Properties

Label 882.2.e.i
Level $882$
Weight $2$
Character orbit 882.e
Analytic conductor $7.043$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 882.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(7.04280545828\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 18)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + ( 2 - \zeta_{6} ) q^{3} + q^{4} + ( 2 - \zeta_{6} ) q^{6} + q^{8} + ( 3 - 3 \zeta_{6} ) q^{9} +O(q^{10})\) \( q + q^{2} + ( 2 - \zeta_{6} ) q^{3} + q^{4} + ( 2 - \zeta_{6} ) q^{6} + q^{8} + ( 3 - 3 \zeta_{6} ) q^{9} + 3 \zeta_{6} q^{11} + ( 2 - \zeta_{6} ) q^{12} -2 \zeta_{6} q^{13} + q^{16} + ( 3 - 3 \zeta_{6} ) q^{17} + ( 3 - 3 \zeta_{6} ) q^{18} + \zeta_{6} q^{19} + 3 \zeta_{6} q^{22} + ( 6 - 6 \zeta_{6} ) q^{23} + ( 2 - \zeta_{6} ) q^{24} + 5 \zeta_{6} q^{25} -2 \zeta_{6} q^{26} + ( 3 - 6 \zeta_{6} ) q^{27} + ( -6 + 6 \zeta_{6} ) q^{29} -4 q^{31} + q^{32} + ( 3 + 3 \zeta_{6} ) q^{33} + ( 3 - 3 \zeta_{6} ) q^{34} + ( 3 - 3 \zeta_{6} ) q^{36} + 4 \zeta_{6} q^{37} + \zeta_{6} q^{38} + ( -2 - 2 \zeta_{6} ) q^{39} -9 \zeta_{6} q^{41} + ( 1 - \zeta_{6} ) q^{43} + 3 \zeta_{6} q^{44} + ( 6 - 6 \zeta_{6} ) q^{46} -6 q^{47} + ( 2 - \zeta_{6} ) q^{48} + 5 \zeta_{6} q^{50} + ( 3 - 6 \zeta_{6} ) q^{51} -2 \zeta_{6} q^{52} + ( -12 + 12 \zeta_{6} ) q^{53} + ( 3 - 6 \zeta_{6} ) q^{54} + ( 1 + \zeta_{6} ) q^{57} + ( -6 + 6 \zeta_{6} ) q^{58} + 3 q^{59} + 8 q^{61} -4 q^{62} + q^{64} + ( 3 + 3 \zeta_{6} ) q^{66} + 5 q^{67} + ( 3 - 3 \zeta_{6} ) q^{68} + ( 6 - 12 \zeta_{6} ) q^{69} -12 q^{71} + ( 3 - 3 \zeta_{6} ) q^{72} + ( -11 + 11 \zeta_{6} ) q^{73} + 4 \zeta_{6} q^{74} + ( 5 + 5 \zeta_{6} ) q^{75} + \zeta_{6} q^{76} + ( -2 - 2 \zeta_{6} ) q^{78} -4 q^{79} -9 \zeta_{6} q^{81} -9 \zeta_{6} q^{82} + ( -12 + 12 \zeta_{6} ) q^{83} + ( 1 - \zeta_{6} ) q^{86} + ( -6 + 12 \zeta_{6} ) q^{87} + 3 \zeta_{6} q^{88} -6 \zeta_{6} q^{89} + ( 6 - 6 \zeta_{6} ) q^{92} + ( -8 + 4 \zeta_{6} ) q^{93} -6 q^{94} + ( 2 - \zeta_{6} ) q^{96} + ( -5 + 5 \zeta_{6} ) q^{97} + 9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 2q^{2} + 3q^{3} + 2q^{4} + 3q^{6} + 2q^{8} + 3q^{9} + O(q^{10}) \) \( 2q + 2q^{2} + 3q^{3} + 2q^{4} + 3q^{6} + 2q^{8} + 3q^{9} + 3q^{11} + 3q^{12} - 2q^{13} + 2q^{16} + 3q^{17} + 3q^{18} + q^{19} + 3q^{22} + 6q^{23} + 3q^{24} + 5q^{25} - 2q^{26} - 6q^{29} - 8q^{31} + 2q^{32} + 9q^{33} + 3q^{34} + 3q^{36} + 4q^{37} + q^{38} - 6q^{39} - 9q^{41} + q^{43} + 