.447062i \(-0.852470\pi\)
0.834419 + 0.551131i \(0.185804\pi\)
\(278\) −5.00000 −0.299880
\(279\) 9.00000 15.5885i 0.538816 0.933257i
\(280\) 0 0
\(281\) −11.0000 + 19.0526i −0.656205 + 1.13658i 0.325385 + 0.945582i \(0.394506\pi\)
−0.981590 + 0.190999i \(0.938827\pi\)
\(282\) 0 0
\(283\) 2.00000 + 3.46410i 0.118888 + 0.205919i 0.919327 0.393494i \(-0.128734\pi\)
−0.800439 + 0.599414i \(0.795400\pi\)
\(284\) 4.00000 + 6.92820i 0.237356 + 0.411113i
\(285\) 24.2487i 1.43637i
\(286\) 3.00000 5.19615i 0.177394 0.307255i
\(287\) 0 0
\(288\) −1.50000 + 2.59808i −0.0883883 + 0.153093i
\(289\) 8.00000 0.470588
\(290\) 4.00000 6.92820i 0.234888 0.406838i
\(291\) 7.50000 4.33013i 0.439658 0.253837i
\(292\) 0.500000 + 0.866025i 0.0292603 + 0.0506803i
\(293\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(294\) 0 0
\(295\) 7.00000 12.1244i 0.407556 0.705907i
\(296\) −2.00000 −0.116248
\(297\) 4.50000 + 2.59808i 0.261116 + 0.150756i
\(298\) 24.0000 1.39028
\(299\) −12.0000 + 20.7846i −0.693978 + 1.20201i
\(300\) 1.50000 + 0.866025i 0.0866025 + 0.0500000i
\(301\) 0 0
\(302\) 5.00000 + 8.66025i 0.287718 + 0.498342i
\(303\) 6.00000 3.46410i 0.344691 0.199007i
\(304\) −3.50000 + 6.06218i −0.200739 + 0.347690i
\(305\) −24.0000 −1.37424
\(306\) 15.0000 0.857493
\(307\) −7.00000 −0.399511 −0.199756 0.979846i \(-0.564015\pi\)
−0.199756 + 0.979846i \(0.564015\pi\)
\(308\) 0 0
\(309\) 24.2487i 1.37946i
\(310\) −6.00000 10.3923i −0.340777 0.590243i
\(311\) 1.00000 + 1.73205i 0.0567048 + 0.0982156i 0.892984 0.450088i \(-0.148607\pi\)
−0.836280 + 0.548303i \(0.815274\pi\)
\(312\) 10.3923i 0.588348i
\(313\) −8.50000 + 14.7224i −0.480448 + 0.832161i −0.999748 0.0224310i \(-0.992859\pi\)
0.519300 + 0.854592i \(0.326193\pi\)
\(314\) 2.00000 0.112867
\(315\) 0 0
\(316\) −6.00000 −0.337526
\(317\) 3.00000 5.19615i 0.168497 0.291845i −0.769395 0.638774i \(-0.779442\pi\)
0.937892 + 0.346929i \(0.112775\pi\)
\(318\) −18.0000 + 10.3923i −1.00939 + 0.582772i
\(319\) 2.00000 + 3.46410i 0.111979 + 0.193952i
\(320\) 1.00000 + 1.73205i 0.0559017 + 0.0968246i
\(321\) −4.50000 2.59808i −0.251166 0.145010i
\(322\) 0 0
\(323\) 35.0000 1.94745
\(324\) 9.00000 0.500000
\(325\) −6.00000 −0.332820
\(326\) −2.00000 + 3.46410i −0.110770 + 0.191859i
\(327\) 3.00000 + 1.73205i 0.165900 + 0.0957826i
\(328\) −1.50000 2.59808i −0.0828236 0.143455i
\(329\) 0 0
\(330\) 3.00000 1.73205i 0.165145 0.0953463i
\(331\) −4.00000 + 6.92820i −0.219860 + 0.380808i −0.954765 0.297361i \(-0.903893\pi\)
0.734905 + 0.678170i \(0.237227\pi\)
\(332\) −16.0000 −0.878114
\(333\) 3.00000 + 5.19615i 0.164399 + 0.284747i
\(334\) 20.0000 1.09435
\(335\) 13.0000 22.5167i 0.710266 1.23022i
\(336\) 0 0
\(337\) 4.50000 + 7.79423i 0.245131 + 0.424579i 0.962168 0.272456i \(-0.0878358\pi\)
−0.717038 + 0.697034i \(0.754502\pi\)
\(338\) 11.5000 + 19.9186i 0.625518 + 1.08343i
\(339\) 17.3205i 0.940721i
\(340\) 5.00000 8.66025i 0.271163 0.469668i
\(341\) 6.00000 0.324918
\(342\) 21.0000 1.13555
\(343\) 0 0
\(344\) −0.500000 + 0.866025i −0.0269582 + 0.0466930i
\(345\) −12.0000 + 6.92820i −0.646058 + 0.373002i
\(346\) −1.00000 1.73205i −0.0537603 0.0931156i
\(347\) 1.50000 + 2.59808i 0.0805242 + 0.139472i 0.903475 0.428640i \(-0.141007\pi\)
−0.822951 + 0.568112i \(0.807674\pi\)
\(348\) 6.00000 + 3.46410i 0.321634 + 0.185695i
\(349\) −7.00000 + 12.1244i −0.374701 + 0.649002i −0.990282 0.139072i \(-0.955588\pi\)
0.615581 + 0.788074i \(0.288921\pi\)
\(350\) 0 0
\(351\) −27.0000 + 15.5885i −1.44115 + 0.832050i
\(352\) −1.00000 −0.0533002
\(353\) −7.50000 + 12.9904i −0.399185 + 0.691408i −0.993626 0.112731i \(-0.964040\pi\)
0.594441 + 0.804139i \(0.297373\pi\)
\(354\) 10.5000 + 6.06218i 0.558069 + 0.322201i
\(355\) −8.00000 13.8564i −0.424596 0.735422i
\(356\) −3.00000 5.19615i −0.159000 0.275396i
\(357\) 0 0
\(358\) 12.0000 20.7846i 0.634220 1.09850i
\(359\) 2.00000 0.105556 0.0527780 0.998606i \(-0.483192\pi\)
0.0527780 + 0.998606i \(0.483192\pi\)
\(360\) 3.00000 5.19615i 0.158114 0.273861i
\(361\) 30.0000 1.57895
\(362\) 0 0
\(363\) 17.3205i 0.909091i
\(364\) 0 0
\(365\) −1.00000 1.73205i −0.0523424 0.0906597i
\(366\) 20.7846i 1.08643i
\(367\) −11.0000 + 19.0526i −0.574195 + 0.994535i 0.421933 + 0.906627i \(0.361352\pi\)
−0.996129 + 0.0879086i \(0.971982\pi\)
\(368\) 4.00000 0.208514
\(369\) −4.50000 + 7.79423i −0.234261 + 0.405751i
\(370\) 4.00000 0.207950
\(371\) 0 0
\(372\) 9.00000 5.19615i 0.466628 0.269408i
\(373\) −11.0000 19.0526i −0.569558 0.986504i −0.996610 0.0822766i \(-0.973781\pi\)
