Properties

Label 882.2.bl.a.395.17
Level $882$
Weight $2$
Character 882.395
Analytic conductor $7.043$
Analytic rank $0$
Dimension $240$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [882,2,Mod(17,882)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("882.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(882, base_ring=CyclotomicField(42)) chi = DirichletCharacter(H, H._module([21, 25])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 882.bl (of order \(42\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.04280545828\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(20\) over \(\Q(\zeta_{42})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{42}]$

Embedding invariants

Embedding label 395.17
Character \(\chi\) \(=\) 882.395
Dual form 882.2.bl.a.719.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.930874 + 0.365341i) q^{2} +(0.733052 + 0.680173i) q^{4} +(0.668488 + 0.455768i) q^{5} +(1.56257 + 2.13503i) q^{7} +(0.433884 + 0.900969i) q^{8} +(0.455768 + 0.668488i) q^{10} +(-0.205813 - 1.36548i) q^{11} +(-4.63979 + 3.70011i) q^{13} +(0.674542 + 2.55832i) q^{14} +(0.0747301 + 0.997204i) q^{16} +(6.36675 + 1.96388i) q^{17} +(-0.313177 + 0.180813i) q^{19} +(0.180036 + 0.788789i) q^{20} +(0.307280 - 1.34628i) q^{22} +(0.919782 + 2.98186i) q^{23} +(-1.58755 - 4.04502i) q^{25} +(-5.67087 + 1.74923i) q^{26} +(-0.306745 + 2.62791i) q^{28} +(-2.15561 + 0.492003i) q^{29} +(4.11108 + 2.37353i) q^{31} +(-0.294755 + 0.955573i) q^{32} +(5.20916 + 4.15416i) q^{34} +(0.0714819 + 2.13942i) q^{35} +(-0.607955 + 0.564100i) q^{37} +(-0.357587 + 0.0538975i) q^{38} +(-0.120586 + 0.800038i) q^{40} +(10.1084 - 4.86797i) q^{41} +(-9.83641 - 4.73696i) q^{43} +(0.777892 - 1.14096i) q^{44} +(-0.233195 + 3.11177i) q^{46} +(2.32313 - 5.91923i) q^{47} +(-2.11674 + 6.67229i) q^{49} -4.34540i q^{50} +(-5.91793 - 0.443487i) q^{52} +(-2.08863 + 2.25100i) q^{53} +(0.484759 - 1.00661i) q^{55} +(-1.24562 + 2.33419i) q^{56} +(-2.18635 - 0.329539i) q^{58} +(-3.04261 + 2.07442i) q^{59} +(4.15111 + 4.47383i) q^{61} +(2.95975 + 3.71141i) q^{62} +(-0.623490 + 0.781831i) q^{64} +(-4.78804 + 0.358814i) q^{65} +(-0.0121720 + 0.0210825i) q^{67} +(3.33138 + 5.77012i) q^{68} +(-0.715076 + 2.01764i) q^{70} +(14.0589 + 3.20886i) q^{71} +(-5.89791 + 2.31476i) q^{73} +(-0.772018 + 0.302995i) q^{74} +(-0.352559 - 0.0804693i) q^{76} +(2.59375 - 2.57308i) q^{77} +(4.89112 + 8.47167i) q^{79} +(-0.404537 + 0.700679i) q^{80} +(11.1881 - 0.838436i) q^{82} +(8.22704 - 10.3164i) q^{83} +(3.36103 + 4.21459i) q^{85} +(-7.42585 - 8.00316i) q^{86} +(1.14096 - 0.777892i) q^{88} +(-3.30899 - 0.498750i) q^{89} +(-15.1499 - 4.12442i) q^{91} +(-1.35393 + 2.81147i) q^{92} +(4.32507 - 4.66132i) q^{94} +(-0.291764 - 0.0218647i) q^{95} -6.58675i q^{97} +(-4.40808 + 5.43773i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240 q - 20 q^{4} - 4 q^{7} - 12 q^{10} + 20 q^{16} + 24 q^{19} - 20 q^{22} + 24 q^{25} + 4 q^{28} + 12 q^{31} - 32 q^{37} + 44 q^{40} - 48 q^{43} + 204 q^{49} + 140 q^{55} + 136 q^{58} + 88 q^{61} + 40 q^{64}+ \cdots + 80 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(e\left(\frac{1}{42}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.930874 + 0.365341i 0.658227 + 0.258335i
\(3\) 0 0
\(4\) 0.733052 + 0.680173i 0.366526 + 0.340086i
\(5\) 0.668488 + 0.455768i 0.298957 + 0.203826i 0.703503 0.710692i \(-0.251618\pi\)
−0.404546 + 0.914518i \(0.632570\pi\)
\(6\) 0 0
\(7\) 1.56257 + 2.13503i 0.590597 + 0.806967i
\(8\) 0.433884 + 0.900969i 0.153401 + 0.318541i
\(9\) 0 0
\(10\) 0.455768 + 0.668488i 0.144126 + 0.211395i
\(11\) −0.205813 1.36548i −0.0620550 0.411708i −0.998194 0.0600772i \(-0.980865\pi\)
0.936139 0.351631i \(-0.114373\pi\)
\(12\) 0 0
\(13\) −4.63979 + 3.70011i −1.28685 + 1.02623i −0.289228 + 0.957260i \(0.593399\pi\)
−0.997619 + 0.0689664i \(0.978030\pi\)
\(14\) 0.674542 + 2.55832i 0.180279 + 0.683739i
\(15\) 0 0
\(16\) 0.0747301 + 0.997204i 0.0186825 + 0.249301i