3q^{44} + 6q^{46} - 12q^{47} + 3q^{48} + 5q^{50} - 2q^{52} - 12q^{53} + 3q^{57} - 6q^{58} + 6q^{59} + 16q^{61} - 8q^{62} + 2q^{64} + 9q^{66} + 10q^{67} + 3q^{68} - 24q^{71} + 3q^{72} - 11q^{73} + 4q^{74} + 15q^{75} + q^{76} - 6q^{78} - 8q^{79} - 9q^{81} - 9q^{82} - 12q^{83} + q^{86} + 3q^{88} - 6q^{89} + 6q^{92} - 12q^{93} - 12q^{94} + 3q^{96} - 5q^{97} + 18q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(-\zeta_{6}\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
373.1
0.500000 0.866025i
0.500000 + 0.866025i
1.00000 1.50000 + 0.866025i 1.00000 0 1.50000 + 0.866025i 0 1.00000 1.50000 + 2.59808i 0
655.1 1.00000 1.50000 0.866025i 1.00000 0 1.50000 0.866025i 0 1.00000 1.50000 2.59808i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
63.h even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 882.2.e.i 2
3.b odd 2 1 2646.2.e.b 2
7.b odd 2 1 882.2.e.g 2
7.c even 3 1 18.2.c.a 2
7.c even 3 1 882.2.h.c 2
7.d odd 6 1 882.2.f.d 2
7.d odd 6 1 882.2.h.b 2
9.c even 3 1 882.2.h.c 2
9.d odd 6 1 2646.2.h.h 2
21.c even 2 1 2646.2.e.c 2
21.g even 6 1 2646.2.f.g 2
21.g even 6 1 2646.2.h.i 2
21.h odd 6 1 54.2.c.a 2
21.h odd 6 1 2646.2.h.h 2
28.g odd 6 1 144.2.i.c 2
35.j even 6 1 450.2.e.i 2
35.l odd 12 2 450.2.j.e 4
56.k odd 6 1 576.2.i.a 2
56.p even 6 1 576.2.i.g 2
63.g even 3 1 18.2.c.a 2
63.h even 3 1 162.2.a.c 1
63.h even 3 1 inner 882.2.e.i 2
63.i even 6 1 2646.2.e.c 2
63.i even 6 1 7938.2.a.i 1
63.j odd 6 1 162.2.a.b 1
63.j odd 6 1 2646.2.e.b 2
63.k odd 6 1 882.2.f.d 2
63.l odd 6 1 882.2.h.b 2
63.n odd 6 1 54.2.c.a 2
63.o even 6 1 2646.2.h.i 2
63.s even 6 1 2646.2.f.g 2
63.t odd 6 1 882.2.e.g 2
63.t odd 6 1 7938.2.a.x 1
84.n even 6 1 432.2.i.b 2
105.o odd 6 1 1350.2.e.c 2
105.x even 12 2 1350.2.j.a 4
168.s odd 6 1 1728.2.i.e 2
168.v even 6 1 1728.2.i.f 2
252.o even 6 1 432.2.i.b 2
252.u odd 6 1 1296.2.a.g 1
252.bb even 6 1 1296.2.a.f 1
252.bl odd 6 1 144.2.i.c 2
315.r even 6 1 4050.2.a.c 1
315.v odd 6 1 1350.2.e.c 2
315.bo even 6 1 450.2.e.i 2
315.br odd 6 1 4050.2.a.v 1
315.bt odd 12 2 4050.2.c.c 2
315.bv even 12 2 4050.2.c.r 2
315.bx even 12 2 1350.2.j.a 4
315.ch odd 12 2 450.2.j.e 4
504.w even 6 1 576.2.i.g 2
504.ba odd 6 1 576.2.i.a 2
504.bi odd 6 1 5184.2.a.q 1
504.bt even 6 1 5184.2.a.p 1
504.ce odd 6 1 5184.2.a.o 1
504.cq even 6 1 5184.2.a.r 1
504.cy even 6 1 1728.2.i.f 2
504.db odd 6 1 1728.2.i.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