0.427051 0.904227i \(-0.359552\pi\)
\(374\) 2.50000 + 4.33013i 0.129272 + 0.223906i
\(375\) −18.0000 10.3923i −0.929516 0.536656i
\(376\) 0 0
\(377\) −24.0000 −1.23606
\(378\) 0 0
\(379\) −17.0000 −0.873231 −0.436616 0.899648i \(-0.643823\pi\)
−0.436616 + 0.899648i \(0.643823\pi\)
\(380\) 7.00000 12.1244i 0.359092 0.621966i
\(381\) 18.0000 + 10.3923i 0.922168 + 0.532414i
\(382\) 6.00000 + 10.3923i 0.306987 + 0.531717i
\(383\) 2.00000 + 3.46410i 0.102195 + 0.177007i 0.912589 0.408879i \(-0.134080\pi\)
−0.810394 + 0.585886i \(0.800747\pi\)
\(384\) −1.50000 + 0.866025i −0.0765466 + 0.0441942i
\(385\) 0 0
\(386\) −17.0000 −0.865277
\(387\) 3.00000 0.152499
\(388\) 5.00000 0.253837
\(389\) −4.00000 + 6.92820i −0.202808 + 0.351274i −0.949432 0.313972i \(-0.898340\pi\)
0.746624 + 0.665246i \(0.231673\pi\)
\(390\) 20.7846i 1.05247i
\(391\) −10.0000 17.3205i −0.505722 0.875936i
\(392\) 0 0
\(393\) 6.92820i 0.349482i
\(394\) 5.00000 8.66025i 0.251896 0.436297i
\(395\) 12.0000 0.603786
\(396\) 1.50000 + 2.59808i 0.0753778 + 0.130558i
\(397\) −18.0000 −0.903394 −0.451697 0.892171i \(-0.649181\pi\)
−0.451697 + 0.892171i \(0.649181\pi\)
\(398\) −7.00000 + 12.1244i −0.350878 + 0.607739i
\(399\) 0 0
\(400\) 0.500000 + 0.866025i 0.0250000 + 0.0433013i
\(401\) −4.50000 7.79423i −0.224719 0.389225i 0.731516 0.681824i \(-0.238813\pi\)
−0.956235 + 0.292599i \(0.905480\pi\)
\(402\) 19.5000 + 11.2583i 0.972572 + 0.561514i
\(403\) −18.0000 + 31.1769i −0.896644 + 1.55303i
\(404\) 4.00000 0.199007
\(405\) −18.0000 −0.894427
\(406\) 0 0
\(407\) −1.00000 + 1.73205i −0.0495682 + 0.0858546i
\(408\) 7.50000 + 4.33013i 0.371305 + 0.214373i
\(409\) 5.50000 + 9.52628i 0.271957 + 0.471044i 0.969363 0.245633i \(-0.0789957\pi\)
−0.697406 + 0.716677i \(0.745662\pi\)
\(410\) 3.00000 + 5.19615i 0.148159 + 0.256620i
\(411\) −28.5000 + 16.4545i −1.40580 + 0.811640i
\(412\) 7.00000 12.1244i 0.344865 0.597324i
\(413\) 0 0
\(414\) −6.00000 10.3923i −0.294884 0.510754i
\(415\) 32.0000 1.57082
\(416\) 3.00000 5.19615i 0.147087 0.254762i
\(417\) 8.66025i 0.424094i
\(418\) 3.50000 + 6.06218i 0.171191 + 0.296511i
\(419\) −6.00000 10.3923i −0.293119 0.507697i 0.681426 0.731887i \(-0.261360\pi\)
−0.974546 + 0.224189i \(0.928027\pi\)
\(420\) 0 0
\(421\) 6.00000 10.3923i 0.292422 0.506490i −0.681960 0.731390i \(-0.738872\pi\)
0.974382 + 0.224900i \(0.0722054\pi\)
\(422\) 16.0000 0.778868
\(423\) 0 0
\(424\) −12.0000 −0.582772
\(425\) 2.50000 4.33013i 0.121268 0.210042i
\(426\) 12.0000 6.92820i 0.581402 0.335673i
\(427\) 0 0
\(428\) −1.50000 2.59808i −0.0725052 0.125583i
\(429\) −9.00000 5.19615i −0.434524 0.250873i
\(430\) 1.00000 1.73205i 0.0482243 0.0835269i
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 4.50000 + 2.59808i 0.216506 + 0.125000i
\(433\) 25.0000 1.20142 0.600712 0.799466i \(-0.294884\pi\)
0.600712 + 0.799466i \(0.294884\pi\)
\(434\) 0 0
\(435\) −12.0000 6.92820i −0.575356 0.332182i
\(436\) 1.00000 + 1.73205i 0.0478913 + 0.0829502i
\(437\) −14.0000 24.2487i −0.669711 1.15997i
\(438\) 1.50000 0.866025i 0.0716728 0.0413803i
\(439\) −12.0000 + 20.7846i −0.572729 + 0.991995i 0.423556 + 0.905870i \(0.360782\pi\)
−0.996284 + 0.0861252i \(0.972552\pi\)
\(440\) 2.00000 0.0953463
\(441\) 0 0
\(442\) −30.0000 −1.42695
\(443\) −3.50000 + 6.06218i −0.166290 + 0.288023i −0.937113 0.349027i \(-0.886512\pi\)
0.770823 + 0.637050i \(0.219845\pi\)
\(444\) 3.46410i 0.164399i
\(445\) 6.00000 + 10.3923i 0.284427 + 0.492642i
\(446\) 2.00000 + 3.46410i 0.0947027 + 0.164030i
\(447\) 41.5692i 1.96616i
\(448\) 0 0
\(449\) 17.0000 0.802280 0.401140 0.916017i \(-0.368614\pi\)
0.401140 + 0.916017i \(0.368614\pi\)
\(450\) 1.50000 2.59808i 0.0707107 0.122474i
\(451\) −3.00000 −0.141264
\(452\) 5.00000 8.66025i 0.235180 0.407344i
\(453\) 15.0000 8.66025i 0.704761 0.406894i
\(454\) −1.50000 2.59808i −0.0703985 0.121934i
\(455\) 0 0
\(456\) 10.5000 + 6.06218i 0.491708 + 0.283887i
\(457\) −0.500000 + 0.866025i −0.0233890 + 0.0405110i −0.877483 0.479608i \(-0.840779\pi\)
0.854094 + 0.520119i \(0.174112\pi\)
\(458\) −26.0000 −1.21490
\(459\) 25.9808i 1.21268i
\(460\) −8.00000 −0.373002
\(461\) 7.00000 12.1244i 0.326023 0.564688i −0.655696 0.755025i \(-0.727625\pi\)
0.981719 + 0.190337i \(0.0609581\pi\)
\(462\) 0 0
\(463\) 4.00000 + 6.92820i 0.185896 + 0.321981i 0.943878 0.330294i \(-0.107148\pi\)
−0.757982 + 0.652275i \(0.773815\pi\)
\(464\) 2.00000 + 3.46410i 0.0928477 + 0.160817i