\(17\) 6.36675 + 1.96388i 1.54416 + 0.476312i 0.945756 0.324879i \(-0.105324\pi\)
0.598409 + 0.801191i \(0.295800\pi\)
\(18\) 0 0
\(19\) −0.313177 + 0.180813i −0.0718478 + 0.0414813i −0.535494 0.844539i \(-0.679874\pi\)
0.463646 + 0.886021i \(0.346541\pi\)
\(20\) 0.180036 + 0.788789i 0.0402573 + 0.176379i
\(21\) 0 0
\(22\) 0.307280 1.34628i 0.0655124 0.287028i
\(23\) 0.919782 + 2.98186i 0.191788 + 0.621761i 0.999483 + 0.0321602i \(0.0102387\pi\)
−0.807695 + 0.589601i \(0.799285\pi\)
\(24\) 0 0
\(25\) −1.58755 4.04502i −0.317511 0.809004i
\(26\) −5.67087 + 1.74923i −1.11215 + 0.343052i
\(27\) 0 0
\(28\) −0.306745 + 2.62791i −0.0579694 + 0.496628i
\(29\) −2.15561 + 0.492003i −0.400286 + 0.0913627i −0.417925 0.908482i \(-0.637242\pi\)
0.0176384 + 0.999844i \(0.494385\pi\)
\(30\) 0 0
\(31\) 4.11108 + 2.37353i 0.738372 + 0.426299i 0.821477 0.570242i \(-0.193150\pi\)
−0.0831053 + 0.996541i \(0.526484\pi\)
\(32\) −0.294755 + 0.955573i −0.0521058 + 0.168923i
\(33\) 0 0
\(34\) 5.20916 + 4.15416i 0.893363 + 0.712433i
\(35\) 0.0714819 + 2.13942i 0.0120827 + 0.361627i
\(36\) 0 0
\(37\) −0.607955 + 0.564100i −0.0999471 + 0.0927374i −0.728564 0.684978i \(-0.759812\pi\)
0.628617 + 0.777715i \(0.283621\pi\)
\(38\) −0.357587 + 0.0538975i −0.0580082 + 0.00874334i
\(39\) 0 0
\(40\) −0.120586 + 0.800038i −0.0190664 + 0.126497i
\(41\) 10.1084 4.86797i 1.57867 0.760249i 0.580146 0.814513i \(-0.302996\pi\)
0.998527 + 0.0542640i \(0.0172813\pi\)
\(42\) 0 0
\(43\) −9.83641 4.73696i −1.50004 0.722380i −0.509610 0.860406i \(-0.670210\pi\)
−0.990429 + 0.138025i \(0.955924\pi\)
\(44\) 0.777892 1.14096i 0.117272 0.172006i
\(45\) 0 0
\(46\) −0.233195 + 3.11177i −0.0343827 + 0.458805i
\(47\) 2.32313 5.91923i 0.338863 0.863408i −0.655285 0.755381i \(-0.727452\pi\)
0.994148 0.108026i \(-0.0344531\pi\)
\(48\) 0 0
\(49\) −2.11674 + 6.67229i −0.302391 + 0.953184i
\(50\) 4.34540i 0.614532i
\(51\) 0 0
\(52\) −5.91793 0.443487i −0.820669 0.0615006i
\(53\) −2.08863 + 2.25100i −0.286895 + 0.309199i −0.860011 0.510275i \(-0.829544\pi\)
0.573117 + 0.819474i \(0.305734\pi\)
\(54\) 0 0
\(55\) 0.484759 1.00661i 0.0653648 0.135731i
\(56\) −1.24562 + 2.33419i −0.166454 + 0.311919i
\(57\) 0 0
\(58\) −2.18635 0.329539i −0.287081 0.0432706i
\(59\) −3.04261 + 2.07442i −0.396114 + 0.270066i −0.744953 0.667117i \(-0.767528\pi\)
0.348839 + 0.937183i \(0.386576\pi\)
\(60\) 0 0
\(61\) 4.15111 + 4.47383i 0.531495 + 0.572815i 0.940533 0.339702i \(-0.110326\pi\)
−0.409038 + 0.912517i \(0.634136\pi\)
\(62\) 2.95975 + 3.71141i 0.375888 + 0.471349i
\(63\) 0 0
\(64\) −0.623490 + 0.781831i −0.0779362 + 0.0977289i
\(65\) −4.78804 + 0.358814i −0.593883 + 0.0445054i
\(66\) 0 0
\(67\) −0.0121720 + 0.0210825i −0.00148704 + 0.00257563i −0.866768 0.498712i \(-0.833807\pi\)
0.865281 + 0.501287i \(0.167140\pi\)
\(68\) 3.33138 + 5.77012i 0.403989 + 0.699730i
\(69\) 0 0
\(70\) −0.715076 + 2.01764i −0.0854679 + 0.241154i
\(71\) 14.0589 + 3.20886i 1.66849 + 0.380822i 0.949394 0.314089i \(-0.101699\pi\)
0.719096 + 0.694911i \(0.244556\pi\)
\(72\) 0 0
\(73\) −5.89791 + 2.31476i −0.690298 + 0.270922i −0.684449 0.729061i \(-0.739957\pi\)
−0.00584927 + 0.999983i \(0.501862\pi\)
\(74\) −0.772018 + 0.302995i −0.0897452 + 0.0352224i
\(75\) 0 0
\(76\) −0.352559 0.0804693i −0.0404413 0.00923047i
\(77\) 2.59375 2.57308i 0.295585 0.293230i
\(78\) 0 0
\(79\) 4.89112 + 8.47167i 0.550294 + 0.953138i 0.998253 + 0.0590835i \(0.0188178\pi\)
−0.447959 + 0.894054i \(0.647849\pi\)
\(80\) −0.404537 + 0.700679i −0.0452286 + 0.0783383i
\(81\) 0 0
\(82\) 11.1881 0.838436i 1.23552 0.0925897i
\(83\) 8.22704 10.3164i 0.903035 1.13237i −0.0876437 0.996152i \(-0.527934\pi\)
0.990679 0.136218i \(-0.0434949\pi\)
\(84\) 0 0
\(85\) 3.36103 + 4.21459i 0.364555 + 0.457137i
\(86\) −7.42585 8.00316i −0.800750 0.863003i
\(87\) 0 0
\(88\) 1.14096 0.777892i 0.121626 0.0829235i
\(89\) −3.30899 0.498750i −0.350752 0.0528674i −0.0286966 0.999588i \(-0.509136\pi\)
−0.322056 + 0.946721i \(0.604374\pi\)
\(90\) 0 0
\(91\) −15.1499 4.12442i −1.58814 0.432357i