18.2.c.a 2 7.c even 3 1
18.2.c.a 2 63.g even 3 1
54.2.c.a 2 21.h odd 6 1
54.2.c.a 2 63.n odd 6 1
144.2.i.c 2 28.g odd 6 1
144.2.i.c 2 252.bl odd 6 1
162.2.a.b 1 63.j odd 6 1
162.2.a.c 1 63.h even 3 1
432.2.i.b 2 84.n even 6 1
432.2.i.b 2 252.o even 6 1
450.2.e.i 2 35.j even 6 1
450.2.e.i 2 315.bo even 6 1
450.2.j.e 4 35.l odd 12 2
450.2.j.e 4 315.ch odd 12 2
576.2.i.a 2 56.k odd 6 1
576.2.i.a 2 504.ba odd 6 1
576.2.i.g 2 56.p even 6 1
576.2.i.g 2 504.w even 6 1
882.2.e.g 2 7.b odd 2 1
882.2.e.g 2 63.t odd 6 1
882.2.e.i 2 1.a even 1 1 trivial
882.2.e.i 2 63.h even 3 1 inner
882.2.f.d 2 7.d odd 6 1
882.2.f.d 2 63.k odd 6 1
882.2.h.b 2 7.d odd 6 1
882.2.h.b 2 63.l odd 6 1
882.2.h.c 2 7.c even 3 1
882.2.h.c 2 9.c even 3 1
1296.2.a.f 1 252.bb even 6 1
1296.2.a.g 1 252.u odd 6 1
1350.2.e.c 2 105.o odd 6 1
1350.2.e.c 2 315.v odd 6 1
1350.2.j.a 4 105.x even 12 2
1350.2.j.a 4 315.bx even 12 2
1728.2.i.e 2 168.s odd 6 1
1728.2.i.e 2 504.db odd 6 1
1728.2.i.f 2 168.v even 6 1
1728.2.i.f 2 504.cy even 6 1
2646.2.e.b 2 3.b odd 2 1
2646.2.e.b 2 63.j odd 6 1
2646.2.e.c 2 21.c even 2 1
2646.2.e.c 2 63.i even 6 1
2646.2.f.g 2 21.g even 6 1
2646.2.f.g 2 63.s even 6 1
2646.2.h.h 2 9.d odd 6 1
2646.2.h.h 2 21.h odd 6 1
2646.2.h.i 2 21.g even 6 1
2646.2.h.i 2 63.o even 6 1
4050.2.a.c 1 315.r even 6 1
4050.2.a.v 1 315.br odd 6 1
4050.2.c.c 2 315.bt odd 12 2
4050.2.c.r 2 315.bv even 12 2
5184.2.a.o 1 504.ce odd 6 1
5184.2.a.p 1 504.bt even 6 1
5184.2.a.q 1 504.bi odd 6 1
5184.2.a.r 1 504.cq even 6 1
7938.2.a.i 1 63.i even 6 1
7938.2.a.x 1 63.t odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(882, [\chi])\):

\( T_{5} \)
\( T_{11}^{2} - 3 T_{11} + 9 \)
\( T_{13}^{2} + 2 T_{13} + 4 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( -1 + T )^{2} \)
$3$ \( 3 - 3 T + T^{2} \)
$5$ \( T^{2} \)
$7$ \( T^{2} \)
$11$ \( 9 - 3 T + T^{2} \)
$13$ \( 4 + 2 T + T^{2} \)
$17$ \( 9 - 3 T + T^{2} \)
$19$ \( 1 - T + T^{2} \)
$23$ \( 36 - 6 T + T^{2} \)
$29$ \( 36 + 6 T + T^{2} \)
$31$ \( ( 4 + T )^{2} \)
$37$ \( 16 - 4 T + T^{2} \)
$41$ \( 81 + 9 T + T^{2} \)
$43$ \( 1 - T + T^{2} \)
$47$ \( ( 6 + T )^{2} \)
$53$ \( 144 + 12 T + T^{2} \)
$59$ \( ( -3 + T )^{2} \)
$61$ \( ( -8 + T )^{2} \)
$67$ \( ( -5 + T )^{2} \)
$71$ \( ( 12 + T )^{2} \)
$73$ \( 121 + 11 T + T^{2} \)
$79$ \( ( 4 + T )^{2} \)
$83$ \( 144 + 12 T + T^{2} \)
$89$ \( 36 + 6 T + T^{2} \)
$97$ \( 25 + 5 T + T^{2} \)
show more
show less