\(465\) −18.0000 + 10.3923i −0.834730 + 0.481932i
\(466\) −14.5000 + 25.1147i −0.671700 + 1.16342i
\(467\) 13.0000 0.601568 0.300784 0.953692i \(-0.402752\pi\)
0.300784 + 0.953692i \(0.402752\pi\)
\(468\) −18.0000 −0.832050
\(469\) 0 0
\(470\) 0 0
\(471\) 3.46410i 0.159617i
\(472\) 3.50000 + 6.06218i 0.161101 + 0.279034i
\(473\) 0.500000 + 0.866025i 0.0229900 + 0.0398199i
\(474\) 10.3923i 0.477334i
\(475\) 3.50000 6.06218i 0.160591 0.278152i
\(476\) 0 0
\(477\) 18.0000 + 31.1769i 0.824163 + 1.42749i
\(478\) −6.00000 −0.274434
\(479\) −10.0000 + 17.3205i −0.456912 + 0.791394i −0.998796 0.0490589i \(-0.984378\pi\)
0.541884 + 0.840453i \(0.317711\pi\)
\(480\) 3.00000 1.73205i 0.136931 0.0790569i
\(481\) −6.00000 10.3923i −0.273576 0.473848i
\(482\) −11.5000 19.9186i −0.523811 0.907267i
\(483\) 0 0
\(484\) 5.00000 8.66025i 0.227273 0.393648i
\(485\) −10.0000 −0.454077
\(486\) 15.5885i 0.707107i
\(487\) −10.0000 −0.453143 −0.226572 0.973995i \(-0.572752\pi\)
−0.226572 + 0.973995i \(0.572752\pi\)
\(488\) 6.00000 10.3923i 0.271607 0.470438i
\(489\) 6.00000 + 3.46410i 0.271329 + 0.156652i
\(490\) 0 0
\(491\) −16.5000 28.5788i −0.744635 1.28974i −0.950365 0.311136i \(-0.899290\pi\)
0.205731 0.978609i \(-0.434043\pi\)
\(492\) −4.50000 + 2.59808i −0.202876 + 0.117130i
\(493\) 10.0000 17.3205i 0.450377 0.780076i
\(494\) −42.0000 −1.88967
\(495\) −3.00000 5.19615i −0.134840 0.233550i
\(496\) 6.00000 0.269408
\(497\) 0 0
\(498\) 27.7128i 1.24184i
\(499\) 14.5000 + 25.1147i 0.649109 + 1.12429i 0.983336 + 0.181797i \(0.0581915\pi\)
−0.334227 + 0.942493i \(0.608475\pi\)
\(500\) −6.00000 10.3923i −0.268328 0.464758i
\(501\) 34.6410i 1.54765i
\(502\) −1.50000 + 2.59808i −0.0669483 + 0.115958i
\(503\) −6.00000 −0.267527 −0.133763 0.991013i \(-0.542706\pi\)
−0.133763 + 0.991013i \(0.542706\pi\)
\(504\) 0 0
\(505\) −8.00000 −0.355995
\(506\) 2.00000 3.46410i 0.0889108 0.153998i
\(507\) 34.5000 19.9186i 1.53220 0.884615i
\(508\) 6.00000 + 10.3923i 0.266207 + 0.461084i
\(509\) 15.0000 + 25.9808i 0.664863 + 1.15158i 0.979322 + 0.202306i \(0.0648436\pi\)
−0.314459 + 0.949271i \(0.601823\pi\)
\(510\) −15.0000 8.66025i −0.664211 0.383482i
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 36.3731i 1.60591i
\(514\) −15.0000 −0.661622
\(515\) −14.0000 + 24.2487i −0.616914 + 1.06853i
\(516\) 1.50000 + 0.866025i 0.0660338 + 0.0381246i
\(517\) 0 0
\(518\) 0 0
\(519\) −3.00000 + 1.73205i −0.131685 + 0.0760286i
\(520\) −6.00000 + 10.3923i −0.263117 + 0.455733i
\(521\) 9.00000 0.394297 0.197149 0.980374i \(-0.436832\pi\)
0.197149 + 0.980374i \(0.436832\pi\)
\(522\) 6.00000 10.3923i 0.262613 0.454859i
\(523\) 28.0000 1.22435 0.612177 0.790721i \(-0.290294\pi\)
0.612177 + 0.790721i \(0.290294\pi\)
\(524\) −2.00000 + 3.46410i −0.0873704 + 0.151330i
\(525\) 0 0
\(526\) 9.00000 + 15.5885i 0.392419 + 0.679689i
\(527\) −15.0000 25.9808i −0.653410 1.13174i
\(528\) 1.73205i 0.0753778i
\(529\) 3.50000 6.06218i 0.152174 0.263573i
\(530\) 24.0000 1.04249
\(531\) 10.5000 18.1865i 0.455661 0.789228i
\(532\) 0 0
\(533\) 9.00000 15.5885i 0.389833 0.675211i
\(534\) −9.00000 + 5.19615i −0.389468 + 0.224860i
\(535\) 3.00000 + 5.19615i 0.129701 + 0.224649i
\(536\) 6.50000 + 11.2583i 0.280757 + 0.486286i
\(537\) −36.0000 20.7846i −1.55351 0.896922i
\(538\) −10.0000 + 17.3205i −0.431131 + 0.746740i
\(539\) 0 0
\(540\) −9.00000 5.19615i −0.387298 0.223607i
\(541\) −24.0000 −1.03184 −0.515920 0.856637i \(-0.672550\pi\)
−0.515920 + 0.856637i \(0.672550\pi\)
\(542\) 3.00000 5.19615i 0.128861 0.223194i
\(543\) 0 0
\(544\) 2.50000 + 4.33013i 0.107187 + 0.185653i
\(545\) −2.00000 3.46410i −0.0856706 0.148386i
\(546\) 0 0
\(547\) 10.5000 18.1865i 0.448948 0.777600i −0.549370 0.835579i \(-0.685132\pi\)
0.998318 + 0.0579790i \(0.0184657\pi\)
\(548\) −19.0000 −0.811640
\(549\) −36.0000 −1.53644
\(550\) 1.00000 0.0426401
\(551\) 14.0000 24.2487i 0.596420 1.03303i
\(552\) 6.92820i 0.294884i
\(553\) 0 0
\(554\) 1.00000 + 1.73205i 0.0424859 + 0.0735878i
\(555\) 6.92820i 0.294086i
\(556\) −2.50000 + 4.33013i −0.106024 + 0.183638i
\(557\) −28.0000 −1.18640 −0.593199 0.805056i \(-0.702135\pi\)
−0.593199 + 0.805056i \(0.702135\pi\)
\(558\) −9.00000 15.5885i −0.381000 0.659912i
\(559\) −6.00000 −0.253773
\(560\) 0 0
\(561\) 7.50000 4.33013i 0.316650 0.182818i
\(562\) 11.0000 + 19.0526i 0.464007 + 0.803684i
\(563\) 15.5000 + 26.8468i 0.653247 + 1.13146i 0.982330 + 0.187156i \(0.0599271\pi\)
−0.329083 + 0.944301i \(0.606740\pi\)
\(564\) 0 0
\(565\) −10.0000 + 17.3205i −0.420703 + 0.728679i