\(92\) −1.35393 + 2.81147i −0.141157 + 0.293116i
\(93\) 0 0
\(94\) 4.32507 4.66132i 0.446097 0.480778i
\(95\) −0.291764 0.0218647i −0.0299344 0.00224327i
\(96\) 0 0
\(97\) 6.58675i 0.668783i −0.942434 0.334392i \(-0.891469\pi\)
0.942434 0.334392i \(-0.108531\pi\)
\(98\) −4.40808 + 5.43773i −0.445283 + 0.549293i
\(99\) 0 0
\(100\) 1.58755 4.04502i 0.158755 0.404502i
\(101\) 0.287104 3.83114i 0.0285679 0.381212i −0.964534 0.263958i \(-0.914972\pi\)
0.993102 0.117254i \(-0.0374091\pi\)
\(102\) 0 0
\(103\) 8.38158 12.2935i 0.825862 1.21132i −0.149073 0.988826i \(-0.547629\pi\)
0.974935 0.222490i \(-0.0714186\pi\)
\(104\) −5.34682 2.57489i −0.524299 0.252489i
\(105\) 0 0
\(106\) −2.76663 + 1.33234i −0.268719 + 0.129408i
\(107\) 1.98598 13.1761i 0.191992 1.27378i −0.660415 0.750901i \(-0.729620\pi\)
0.852406 0.522880i \(-0.175142\pi\)
\(108\) 0 0
\(109\) −17.3001 + 2.60757i −1.65705 + 0.249759i −0.909878 0.414876i \(-0.863825\pi\)
−0.747168 + 0.664636i \(0.768587\pi\)
\(110\) 0.819006 0.759926i 0.0780891 0.0724561i
\(111\) 0 0
\(112\) −2.01229 + 1.71775i −0.190144 + 0.162312i
\(113\) −13.5057 10.7704i −1.27051 1.01320i −0.998707 0.0508421i \(-0.983809\pi\)
−0.271800 0.962354i \(-0.587619\pi\)
\(114\) 0 0
\(115\) −0.744172 + 2.41255i −0.0693944 + 0.224971i
\(116\) −1.91482 1.10552i −0.177787 0.102645i
\(117\) 0 0
\(118\) −3.59015 + 0.819429i −0.330500 + 0.0754346i
\(119\) 5.75555 + 16.6619i 0.527611 + 1.52740i
\(120\) 0 0
\(121\) 8.68912 2.68024i 0.789920 0.243658i
\(122\) 2.22968 + 5.68114i 0.201866 + 0.514346i
\(123\) 0 0
\(124\) 1.39922 + 4.53617i 0.125654 + 0.407360i
\(125\) 1.68251 7.37155i 0.150488 0.659331i
\(126\) 0 0
\(127\) −3.91639 17.1588i −0.347524 1.52260i −0.782782 0.622296i \(-0.786200\pi\)
0.435258 0.900306i \(-0.356657\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) −4.58815 1.41526i −0.402407 0.124126i
\(131\) −0.253729 3.38577i −0.0221684 0.295816i −0.997258 0.0740047i \(-0.976422\pi\)
0.975090 0.221812i \(-0.0711970\pi\)
\(132\) 0 0
\(133\) −0.875404 0.386111i −0.0759071 0.0334800i
\(134\) −0.0190328 + 0.0151782i −0.00164419 + 0.00131120i
\(135\) 0 0
\(136\) 0.993033 + 6.58834i 0.0851519 + 0.564946i
\(137\) −6.62373 9.71523i −0.565904 0.830028i 0.431495 0.902116i \(-0.357986\pi\)
−0.997398 + 0.0720871i \(0.977034\pi\)
\(138\) 0 0
\(139\) 5.30386 + 11.0136i 0.449867 + 0.934159i 0.995376 + 0.0960539i \(0.0306221\pi\)
−0.545509 + 0.838105i \(0.683664\pi\)
\(140\) −1.40277 + 1.61692i −0.118556 + 0.136655i
\(141\) 0 0
\(142\) 11.9148 + 8.12336i 0.999866 + 0.681697i
\(143\) 6.00737 + 5.57402i 0.502361 + 0.466123i
\(144\) 0 0
\(145\) −1.66524 0.653558i −0.138290 0.0542750i
\(146\) −6.33589 −0.524362
\(147\) 0 0
\(148\) −0.829347 −0.0681719
\(149\) −10.3690 4.06954i −0.849463 0.333390i −0.0996366 0.995024i \(-0.531768\pi\)
−0.749827 + 0.661634i \(0.769863\pi\)
\(150\) 0 0
\(151\) −9.98544 9.26514i −0.812604 0.753986i 0.159835 0.987144i \(-0.448904\pi\)
−0.972439 + 0.233157i \(0.925094\pi\)
\(152\) −0.298789 0.203711i −0.0242350 0.0165232i
\(153\) 0 0
\(154\) 3.35451 1.44761i 0.270314 0.116652i
\(155\) 1.66643 + 3.46038i 0.133851 + 0.277944i
\(156\) 0 0
\(157\) −2.59326 3.80361i −0.206964 0.303561i 0.708696 0.705514i \(-0.249284\pi\)
−0.915660 + 0.401953i \(0.868331\pi\)
\(158\) 1.45797 + 9.67299i 0.115990 + 0.769541i
\(159\) 0 0
\(160\) −0.632560 + 0.504450i −0.0500082 + 0.0398802i
\(161\) −4.92915 + 6.62314i −0.388471 + 0.521976i
\(162\) 0 0
\(163\) 0.0554094 + 0.739387i 0.00434000 + 0.0579133i 0.998953 0.0457419i \(-0.0145652\pi\)
−0.994613 + 0.103655i \(0.966946\pi\)
\(164\) 10.7211 + 3.30701i 0.837175 + 0.258234i
\(165\) 0 0
\(166\) 11.4273 6.59758i 0.886933 0.512071i
\(167\) −1.40519 6.15654i −0.108737 0.476407i −0.999748 0.0224268i \(-0.992861\pi\)
0.891012 0.453981i \(-0.149996\pi\)
\(168\) 0 0
\(169\) 4.94409 21.6615i 0.380314 1.66627i
\(170\) 1.58893 + 5.15118i 0.121865 + 0.395077i
\(171\) 0 0
\(172\) −3.98864 10.1629i −0.304131 0.774914i
\(173\) −8.86804 + 2.73543i −0.674224 + 0.207971i −0.612916 0.790148i \(-0.710004\pi\)
−0.0613085 + 0.998119i \(0.519527\pi\)
\(174\) 0 0
\(175\) 6.15558 9.71011i 0.465318 0.734015i
\(176\) 1.34628 0.307280i 0.101480 0.0231621i
\(177\) 0 0
\(178\) −2.89804 1.67318i −0.217217 0.125410i
\(179\) 3.79605 12.3065i 0.283730 0.919829i −0.695750 0.718284i \(-0.744928\pi\)
0.979479 0.201545i \(-0.0645962\pi\)
\(180\) 0 0
\(181\) 14.7601 + 11.7708i 1.09711 + 0.874918i 0.992819 0.119629i \(-0.0381705\pi\)
0.104293 + 0.994547i \(0.466742\pi\)
\(182\) −12.5958 9.37419i −0.933663 0.694861i
\(183\) 0 0
\(184\) −2.28748 + 2.12248i −0.168636 + 0.156471i
\(185\) −0.663509 + 0.100008i −0.0487822 + 0.00735273i
\(186\) 0 0
\(187\) 1.37128 9.09788i 0.100278 0.665303i
\(188\) 5.72907 2.75897i 0.417835 0.201219i
\(189\) 0 0
\(190\) −0.263607 0.126947i −0.0191241 0.00920968i
\(191\) −1.67246 + 2.45304i −0.121015 + 0.177496i −0.881966 0.471313i \(-0.843780\pi\)
0.760951 + 0.648809i \(0.224733\pi\)
\(192\) 0 0
\(193\) −0.337090 + 4.49815i −0.0242642 + 0.323784i 0.971843 + 0.235631i \(0.0757155\pi\)
−0.996107 + 0.0881532i \(0.971904\pi\)
\(194\) 2.40641 6.13144i 0.172770 0.440211i
\(195\) 0 0
\(196\) −6.08999 + 3.45139i −0.434999 + 0.246528i
\(197\) 22.5995i 1.61015i 0.593174 + 0.805075i \(0.297875\pi\)
−0.593174 + 0.805075i \(0.702125\pi\)
\(198\) 0 0
\(199\) 7.37865 + 0.552953i 0.523059 + 0.0391978i 0.333644 0.942699i \(-0.391722\pi\)
0.189415 + 0.981897i \(0.439341\pi\)
\(200\) 2.95562 3.18540i 0.208994 0.225242i
\(201\) 0 0
\(202\) 1.66693 3.46141i 0.117285 0.243544i
\(203\) −4.41874 3.83350i −0.310134 0.269059i
\(204\) 0 0
\(205\) 8.97603 + 1.35292i 0.626913 + 0.0944920i
\(206\) 12.2935 8.38158i 0.856530 0.583972i
\(207\) 0 0
\(208\) −4.03650 4.35031i −0.279881 0.301640i
\(209\) 0.311353 + 0.390424i 0.0215367 + 0.0270062i
\(210\) 0 0
\(211\) 17.5294 21.9812i 1.20677 1.51325i 0.406456 0.913670i \(-0.366764\pi\)
0.800318 0.599576i \(-0.204664\pi\)
\(212\) −3.06214 + 0.229476i −0.210309 + 0.0157605i
\(213\) 0 0
\(214\) 6.66246 11.5397i 0.455436 0.788839i
\(215\) −4.41657 7.64972i −0.301208 0.521707i
\(216\) 0 0
\(217\) 1.35629 + 12.4861i 0.0920706 + 0.847612i
\(218\) −17.0568 3.89311i −1.15523 0.263675i
\(219\) 0 0
\(220\) 1.04002 0.408179i 0.0701183 0.0275194i
\(221\) −36.8070 + 14.4457i −2.47591 + 0.971722i
\(222\) 0 0
\(223\) −12.3711 2.82362i −0.828428 0.189083i −0.212776 0.977101i \(-0.568250\pi\)
−0.615653 + 0.788018i \(0.711108\pi\)
\(224\) −2.50076 + 0.863839i −0.167089 + 0.0577177i
\(225\) 0 0
\(226\) −8.63720 14.9601i −0.574538 0.995130i
\(227\) −0.0164312 + 0.0284598i −0.00109058 + 0.00188894i −0.866570 0.499055i \(-0.833680\pi\)
0.865480 + 0.500944i \(0.167014\pi\)
\(228\) 0 0
\(229\) 9.98576 0.748329i 0.659877 0.0494510i 0.259418 0.965765i \(-0.416469\pi\)
0.400460 + 0.916314i \(0.368850\pi\)
\(230\) −1.57413 + 1.97390i −0.103795 + 0.130155i
\(231\) 0 0
\(232\) −1.37856 1.72866i −0.0905071 0.113492i
\(233\) 11.2044 + 12.0755i 0.734025 + 0.791091i 0.984191 0.177112i \(-0.0566756\pi\)
−0.250166 + 0.968203i \(0.580485\pi\)
\(234\) 0 0
\(235\) 4.25077 2.89813i 0.277290 0.189053i
\(236\) −3.64135 0.548845i −0.237032 0.0357268i
\(237\) 0 0
\(238\) −0.729597 + 17.6129i −0.0472928 + 1.14167i
\(239\) 2.80524 5.82514i 0.181456 0.376797i −0.790323 0.612690i \(-0.790087\pi\)
0.971779 + 0.235893i \(0.0758016\pi\)
\(240\) 0 0
\(241\) −7.76305 + 8.36657i −0.500062 + 0.538938i −0.931758 0.363081i \(-0.881725\pi\)
0.431696 + 0.902019i \(0.357915\pi\)
\(242\) 9.06768 + 0.679528i 0.582892 + 0.0436817i
\(243\) 0 0
\(244\) 6.10302i 0.390706i
\(245\) −4.45603 + 3.49561i −0.284685 + 0.223326i
\(246\) 0 0
\(247\) 0.784050 1.99773i 0.0498879 0.127112i
\(248\) −0.354749 + 4.73379i −0.0225266 + 0.300596i
\(249\) 0 0
\(250\) 4.25933 6.24729i 0.269384 0.395113i
\(251\) 8.92524 + 4.29817i 0.563356 + 0.271298i 0.693812 0.720156i \(-0.255930\pi\)
−0.130456 + 0.991454i \(0.541644\pi\)
\(252\) 0 0
\(253\) 3.88237 1.86965i 0.244083 0.117544i