\(566\) 4.00000 0.168133
\(567\) 0 0
\(568\) 8.00000 0.335673
\(569\) 7.50000 12.9904i 0.314416 0.544585i −0.664897 0.746935i \(-0.731525\pi\)
0.979313 + 0.202350i \(0.0648579\pi\)
\(570\) −21.0000 12.1244i −0.879593 0.507833i
\(571\) 16.5000 + 28.5788i 0.690504 + 1.19599i 0.971673 + 0.236329i \(0.0759443\pi\)
−0.281170 + 0.959658i \(0.590722\pi\)
\(572\) −3.00000 5.19615i −0.125436 0.217262i
\(573\) 18.0000 10.3923i 0.751961 0.434145i
\(574\) 0 0
\(575\) −4.00000 −0.166812
\(576\) 1.50000 + 2.59808i 0.0625000 + 0.108253i
\(577\) 35.0000 1.45707 0.728535 0.685009i \(-0.240202\pi\)
0.728535 + 0.685009i \(0.240202\pi\)
\(578\) 4.00000 6.92820i 0.166378 0.288175i
\(579\) 29.4449i 1.22369i
\(580\) −4.00000 6.92820i −0.166091 0.287678i
\(581\) 0 0
\(582\) 8.66025i 0.358979i
\(583\) −6.00000 + 10.3923i −0.248495 + 0.430405i
\(584\) 1.00000 0.0413803
\(585\) 36.0000 1.48842
\(586\) 0 0
\(587\) −23.5000 + 40.7032i −0.969949 + 1.68000i −0.274263 + 0.961655i \(0.588434\pi\)
−0.695686 + 0.718346i \(0.744900\pi\)
\(588\) 0 0
\(589\) −21.0000 36.3731i −0.865290 1.49873i
\(590\) −7.00000 12.1244i −0.288185 0.499152i
\(591\) −15.0000 8.66025i −0.617018 0.356235i
\(592\) −1.00000 + 1.73205i −0.0410997 + 0.0711868i
\(593\) 6.00000 0.246390 0.123195 0.992382i \(-0.460686\pi\)
0.123195 + 0.992382i \(0.460686\pi\)
\(594\) 4.50000 2.59808i 0.184637 0.106600i
\(595\) 0 0
\(596\) 12.0000 20.7846i 0.491539 0.851371i
\(597\) 21.0000 + 12.1244i 0.859473 + 0.496217i
\(598\) 12.0000 + 20.7846i 0.490716 + 0.849946i
\(599\) −12.0000 20.7846i −0.490307 0.849236i 0.509631 0.860393i \(-0.329782\pi\)
−0.999938 + 0.0111569i \(0.996449\pi\)
\(600\) 1.50000 0.866025i 0.0612372 0.0353553i
\(601\) −9.50000 + 16.4545i −0.387513 + 0.671192i −0.992114 0.125336i \(-0.959999\pi\)
0.604601 + 0.796528i \(0.293332\pi\)
\(602\) 0 0
\(603\) 19.5000 33.7750i 0.794101 1.37542i
\(604\) 10.0000 0.406894
\(605\) −10.0000 + 17.3205i −0.406558 + 0.704179i
\(606\) 6.92820i 0.281439i
\(607\) −12.0000 20.7846i −0.487065 0.843621i 0.512824 0.858494i \(-0.328599\pi\)
−0.999889 + 0.0148722i \(0.995266\pi\)
\(608\) 3.50000 + 6.06218i 0.141944 + 0.245854i
\(609\) 0 0
\(610\) −12.0000 + 20.7846i −0.485866 + 0.841544i
\(611\) 0 0
\(612\) 7.50000 12.9904i 0.303170 0.525105i
\(613\) 42.0000 1.69636 0.848182 0.529705i \(-0.177697\pi\)
0.848182 + 0.529705i \(0.177697\pi\)
\(614\) −3.50000 + 6.06218i −0.141249 + 0.244650i
\(615\) 9.00000 5.19615i 0.362915 0.209529i
\(616\) 0 0
\(617\) 8.50000 + 14.7224i 0.342197 + 0.592703i 0.984840 0.173463i \(-0.0554956\pi\)
−0.642643 + 0.766165i \(0.722162\pi\)
\(618\) −21.0000 12.1244i −0.844744 0.487713i
\(619\) 18.5000 32.0429i 0.743578 1.28791i −0.207279 0.978282i \(-0.566461\pi\)
0.950856 0.309633i \(-0.100206\pi\)
\(620\) −12.0000 −0.481932
\(621\) −18.0000 + 10.3923i −0.722315 + 0.417029i
\(622\) 2.00000 0.0801927
\(623\) 0 0
\(624\) −9.00000 5.19615i −0.360288 0.208013i
\(625\) 9.50000 + 16.4545i 0.380000 + 0.658179i
\(626\) 8.50000 + 14.7224i 0.339728 + 0.588427i
\(627\) 10.5000 6.06218i 0.419330 0.242100i
\(628\) 1.00000 1.73205i 0.0399043 0.0691164i
\(629\) 10.0000 0.398726
\(630\) 0 0
\(631\) 8.00000 0.318475 0.159237 0.987240i \(-0.449096\pi\)
0.159237 + 0.987240i \(0.449096\pi\)
\(632\) −3.00000 + 5.19615i −0.119334 + 0.206692i
\(633\) 27.7128i 1.10149i
\(634\) −3.00000 5.19615i −0.119145 0.206366i
\(635\) −12.0000 20.7846i −0.476205 0.824812i
\(636\) 20.7846i 0.824163i
\(637\) 0 0
\(638\) 4.00000 0.158362
\(639\) −12.0000 20.7846i −0.474713 0.822226i
\(640\) 2.00000 0.0790569
\(641\) −0.500000 + 0.866025i −0.0197488 + 0.0342059i −0.875731 0.482800i \(-0.839620\pi\)
0.855982 + 0.517005i \(0.172953\pi\)
\(642\) −4.50000 + 2.59808i −0.177601 + 0.102538i
\(643\) −3.50000 6.06218i −0.138027 0.239069i 0.788723 0.614749i \(-0.210743\pi\)
−0.926750 + 0.375680i \(0.877409\pi\)
\(644\) 0 0
\(645\) −3.00000 1.73205i −0.118125 0.0681994i
\(646\) 17.5000 30.3109i 0.688528 1.19257i
\(647\) −12.0000 −0.471769 −0.235884 0.971781i \(-0.575799\pi\)
−0.235884 + 0.971781i \(0.575799\pi\)
\(648\) 4.50000 7.79423i 0.176777 0.306186i
\(649\) 7.00000 0.274774
\(650\) −3.00000 + 5.19615i −0.117670 + 0.203810i
\(651\) 0 0
\(652\) 2.00000 + 3.46410i 0.0783260 + 0.135665i
\(653\) 3.00000 + 5.19615i 0.117399 + 0.203341i 0.918736 0.394872i \(-0.129211\pi\)
−0.801337 + 0.598213i \(0.795878\pi\)
\(654\) 3.00000 1.73205i 0.117309 0.0677285i
\(655\) 4.00000 6.92820i 0.156293 0.270707i
\(656\) −3.00000 −0.117130