\(254\) 2.62316 17.4035i 0.164592 1.09200i
\(255\) 0 0
\(256\) −0.988831 + 0.149042i −0.0618019 + 0.00931514i
\(257\) −15.0091 + 13.9264i −0.936243 + 0.868707i −0.991545 0.129763i \(-0.958578\pi\)
0.0553017 + 0.998470i \(0.482388\pi\)
\(258\) 0 0
\(259\) −2.15434 0.416558i −0.133864 0.0258836i
\(260\) −3.75394 2.99367i −0.232809 0.185659i
\(261\) 0 0
\(262\) 1.00077 3.24443i 0.0618280 0.200441i
\(263\) −5.74828 3.31877i −0.354454 0.204644i 0.312191 0.950019i \(-0.398937\pi\)
−0.666645 + 0.745375i \(0.732270\pi\)
\(264\) 0 0
\(265\) −2.42216 + 0.552841i −0.148792 + 0.0339608i
\(266\) −0.673828 0.679241i −0.0413151 0.0416469i
\(267\) 0 0
\(268\) −0.0232624 + 0.00717550i −0.00142098 + 0.000438313i
\(269\) 6.81828 + 17.3727i 0.415718 + 1.05923i 0.973387 + 0.229168i \(0.0736006\pi\)
−0.557669 + 0.830063i \(0.688304\pi\)
\(270\) 0 0
\(271\) −6.13797 19.8988i −0.372855 1.20877i −0.926590 0.376074i \(-0.877274\pi\)
0.553734 0.832693i \(-0.313202\pi\)
\(272\) −1.48260 + 6.49571i −0.0898961 + 0.393860i
\(273\) 0 0
\(274\) −2.61649 11.4636i −0.158068 0.692540i
\(275\) −5.19666 + 3.00029i −0.313370 + 0.180924i
\(276\) 0 0
\(277\) −7.55134 2.32928i −0.453716 0.139953i 0.0594704 0.998230i \(-0.481059\pi\)
−0.513186 + 0.858277i \(0.671535\pi\)
\(278\) 0.913511 + 12.1900i 0.0547888 + 0.731105i
\(279\) 0 0
\(280\) −1.89653 + 0.992661i −0.113339 + 0.0593228i
\(281\) −4.04295 + 3.22415i −0.241182 + 0.192336i −0.736620 0.676307i \(-0.763579\pi\)
0.495437 + 0.868644i \(0.335008\pi\)
\(282\) 0 0
\(283\) 4.37219 + 29.0076i 0.259900 + 1.72432i 0.614164 + 0.789178i \(0.289493\pi\)
−0.354264 + 0.935145i \(0.615269\pi\)
\(284\) 8.12336 + 11.9148i 0.482032 + 0.707012i
\(285\) 0 0
\(286\) 3.55568 + 7.38345i 0.210252 + 0.436592i
\(287\) 26.1884 + 13.9753i 1.54585 + 0.824936i
\(288\) 0 0
\(289\) 22.6326 + 15.4307i 1.33133 + 0.907687i
\(290\) −1.31135 1.21676i −0.0770054 0.0714506i
\(291\) 0 0
\(292\) −5.89791 2.31476i −0.345149 0.135461i
\(293\) 10.3997 0.607559 0.303779 0.952742i \(-0.401751\pi\)
0.303779 + 0.952742i \(0.401751\pi\)
\(294\) 0 0
\(295\) −2.97940 −0.173467
\(296\) −0.772018 0.302995i −0.0448726 0.0176112i
\(297\) 0 0
\(298\) −8.16548 7.57646i −0.473014 0.438892i
\(299\) −15.3008 10.4319i −0.884869 0.603294i
\(300\) 0 0
\(301\) −5.25652 28.4029i −0.302981 1.63712i
\(302\) −5.91025 12.2728i −0.340097 0.706218i
\(303\) 0 0
\(304\) −0.203711 0.298789i −0.0116836 0.0171367i
\(305\) 0.735940 + 4.88265i 0.0421398 + 0.279579i
\(306\) 0 0
\(307\) 1.21288 0.967243i 0.0692230 0.0552035i −0.588267 0.808667i \(-0.700190\pi\)
0.657490 + 0.753463i \(0.271618\pi\)
\(308\) 3.65149 0.122003i 0.208063 0.00695179i
\(309\) 0 0
\(310\) 0.287018 + 3.82999i 0.0163015 + 0.217529i
\(311\) 11.3983 + 3.51591i 0.646339 + 0.199369i 0.600556 0.799582i \(-0.294946\pi\)
0.0457821 + 0.998951i \(0.485422\pi\)
\(312\) 0 0
\(313\) 8.08192 4.66610i 0.456817 0.263743i −0.253888 0.967234i \(-0.581709\pi\)
0.710705 + 0.703490i \(0.248376\pi\)
\(314\) −1.02438 4.48810i −0.0578091 0.253278i
\(315\) 0 0
\(316\) −2.17675 + 9.53698i −0.122452 + 0.536497i
\(317\) −10.0798 32.6780i −0.566139 1.83538i −0.549463 0.835518i \(-0.685168\pi\)
−0.0166765 0.999861i \(-0.505309\pi\)
\(318\) 0 0
\(319\) 1.11547 + 2.84218i 0.0624546 + 0.159132i
\(320\) −0.773129 + 0.238479i −0.0432192 + 0.0133314i
\(321\) 0 0
\(322\) −7.00812 + 4.36449i −0.390547 + 0.243223i
\(323\) −2.34902 + 0.536148i −0.130703 + 0.0298321i
\(324\) 0 0
\(325\) 22.3329 + 12.8939i 1.23881 + 0.715226i
\(326\) −0.218549 + 0.708519i −0.0121043 + 0.0392413i
\(327\) 0 0
\(328\) 8.77177 + 6.99525i 0.484340 + 0.386248i
\(329\) 16.2678 4.28927i 0.896873 0.236475i
\(330\) 0 0
\(331\) 4.93318 4.57732i 0.271152 0.251592i −0.532863 0.846202i \(-0.678884\pi\)
0.804015 + 0.594609i \(0.202693\pi\)
\(332\) 13.0478 1.96664i 0.716089 0.107933i
\(333\) 0 0
\(334\) 0.941182 6.24433i 0.0514992 0.341675i
\(335\) −0.0177455 + 0.00854579i −0.000969541 + 0.000466906i
\(336\) 0 0
\(337\) −7.53356 3.62797i −0.410379 0.197628i 0.217292 0.976107i \(-0.430278\pi\)