\(657\) −1.50000 2.59808i −0.0585206 0.101361i
\(658\) 0 0
\(659\) −8.00000 + 13.8564i −0.311636 + 0.539769i −0.978717 0.205216i \(-0.934210\pi\)
0.667081 + 0.744985i \(0.267544\pi\)
\(660\) 3.46410i 0.134840i
\(661\) 14.0000 + 24.2487i 0.544537 + 0.943166i 0.998636 + 0.0522143i \(0.0166279\pi\)
−0.454099 + 0.890951i \(0.650039\pi\)
\(662\) 4.00000 + 6.92820i 0.155464 + 0.269272i
\(663\) 51.9615i 2.01802i
\(664\) −8.00000 + 13.8564i −0.310460 + 0.537733i
\(665\) 0 0
\(666\) 6.00000 0.232495
\(667\) −16.0000 −0.619522
\(668\) 10.0000 17.3205i 0.386912 0.670151i
\(669\) 6.00000 3.46410i 0.231973 0.133930i
\(670\) −13.0000 22.5167i −0.502234 0.869894i
\(671\) −6.00000 10.3923i −0.231627 0.401190i
\(672\) 0 0
\(673\) −7.00000 + 12.1244i −0.269830 + 0.467360i −0.968818 0.247774i \(-0.920301\pi\)
0.698988 + 0.715134i \(0.253634\pi\)
\(674\) 9.00000 0.346667
\(675\) −4.50000 2.59808i −0.173205 0.100000i
\(676\) 23.0000 0.884615
\(677\) 15.0000 25.9808i 0.576497 0.998522i −0.419380 0.907811i \(-0.637753\pi\)
0.995877 0.0907112i \(-0.0289140\pi\)
\(678\) −15.0000 8.66025i −0.576072 0.332595i
\(679\) 0 0
\(680\) −5.00000 8.66025i −0.191741 0.332106i
\(681\) −4.50000 + 2.59808i −0.172440 + 0.0995585i
\(682\) 3.00000 5.19615i 0.114876 0.198971i
\(683\) 39.0000 1.49229 0.746147 0.665782i \(-0.231902\pi\)
0.746147 + 0.665782i \(0.231902\pi\)
\(684\) 10.5000 18.1865i 0.401478 0.695379i
\(685\) 38.0000 1.45191
\(686\) 0 0
\(687\) 45.0333i 1.71813i
\(688\) 0.500000 + 0.866025i 0.0190623 + 0.0330169i
\(689\) −36.0000 62.3538i −1.37149 2.37549i
\(690\) 13.8564i 0.527504i
\(691\) 16.0000 27.7128i 0.608669 1.05425i −0.382791 0.923835i \(-0.625037\pi\)
0.991460 0.130410i \(-0.0416295\pi\)
\(692\) −2.00000 −0.0760286
\(693\) 0 0
\(694\) 3.00000 0.113878
\(695\) 5.00000 8.66025i 0.189661 0.328502i
\(696\) 6.00000 3.46410i 0.227429 0.131306i
\(697\) 7.50000 + 12.9904i 0.284083 + 0.492046i
\(698\) 7.00000 + 12.1244i 0.264954 + 0.458914i
\(699\) 43.5000 + 25.1147i 1.64532 + 0.949927i
\(700\) 0 0
\(701\) 8.00000 0.302156 0.151078 0.988522i \(-0.451726\pi\)
0.151078 + 0.988522i \(0.451726\pi\)
\(702\) 31.1769i 1.17670i
\(703\) 14.0000 0.528020
\(704\) −0.500000 + 0.866025i −0.0188445 + 0.0326396i
\(705\) 0 0
\(706\) 7.50000 + 12.9904i 0.282266 + 0.488899i
\(707\) 0 0
\(708\) 10.5000 6.06218i 0.394614 0.227831i
\(709\) 2.00000 3.46410i 0.0751116 0.130097i −0.826023 0.563636i \(-0.809402\pi\)
0.901135 + 0.433539i \(0.142735\pi\)
\(710\) −16.0000 −0.600469
\(711\) 18.0000 0.675053
\(712\) −6.00000 −0.224860
\(713\) −12.0000 + 20.7846i −0.449404 + 0.778390i
\(714\) 0 0
\(715\) 6.00000 + 10.3923i 0.224387 + 0.388650i
\(716\) −12.0000 20.7846i −0.448461 0.776757i
\(717\) 10.3923i 0.388108i
\(718\) 1.00000 1.73205i 0.0373197 0.0646396i
\(719\) −6.00000 −0.223762 −0.111881 0.993722i \(-0.535688\pi\)
−0.111881 + 0.993722i \(0.535688\pi\)
\(720\) −3.00000 5.19615i −0.111803 0.193649i
\(721\) 0 0
\(722\) 15.0000 25.9808i 0.558242 0.966904i
\(723\) −34.5000 + 19.9186i −1.28307 + 0.740780i
\(724\) 0 0
\(725\) −2.00000 3.46410i −0.0742781 0.128654i
\(726\) −15.0000 8.66025i −0.556702 0.321412i
\(727\) −7.00000 + 12.1244i −0.259616 + 0.449667i −0.966139 0.258022i \(-0.916929\pi\)
0.706523 + 0.707690i \(0.250263\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) −2.00000 −0.0740233
\(731\) 2.50000 4.33013i 0.0924658 0.160156i
\(732\) −18.0000 10.3923i −0.665299 0.384111i
\(733\) −9.00000 15.5885i −0.332423 0.575773i 0.650564 0.759452i \(-0.274533\pi\)
−0.982986 + 0.183679i \(0.941199\pi\)
\(734\) 11.0000 + 19.0526i 0.406017 + 0.703243i
\(735\) 0 0
\(736\) 2.00000 3.46410i 0.0737210 0.127688i
\(737\) 13.0000 0.478861
\(738\) 4.50000 + 7.79423i 0.165647 + 0.286910i
\(739\) −33.0000 −1.21392 −0.606962 0.794731i \(-0.707612\pi\)
−0.606962 + 0.794731i \(0.707612\pi\)
\(740\) 2.00000 3.46410i 0.0735215 0.127343i
\(741\) 72.7461i 2.67240i
\(742\) 0 0
\(743\) 3.00000 + 5.19615i 0.110059 + 0.190628i 0.915794 0.401648i \(-0.131563\pi\)
−0.805735 + 0.592277i \(0.798229\pi\)
\(744\) 10.3923i 0.381000i
\(745\) −24.0000 + 41.5692i −0.879292 + 1.52298i
\(746\) −22.0000 −0.805477
\(747\) 48.0000 1.75623
\(748\) 5.00000 0.182818
\(749\) 0 0
\(750\) −18.0000 + 10.3923i −0.657267 + 0.379473i
\(751\) 9.00000 + 15.5885i 0.328415 + 0.568831i 0.982197 0.187851i \(-0.0601523\pi\)
−0.653783 + 0.756682i \(0.726819\pi\)
\(752\) 0 0
\(753\) 4.50000 + 2.59808i 0.163989 + 0.0946792i
\(754\) −12.0000 + 20.7846i −0.437014 + 0.756931i
\(755\) −20.0000 −0.727875
\(756\) 0 0
\(757\) −48.0000 −1.74459 −0.872295 0.488980i \(-0.837369\pi\)
−0.872295 + 0.488980i \(0.837369\pi\)
\(758\) −8.50000 + 14.7224i −0.308734 + 0.534743i
\(759\) −6.00000 3.46410i −0.217786 0.125739i
\(760\) −7.00000 12.1244i −0.253917 0.439797i
\(761\) 5.00000 + 8.66025i 0.181250 + 0.313934i 0.942306 0.334752i \(-0.108652\pi\)
−0.761057 + 0.648686i \(0.775319\pi\)
\(762\) 18.0000 10.3923i 0.652071 0.376473i
\(763\) 0 0
\(764\) 12.0000 0.434145
\(765\) −15.0000 + 25.9808i −0.542326 + 0.939336i
\(766\) 4.00000 0.144526
\(767\) −21.0000 + 36.3731i −0.758266 + 1.31336i
\(768\) 1.73205i 0.0625000i
\(769\) 11.0000 + 19.0526i 0.396670 + 0.687053i 0.993313 0.115454i \(-0.0368323\pi\)
−0.596643 + 0.802507i \(0.703499\pi\)
\(770\) 0 0
\(771\) 25.9808i 0.935674i
\(772\) −8.50000 + 14.7224i −0.305922 + 0.529872i
\(773\) 52.0000 1.87031 0.935155 0.354239i \(-0.115260\pi\)
0.935155 + 0.354239i \(0.115260\pi\)
\(774\) 1.50000 2.59808i 0.0539164 0.0933859i
\(775\) −6.00000 −0.215526
\(776\) 2.50000 4.33013i 0.0897448 0.155443i
\(777\) 0 0
\(778\) 4.00000 + 6.92820i 0.143407 + 0.248388i
\(779\) 10.5000 + 18.1865i 0.376202 + 0.651600i
\(780\) 18.0000 + 10.3923i 0.644503 + 0.372104i
\(781\) 4.00000 6.92820i 0.143131 0.247911i
\(782\) −20.0000 −0.715199
\(783\) −18.0000 10.3923i −0.643268 0.371391i
\(784\) 0 0
\(785\) −2.00000 + 3.46410i −0.0713831 + 0.123639i
\(786\) 6.00000 + 3.46410i 0.214013 + 0.123560i
\(787\) −6.00000 10.3923i −0.213877 0.370446i 0.739048 0.673653i \(-0.235276\pi\)
−0.952925 + 0.303207i \(0.901942\pi\)
\(788\) −5.00000 8.66025i −0.178118 0.308509i
\(789\) 27.0000 15.5885i 0.961225 0.554964i
\(790\) 6.00000 10.3923i 0.213470 0.369742i
\(791\) 0 0
\(792\) 3.00000 0.106600
\(793\) 72.0000 2.55679
\(794\) −9.00000 + 15.5885i −0.319398 + 0.553214i
\(795\) 41.5692i 1.47431i
\(796\) 7.00000 + 12.1244i 0.248108 + 0.429736i
\(797\) −6.00000 10.3923i −0.212531 0.368114i 0.739975 0.672634i \(-0.234837\pi\)
−0.952506 + 0.304520i \(0.901504\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 1.00000 0.0353553
\(801\) 9.00000 + 15.5885i 0.317999 + 0.550791i
\(802\) −9.00000 −0.317801
\(803\) 0.500000 0.866025i 0.0176446 0.0305614i
\(804\) 19.5000 11.2583i 0.687712 0.397051i
\(805\) 0 0
\(806\) 18.0000 + 31.1769i 0.634023 + 1.09816i
\(807\) 30.0000 + 17.3205i 1.05605 + 0.609711i
\(808\) 2.00000 3.46410i 0.0703598 0.121867i
\(809\) −43.0000 −1.51180 −0.755900 0.654687i \(-0.772800\pi\)
−0.755900 + 0.654687i \(0.772800\pi\)
\(810\) −9.00000 + 15.5885i −0.316228 + 0.547723i
\(811\) −31.0000 −1.08856 −0.544279 0.838905i \(-0.683197\pi\)
−0.544279 + 0.838905i \(0.683197\pi\)
\(812\) 0 0
\(813\) −9.00000 5.19615i −0.315644 0.182237i
\(814\) 1.00000 + 1.73205i 0.0350500 + 0.0607083i
\(815\) −4.00000 6.92820i −0.140114 0.242684i
\(816\) 7.50000 4.33013i 0.262553 0.151585i
\(817\) 3.50000 6.06218i 0.122449 0.212089i
\(818\) 11.0000 0.384606
\(819\) 0 0
\(820\) 6.00000 0.209529
\(821\) −23.0000 + 39.8372i −0.802706 + 1.39033i 0.115124 + 0.993351i \(0.463274\pi\)
−0.917829 + 0.396976i \(0.870060\pi\)
\(822\) 32.9090i 1.14783i
\(823\) −17.0000 29.4449i −0.592583 1.02638i −0.993883 0.110437i \(-0.964775\pi\)
0.401300 0.915947i \(-0.368558\pi\)
\(824\) −7.00000 12.1244i −0.243857 0.422372i
\(825\) 1.73205i 0.0603023i
\(826\) 0 0
\(827\) 12.0000 0.417281 0.208640 0.977992i \(-0.433096\pi\)
0.208640 + 0.977992i \(0.433096\pi\)
\(828\) −12.0000 −0.417029
\(829\) −4.00000 −0.138926 −0.0694629 0.997585i \(-0.522129\pi\)
−0.0694629 + 0.997585i \(0.522129\pi\)
\(830\) 16.0000 27.7128i 0.555368 0.961926i
\(831\) 3.00000 1.73205i 0.104069 0.0600842i
\(832\) −3.00000 5.19615i −0.104006 0.180144i
\(833\) 0 0
\(834\) 7.50000 + 4.33013i 0.259704 + 0.149940i
\(835\) −20.0000 + 34.6410i −0.692129 + 1.19880i
\(836\) 7.00000 0.242100
\(837\) −27.0000 + 15.5885i −0.933257 + 0.538816i
\(838\) −12.0000 −0.414533
\(839\) −10.0000 + 17.3205i −0.345238 + 0.597970i −0.985397 0.170272i \(-0.945535\pi\)
0.640159 + 0.768243i \(0.278869\pi\)
\(840\) 0 0
\(841\) 6.50000 + 11.2583i 0.224138 + 0.388218i
\(842\) −6.00000 10.3923i −0.206774 0.358142i
\(843\) 33.0000 19.0526i 1.13658 0.656205i
\(844\) 8.00000 13.8564i 0.275371 0.476957i
\(845\) −46.0000 −1.58245
\(846\) 0 0
\(847\) 0 0
\(848\) −6.00000 + 10.3923i −0.206041 + 0.356873i
\(849\) 6.92820i 0.237775i
\(850\) −2.50000 4.33013i −0.0857493 0.148522i
\(851\) −4.00000 6.92820i −0.137118 0.237496i
\(852\) 13.8564i 0.474713i