−0.627671 + 0.778478i \(0.715992\pi\)
\(338\) 12.5161 18.3578i 0.680788 0.998533i
\(339\) 0 0
\(340\) −0.402845 + 5.37559i −0.0218473 + 0.291533i
\(341\) 2.39490 6.10211i 0.129691 0.330448i
\(342\) 0 0
\(343\) −17.5531 + 5.90662i −0.947779 + 0.318928i
\(344\) 10.9176i 0.588637i
\(345\) 0 0
\(346\) −9.25439 0.693520i −0.497519 0.0372839i
\(347\) −6.92701 + 7.46554i −0.371861 + 0.400771i −0.891062 0.453881i \(-0.850039\pi\)
0.519201 + 0.854652i \(0.326230\pi\)
\(348\) 0 0
\(349\) −1.77345 + 3.68260i −0.0949305 + 0.197125i −0.943027 0.332717i \(-0.892035\pi\)
0.848096 + 0.529842i \(0.177749\pi\)
\(350\) 9.27757 6.79000i 0.495907 0.362941i
\(351\) 0 0
\(352\) 1.36548 + 0.205813i 0.0727804 + 0.0109699i
\(353\) −7.37182 + 5.02602i −0.392362 + 0.267508i −0.743392 0.668856i \(-0.766784\pi\)
0.351029 + 0.936364i \(0.385832\pi\)
\(354\) 0 0
\(355\) 7.93575 + 8.55270i 0.421186 + 0.453930i
\(356\) −2.08642 2.61629i −0.110580 0.138663i
\(357\) 0 0
\(358\) 8.02970 10.0689i 0.424383 0.532159i
\(359\) 1.43128 0.107260i 0.0755402 0.00566096i −0.0369064 0.999319i \(-0.511750\pi\)
0.112447 + 0.993658i \(0.464131\pi\)
\(360\) 0 0
\(361\) −9.43461 + 16.3412i −0.496559 + 0.860065i
\(362\) 9.43946 + 16.3496i 0.496127 + 0.859317i
\(363\) 0 0
\(364\) −8.30032 13.3280i −0.435055 0.698574i
\(365\) −4.99768 1.14069i −0.261590 0.0597063i
\(366\) 0 0
\(367\) −19.8957 + 7.80850i −1.03855 + 0.407601i −0.822490 0.568780i \(-0.807416\pi\)
−0.216059 + 0.976380i \(0.569320\pi\)
\(368\) −2.90479 + 1.14004i −0.151422 + 0.0594290i
\(369\) 0 0
\(370\) −0.654180 0.149312i −0.0340092 0.00776238i
\(371\) −8.06960 0.941932i −0.418953 0.0489027i
\(372\) 0 0
\(373\) 10.4259 + 18.0581i 0.539830 + 0.935014i 0.998913 + 0.0466200i \(0.0148450\pi\)
−0.459082 + 0.888394i \(0.651822\pi\)
\(374\) 4.60032 7.96799i 0.237877 0.412015i
\(375\) 0 0
\(376\) 6.34100 0.475193i 0.327012 0.0245062i
\(377\) 8.18111 10.2588i 0.421348 0.528354i
\(378\) 0 0
\(379\) 3.47253 + 4.35442i 0.178372 + 0.223671i 0.862977 0.505242i \(-0.168597\pi\)
−0.684605 + 0.728914i \(0.740025\pi\)
\(380\) −0.199006 0.214478i −0.0102088 0.0110025i
\(381\) 0 0
\(382\) −2.45304 + 1.67246i −0.125509 + 0.0855704i
\(383\) 24.0718 + 3.62823i 1.23001 + 0.185394i 0.731713 0.681613i \(-0.238721\pi\)
0.498296 + 0.867007i \(0.333959\pi\)
\(384\) 0 0
\(385\) 2.90662 0.537927i 0.148135 0.0274153i
\(386\) −1.95715 + 4.06406i −0.0996161 + 0.206855i
\(387\) 0 0
\(388\) 4.48013 4.82843i 0.227444 0.245126i
\(389\) −16.8929 1.26595i −0.856506 0.0641863i −0.360765 0.932657i \(-0.617484\pi\)
−0.495741 + 0.868470i \(0.665104\pi\)
\(390\) 0 0
\(391\) 20.7911i 1.05145i
\(392\) −6.92994 + 0.987883i −0.350015 + 0.0498956i
\(393\) 0 0
\(394\) −8.25653 + 21.0373i −0.415958 + 1.05984i
\(395\) −0.591456 + 7.89243i −0.0297594 + 0.397111i
\(396\) 0 0
\(397\) −16.6841 + 24.4711i −0.837353 + 1.22817i 0.134107 + 0.990967i \(0.457184\pi\)
−0.971460 + 0.237205i \(0.923769\pi\)
\(398\) 6.66657 + 3.21045i 0.334165 + 0.160925i
\(399\) 0 0
\(400\) 3.91507 1.88540i 0.195753 0.0942699i
\(401\) −1.22129 + 8.10274i −0.0609884 + 0.404632i 0.937418 + 0.348205i \(0.113209\pi\)
−0.998407 + 0.0564265i \(0.982029\pi\)
\(402\) 0 0
\(403\) −27.8569 + 4.19875i −1.38765 + 0.209155i
\(404\) 2.81630 2.61314i 0.140116 0.130009i
\(405\) 0 0
\(406\) −2.71275 5.18285i −0.134631 0.257221i
\(407\) 0.895393 + 0.714052i 0.0443830 + 0.0353942i
\(408\) 0 0
\(409\) −9.38081 + 30.4118i −0.463851 + 1.50377i 0.357811 + 0.933794i \(0.383523\pi\)
−0.821662 + 0.569974i \(0.806953\pi\)
\(410\) 7.86128 + 4.53871i 0.388241 + 0.224151i
\(411\) 0 0
\(412\) 14.5058 3.31087i 0.714652 0.163115i
\(413\) −9.18324 3.25465i −0.451878 0.160151i
\(414\) 0 0
\(415\) 10.2016 3.14676i 0.500775 0.154469i
\(416\) −2.16812 5.52429i −0.106301 0.270851i
\(417\) 0 0
\(418\) 0.147192 + 0.477185i 0.00719941 + 0.0233399i
\(419\) 0.196413 0.860540i 0.00959539 0.0420402i −0.969904 0.243489i \(-0.921708\pi\)
0.979499 + 0.201449i \(0.0645651\pi\)