\(853\) 22.0000 38.1051i 0.753266 1.30469i −0.192966 0.981205i \(-0.561811\pi\)
0.946232 0.323489i \(-0.104856\pi\)
\(854\) 0 0
\(855\) −21.0000 + 36.3731i −0.718185 + 1.24393i
\(856\) −3.00000 −0.102538
\(857\) 15.0000 25.9808i 0.512390 0.887486i −0.487507 0.873119i \(-0.662093\pi\)
0.999897 0.0143666i \(-0.00457319\pi\)
\(858\) −9.00000 + 5.19615i −0.307255 + 0.177394i
\(859\) 14.5000 + 25.1147i 0.494734 + 0.856904i 0.999982 0.00607046i \(-0.00193230\pi\)
−0.505248 + 0.862974i \(0.668599\pi\)
\(860\) −1.00000 1.73205i −0.0340997 0.0590624i
\(861\) 0 0
\(862\) 0 0
\(863\) 38.0000 1.29354 0.646768 0.762687i \(-0.276120\pi\)
0.646768 + 0.762687i \(0.276120\pi\)
\(864\) 4.50000 2.59808i 0.153093 0.0883883i
\(865\) 4.00000 0.136004
\(866\) 12.5000 21.6506i 0.424767 0.735719i
\(867\) −12.0000 6.92820i −0.407541 0.235294i
\(868\) 0 0
\(869\) 3.00000 + 5.19615i 0.101768 + 0.176267i
\(870\) −12.0000 + 6.92820i −0.406838 + 0.234888i
\(871\) −39.0000 + 67.5500i −1.32146 + 2.28884i
\(872\) 2.00000 0.0677285
\(873\) −15.0000 −0.507673
\(874\) −28.0000 −0.947114
\(875\) 0 0
\(876\) 1.73205i 0.0585206i
\(877\) −8.00000 13.8564i −0.270141 0.467898i 0.698757 0.715359i \(-0.253737\pi\)
−0.968898 + 0.247462i \(0.920404\pi\)
\(878\) 12.0000 + 20.7846i 0.404980 + 0.701447i
\(879\) 0 0
\(880\) 1.00000 1.73205i 0.0337100 0.0583874i
\(881\) −42.0000 −1.41502 −0.707508 0.706705i \(-0.750181\pi\)
−0.707508 + 0.706705i \(0.750181\pi\)
\(882\) 0 0
\(883\) 53.0000 1.78359 0.891796 0.452438i \(-0.149446\pi\)
0.891796 + 0.452438i \(0.149446\pi\)
\(884\) −15.0000 + 25.9808i −0.504505 + 0.873828i
\(885\) −21.0000 + 12.1244i −0.705907 + 0.407556i
\(886\) 3.50000 + 6.06218i 0.117585 + 0.203663i
\(887\) −3.00000 5.19615i −0.100730 0.174470i 0.811256 0.584692i \(-0.198785\pi\)
−0.911986 + 0.410222i \(0.865451\pi\)
\(888\) 3.00000 + 1.73205i 0.100673 + 0.0581238i
\(889\) 0 0
\(890\) 12.0000 0.402241
\(891\) −4.50000 7.79423i −0.150756 0.261116i
\(892\) 4.00000 0.133930
\(893\) 0 0
\(894\) −36.0000 20.7846i −1.20402 0.695141i
\(895\) 24.0000 + 41.5692i 0.802232 + 1.38951i
\(896\) 0 0
\(897\) 36.0000 20.7846i 1.20201 0.693978i
\(898\) 8.50000 14.7224i 0.283649 0.491294i
\(899\) −24.0000 −0.800445
\(900\) −1.50000 2.59808i −0.0500000 0.0866025i
\(901\) 60.0000 1.99889
\(902\) −1.50000 + 2.59808i −0.0499445 + 0.0865065i
\(903\) 0 0
\(904\) −5.00000 8.66025i −0.166298 0.288036i
\(905\) 0 0
\(906\) 17.3205i 0.575435i
\(907\) 13.5000 23.3827i 0.448260 0.776409i −0.550013 0.835156i \(-0.685377\pi\)
0.998273 + 0.0587469i \(0.0187105\pi\)
\(908\) −3.00000 −0.0995585
\(909\) −12.0000 −0.398015
\(910\) 0 0
\(911\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(912\) 10.5000 6.06218i 0.347690 0.200739i
\(913\) 8.00000 + 13.8564i 0.264761 + 0.458580i
\(914\) 0.500000 + 0.866025i 0.0165385 + 0.0286456i
\(915\) 36.0000 + 20.7846i 1.19012 + 0.687118i
\(916\) −13.0000 + 22.5167i −0.429532 + 0.743971i
\(917\) 0 0
\(918\) −22.5000 12.9904i −0.742611 0.428746i
\(919\) 16.0000 0.527791 0.263896 0.964551i \(-0.414993\pi\)
0.263896 + 0.964551i \(0.414993\pi\)
\(920\) −4.00000 + 6.92820i −0.131876 + 0.228416i
\(921\) 10.5000 + 6.06218i 0.345987 + 0.199756i
\(922\) −7.00000 12.1244i −0.230533 0.399294i
\(923\) 24.0000 + 41.5692i 0.789970 + 1.36827i
\(924\) 0 0
\(925\) 1.00000 1.73205i 0.0328798 0.0569495i
\(926\) 8.00000 0.262896
\(927\) −21.0000 + 36.3731i −0.689730 + 1.19465i
\(928\) 4.00000 0.131306
\(929\) −9.00000 + 15.5885i −0.295280 + 0.511441i −0.975050 0.221985i \(-0.928746\pi\)
0.679770 + 0.733426i \(0.262080\pi\)
\(930\) 20.7846i 0.681554i
\(931\) 0 0
\(932\) 14.5000 + 25.1147i 0.474963 + 0.822661i
\(933\) 3.46410i 0.113410i
\(934\) 6.50000 11.2583i 0.212686 0.368384i
\(935\) −10.0000 −0.327035
\(936\) −9.00000 + 15.5885i −0.294174 + 0.509525i
\(937\) −2.00000 −0.0653372 −0.0326686 0.999466i \(-0.510401\pi\)
−0.0326686 + 0.999466i \(0.510401\pi\)
\(938\) 0 0
\(939\) 25.5000 14.7224i 0.832161 0.480448i
\(940\) 0 0
\(941\) 10.0000 + 17.3205i 0.325991 + 0.564632i 0.981712 0.190370i \(-0.0609689\pi\)
−0.655722 + 0.755003i \(0.727636\pi\)
\(942\) −3.00000 1.73205i −0.0977453 0.0564333i
\(943\) 6.00000 10.3923i 0.195387 0.338420i
\(944\) 7.00000 0.227831
\(945\) 0 0
\(946\) 1.00000 0.0325128
\(947\) 18.5000 32.0429i 0.601169 1.04126i −0.391475 0.920189i \(-0.628035\pi\)
0.992644 0.121067i \(-0.0386316\pi\)
\(948\) 9.00000 + 5.19615i 0.292306 + 0.168763i
\(949\) 3.00000 + 5.19615i 0.0973841 + 0.168674i
\(950\) −3.50000 6.06218i −0.113555 0.196683i