\(420\) 0 0
\(421\) 8.14920 + 35.7040i 0.397168 + 1.74010i 0.638463 + 0.769653i \(0.279571\pi\)
−0.241295 + 0.970452i \(0.577572\pi\)
\(422\) 24.3483 14.0575i 1.18526 0.684308i
\(423\) 0 0
\(424\) −2.93430 0.905113i −0.142502 0.0439562i
\(425\) −2.16361 28.8714i −0.104951 1.40047i
\(426\) 0 0
\(427\) −3.06537 + 15.8534i −0.148344 + 0.767202i
\(428\) 10.4178 8.30795i 0.503565 0.401580i
\(429\) 0 0
\(430\) −1.31651 8.73448i −0.0634878 0.421214i
\(431\) 21.3607 + 31.3304i 1.02891 + 1.50913i 0.851057 + 0.525073i \(0.175962\pi\)
0.177851 + 0.984057i \(0.443085\pi\)
\(432\) 0 0
\(433\) −10.0476 20.8641i −0.482857 1.00266i −0.990035 0.140822i \(-0.955026\pi\)
0.507178 0.861841i \(-0.330689\pi\)
\(434\) −3.29916 + 12.1185i −0.158365 + 0.581706i
\(435\) 0 0
\(436\) −14.4554 9.85555i −0.692290 0.471995i
\(437\) −0.827214 0.767542i −0.0395710 0.0367165i
\(438\) 0 0
\(439\) −5.43591 2.13344i −0.259442 0.101823i 0.232055 0.972703i \(-0.425455\pi\)
−0.491497 + 0.870879i \(0.663550\pi\)
\(440\) 1.11725 0.0532630
\(441\) 0 0
\(442\) −39.5403 −1.88074
\(443\) 4.37960 + 1.71887i 0.208081 + 0.0816658i 0.467092 0.884208i \(-0.345302\pi\)
−0.259012 + 0.965874i \(0.583397\pi\)
\(444\) 0 0
\(445\) −1.98471 1.84154i −0.0940841 0.0872973i
\(446\) −10.4843 7.14809i −0.496447 0.338472i
\(447\) 0 0
\(448\) −2.64348 0.109504i −0.124893 0.00517356i
\(449\) −4.53724 9.42168i −0.214126 0.444636i 0.766046 0.642785i \(-0.222221\pi\)
−0.980172 + 0.198149i \(0.936507\pi\)
\(450\) 0 0
\(451\) −8.72757 12.8010i −0.410965 0.602775i
\(452\) −2.57462 17.0815i −0.121100 0.803445i
\(453\) 0 0
\(454\) −0.0256929 + 0.0204894i −0.00120583 + 0.000961617i
\(455\) −8.24774 9.66196i −0.386660 0.452959i
\(456\) 0 0
\(457\) −1.17274 15.6491i −0.0548585 0.732036i −0.955032 0.296504i \(-0.904179\pi\)
0.900173 0.435532i \(-0.143440\pi\)
\(458\) 9.56887 + 2.95161i 0.447124 + 0.137920i
\(459\) 0 0
\(460\) −2.18646 + 1.26236i −0.101944 + 0.0588577i
\(461\) −2.12162 9.29541i −0.0988136 0.432930i 0.901186 0.433432i \(-0.142698\pi\)
−1.00000 0.000501439i \(0.999840\pi\)
\(462\) 0 0
\(463\) 0.514181 2.25277i 0.0238960 0.104695i −0.961574 0.274548i \(-0.911472\pi\)
0.985470 + 0.169852i \(0.0543291\pi\)
\(464\) −0.651716 2.11281i −0.0302552 0.0980849i
\(465\) 0 0
\(466\) 6.01822 + 15.3342i 0.278789 + 0.710342i
\(467\) 25.0886 7.73882i 1.16096 0.358110i 0.346345 0.938107i \(-0.387423\pi\)
0.814619 + 0.579997i \(0.196946\pi\)
\(468\) 0 0
\(469\) −0.0640313 + 0.00695531i −0.00295669 + 0.000321166i
\(470\) 5.01574 1.14481i 0.231359 0.0528061i
\(471\) 0 0
\(472\) −3.18912 1.84124i −0.146791 0.0847499i
\(473\) −4.44377 + 14.4064i −0.204325 + 0.662405i
\(474\) 0 0
\(475\) 1.22858 + 0.979757i 0.0563710 + 0.0449544i
\(476\) −7.11388 + 16.1288i −0.326064 + 0.739264i
\(477\) 0 0
\(478\) 4.73949 4.39760i 0.216779 0.201142i
\(479\) −22.7560 + 3.42991i −1.03975 + 0.156717i −0.646655 0.762782i \(-0.723833\pi\)
−0.393092 + 0.919499i \(0.628595\pi\)
\(480\) 0 0
\(481\) 0.733553 4.86681i 0.0334471 0.221907i
\(482\) −10.2831 + 4.95206i −0.468381 + 0.225560i
\(483\) 0 0
\(484\) 8.19260 + 3.94535i 0.372391 + 0.179334i
\(485\) 3.00203 4.40317i 0.136315 0.199938i
\(486\) 0 0
\(487\) 0.441527 5.89176i 0.0200075 0.266981i −0.978225 0.207548i \(-0.933452\pi\)
0.998232 0.0594332i \(-0.0189293\pi\)
\(488\) −2.22968 + 5.68114i −0.100933 + 0.257173i
\(489\) 0 0
\(490\) −5.42509 + 1.62600i −0.245080 + 0.0734551i
\(491\) 11.1264i 0.502126i 0.967971 + 0.251063i \(0.0807801\pi\)
−0.967971 + 0.251063i \(0.919220\pi\)
\(492\) 0 0
\(493\) −14.6905 1.10090i −0.661625 0.0495819i
\(494\) 1.45970 1.57319i 0.0656751 0.0707809i
\(495\) 0 0
\(496\) −2.05967 + 4.27696i −0.0924821 + 0.192041i
\(497\) 15.1171 + 35.0304i 0.678094 + 1.57133i
\(498\) 0 0
\(499\) 40.0868 + 6.04211i 1.79453 + 0.270482i 0.959903 0.280334i \(-0.0904452\pi\)
0.834627 + 0.550816i \(0.185683\pi\)
\(500\) 6.24729 4.25933i 0.279387 0.190483i
\(501\) 0 0
\(502\) 6.73797 + 7.26181i 0.300730 + 0.324110i