\(951\) −9.00000 + 5.19615i −0.291845 + 0.168497i
\(952\) 0 0
\(953\) −35.0000 −1.13376 −0.566881 0.823800i \(-0.691850\pi\)
−0.566881 + 0.823800i \(0.691850\pi\)
\(954\) 36.0000 1.16554
\(955\) −24.0000 −0.776622
\(956\) −3.00000 + 5.19615i −0.0970269 + 0.168056i
\(957\) 6.92820i 0.223957i
\(958\) 10.0000 + 17.3205i 0.323085 + 0.559600i
\(959\) 0 0
\(960\) 3.46410i 0.111803i
\(961\) −2.50000 + 4.33013i −0.0806452 + 0.139682i
\(962\) −12.0000 −0.386896
\(963\) 4.50000 + 7.79423i 0.145010 + 0.251166i
\(964\) −23.0000 −0.740780
\(965\) 17.0000 29.4449i 0.547249 0.947864i
\(966\) 0 0
\(967\) −7.00000 12.1244i −0.225105 0.389893i 0.731246 0.682114i \(-0.238939\pi\)
−0.956351 + 0.292221i \(0.905606\pi\)
\(968\) −5.00000 8.66025i −0.160706 0.278351i
\(969\) −52.5000 30.3109i −1.68654 0.973726i
\(970\) −5.00000 + 8.66025i −0.160540 + 0.278064i
\(971\) 12.0000 0.385098 0.192549 0.981287i \(-0.438325\pi\)
0.192549 + 0.981287i \(0.438325\pi\)
\(972\) −13.5000 7.79423i −0.433013 0.250000i
\(973\) 0 0
\(974\) −5.00000 + 8.66025i −0.160210 + 0.277492i
\(975\) 9.00000 + 5.19615i 0.288231 + 0.166410i
\(976\) −6.00000 10.3923i −0.192055 0.332650i
\(977\) 7.50000 + 12.9904i 0.239946 + 0.415599i 0.960699 0.277594i \(-0.0895368\pi\)
−0.720752 + 0.693193i \(0.756204\pi\)
\(978\) 6.00000 3.46410i 0.191859 0.110770i
\(979\) −3.00000 + 5.19615i −0.0958804 + 0.166070i
\(980\) 0 0
\(981\) −3.00000 5.19615i −0.0957826 0.165900i
\(982\) −33.0000 −1.05307
\(983\) −30.0000 + 51.9615i −0.956851 + 1.65732i −0.226778 + 0.973946i \(0.572819\pi\)
−0.730073 + 0.683369i \(0.760514\pi\)
\(984\) 5.19615i 0.165647i
\(985\) 10.0000 + 17.3205i 0.318626 + 0.551877i
\(986\) −10.0000 17.3205i −0.318465 0.551597i
\(987\) 0 0
\(988\) −21.0000 + 36.3731i −0.668099 + 1.15718i
\(989\) −4.00000 −0.127193
\(990\) −6.00000 −0.190693
\(991\) −28.0000 −0.889449 −0.444725 0.895667i \(-0.646698\pi\)
−0.444725 + 0.895667i \(0.646698\pi\)
\(992\) 3.00000 5.19615i 0.0952501 0.164978i
\(993\) 12.0000 6.92820i 0.380808 0.219860i
\(994\) 0 0
\(995\) −14.0000 24.2487i −0.443830 0.768736i
\(996\) 24.0000 + 13.8564i 0.760469 + 0.439057i
\(997\) 1.00000 1.73205i 0.0316703 0.0548546i −0.849756 0.527176i \(-0.823251\pi\)
0.881426 + 0.472322i \(0.156584\pi\)
\(998\) 29.0000 0.917979
\(999\) 10.3923i 0.328798i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.2.f.f.295.1 2
3.2 odd 2 2646.2.f.b.883.1 2
7.2 even 3 882.2.e.e.655.1 2
7.3 odd 6 882.2.h.h.79.1 2
7.4 even 3 882.2.h.g.79.1 2
7.5 odd 6 882.2.e.a.655.1 2
7.6 odd 2 126.2.f.b.43.1 2
9.2 odd 6 7938.2.a.bb.1.1 1
9.4 even 3 inner 882.2.f.f.589.1 2
9.5 odd 6 2646.2.f.b.1765.1 2
9.7 even 3 7938.2.a.e.1.1 1
21.2 odd 6 2646.2.e.h.2125.1 2
21.5 even 6 2646.2.e.i.2125.1 2
21.11 odd 6 2646.2.h.c.667.1 2
21.17 even 6 2646.2.h.b.667.1 2
21.20 even 2 378.2.f.b.127.1 2
28.27 even 2 1008.2.r.a.673.1 2
63.4 even 3 882.2.e.e.373.1 2
63.5 even 6 2646.2.h.b.361.1 2
63.13 odd 6 126.2.f.b.85.1 yes 2
63.20 even 6 1134.2.a.f.1.1 1
63.23 odd 6 2646.2.h.c.361.1 2
63.31 odd 6 882.2.e.a.373.1 2
63.32 odd 6 2646.2.e.h.1549.1 2
63.34 odd 6 1134.2.a.c.1.1 1
63.40 odd 6 882.2.h.h.67.1 2
63.41 even 6 378.2.f.b.253.1 2
63.58 even 3 882.2.h.g.67.1 2
63.59 even 6 2646.2.e.i.1549.1 2
84.83 odd 2 3024.2.r.c.2017.1 2
252.83 odd 6 9072.2.a.f.1.1 1
252.139 even 6 1008.2.r.a.337.1 2
252.167 odd 6 3024.2.r.c.1009.1 2
252.223 even 6 9072.2.a.t.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.f.b.43.1 2 7.6 odd 2
126.2.f.b.85.1 yes 2 63.13 odd 6
378.2.f.b.127.1 2 21.20 even 2
378.2.f.b.253.1 2 63.41 even 6
882.2.e.a.373.1 2 63.31 odd 6
882.2.e.a.655.1 2 7.5 odd 6
882.2.e.e.373.1 2 63.4 even 3
882.2.e.e.655.1 2 7.2 even 3
882.2.f.f.295.1 2 1.1 even 1 trivial
882.2.f.f.589.1 2 9.4 even 3 inner
882.2.h.g.67.1 2 63.58 even 3
882.2.h.g.79.1 2 7.4 even 3
882.2.h.h.67.1 2 63.40 odd 6
882.2.h.h.79.1 2 7.3 odd 6
1008.2.r.a.337.1 2 252.139 even 6
1008.2.r.a.673.1 2 28.27 even 2
1134.2.a.c.1.1 1 63.34 odd 6
1134.2.a.f.1.1 1 63.20 even 6
2646.2.e.h.1549.1 2 63.32 odd 6
2646.2.e.h.2125.1 2 21.2 odd 6
2646.2.e.i.1549.1 2 63.59 even 6
2646.2.e.i.2125.1 2 21.5 even 6
2646.2.f.b.883.1 2 3.2 odd 2
2646.2.f.b.1765.1 2 9.5 odd 6
2646.2.h.b.361.1 2 63.5 even 6
2646.2.h.b.667.1 2 21.17 even 6
2646.2.h.c.361.1 2 63.23 odd 6
2646.2.h.c.667.1 2 21.11 odd 6
3024.2.r.c.1009.1 2 252.167 odd 6
3024.2.r.c.2017.1 2 84.83 odd 2
7938.2.a.e.1.1 1 9.7 even 3
7938.2.a.bb.1.1 1 9.2 odd 6
9072.2.a.f.1.1 1 252.83 odd 6
9072.2.a.t.1.1 1 252.223 even 6