\(503\) 7.54921 + 9.46642i 0.336603 + 0.422087i 0.921110 0.389302i \(-0.127284\pi\)
−0.584507 + 0.811388i \(0.698712\pi\)
\(504\) 0 0
\(505\) 1.93803 2.43022i 0.0862414 0.108143i
\(506\) 4.29706 0.322020i 0.191028 0.0143155i
\(507\) 0 0
\(508\) 8.80006 15.2421i 0.390439 0.676261i
\(509\) −21.1952 36.7111i −0.939459 1.62719i −0.766483 0.642265i \(-0.777995\pi\)
−0.172976 0.984926i \(-0.555338\pi\)
\(510\) 0 0
\(511\) −14.1580 8.97526i −0.626313 0.397042i
\(512\) −0.974928 0.222521i −0.0430861 0.00983413i
\(513\) 0 0
\(514\) −19.0595 + 7.48030i −0.840678 + 0.329942i
\(515\) 11.2060 4.39802i 0.493794 0.193800i
\(516\) 0 0
\(517\) −8.56072 1.95393i −0.376500 0.0859337i
\(518\) −1.85324 1.17483i −0.0814266 0.0516192i
\(519\) 0 0
\(520\) −2.40073 4.15819i −0.105279 0.182349i
\(521\) 1.44499 2.50280i 0.0633063 0.109650i −0.832635 0.553822i \(-0.813169\pi\)
0.895941 + 0.444172i \(0.146502\pi\)
\(522\) 0 0
\(523\) 3.56518 0.267174i 0.155895 0.0116827i 0.00344585 0.999994i \(-0.498903\pi\)
0.152449 + 0.988311i \(0.451284\pi\)
\(524\) 2.11692 2.65453i 0.0924779 0.115964i
\(525\) 0 0
\(526\) −4.13844 5.18944i −0.180445 0.226270i
\(527\) 21.5129 + 23.1854i 0.937116 + 1.00997i
\(528\) 0 0
\(529\) 10.9580 7.47104i 0.476435 0.324828i
\(530\) −2.45670 0.370288i −0.106712 0.0160843i
\(531\) 0 0
\(532\) −0.379094 0.878465i −0.0164358 0.0380863i
\(533\) −28.8890 + 59.9887i −1.25132 + 2.59840i
\(534\) 0 0
\(535\) 7.33284 7.90292i 0.317026 0.341673i
\(536\) −0.0242759 0.00181922i −0.00104856 7.85785e-5i
\(537\) 0 0
\(538\) 18.6628i 0.804609i
\(539\) 9.54654 + 1.51712i 0.411198 + 0.0653470i
\(540\) 0 0
\(541\) 1.97269 5.02632i 0.0848124 0.216098i −0.882175 0.470921i \(-0.843922\pi\)
0.966988 + 0.254822i \(0.0820170\pi\)
\(542\) 1.55618 20.7657i 0.0668435 0.891965i
\(543\) 0 0
\(544\) −3.75327 + 5.50503i −0.160920 + 0.236026i
\(545\) −12.7533 6.14168i −0.546293 0.263081i
\(546\) 0 0
\(547\) 18.5500 8.93322i 0.793142 0.381957i 0.00697834 0.999976i \(-0.497779\pi\)
0.786163 + 0.618019i \(0.212064\pi\)
\(548\) 1.75250 11.6271i 0.0748629 0.496683i
\(549\) 0 0
\(550\) −5.93356 + 0.894341i −0.253008 + 0.0381348i
\(551\) 0.586127 0.543846i 0.0249698 0.0231686i
\(552\) 0 0
\(553\) −10.4446 + 23.6803i −0.444149 + 1.00699i
\(554\) −6.17836 4.92708i −0.262493 0.209331i
\(555\) 0 0
\(556\) −3.60313 + 11.6811i −0.152807 + 0.495387i
\(557\) 26.4713 + 15.2832i 1.12162 + 0.647569i 0.941815 0.336132i \(-0.109119\pi\)
0.179808 + 0.983702i \(0.442452\pi\)
\(558\) 0 0
\(559\) 63.1662 14.4173i 2.67165 0.609786i
\(560\) −2.12809 + 0.231161i −0.0899283 + 0.00976833i
\(561\) 0 0
\(562\) −4.94139 + 1.52422i −0.208440 + 0.0642952i
\(563\) 0.608740 + 1.55104i 0.0256553 + 0.0653687i 0.943127 0.332431i \(-0.107869\pi\)
−0.917472 + 0.397800i \(0.869774\pi\)
\(564\) 0 0
\(565\) −4.11958 13.3554i −0.173312 0.561864i
\(566\) −6.52771 + 28.5998i −0.274380 + 1.20214i
\(567\) 0 0
\(568\) 3.20886 + 14.0589i 0.134641 + 0.589900i
\(569\) −30.3266 + 17.5091i −1.27136 + 0.734018i −0.975243 0.221134i \(-0.929024\pi\)
−0.296114 + 0.955153i \(0.595691\pi\)
\(570\) 0 0
\(571\) −33.2568 10.2584i −1.39175 0.429299i −0.493871 0.869535i \(-0.664418\pi\)
−0.897882 + 0.440236i \(0.854895\pi\)
\(572\) 0.612414 + 8.17209i 0.0256063 + 0.341692i
\(573\) 0 0
\(574\) 19.2724 + 22.5770i 0.804413 + 0.942344i
\(575\) 10.6015 8.45440i 0.442112 0.352573i
\(576\) 0 0
\(577\) 3.13270 + 20.7841i 0.130416 + 0.865253i 0.954377 + 0.298606i \(0.0965216\pi\)
−0.823961 + 0.566647i \(0.808240\pi\)
\(578\) 15.4307 + 22.6326i 0.641832 + 0.941394i
\(579\) 0 0
\(580\) −0.776174 1.61174i −0.0322289 0.0669239i
\(581\) 34.8812 + 1.44492i 1.44711 + 0.0599453i
\(582\) 0 0
\(583\) 3.50357 + 2.38869i 0.145103 + 0.0989296i
\(584\) −4.64453 4.30950i −0.192192 0.178328i
\(585\) 0 0
\(586\) 9.68084 + 3.79945i 0.399912 + 0.156954i
\(587\) 18.5502 0.765648 0.382824 0.923821i \(-0.374952\pi\)
0.382824 + 0.923821i \(0.374952\pi\)
\(588\) 0 0
\(589\) −1.71666 −0.0707338
\(590\) −2.77345 1.08850i −0.114181 0.0448127i
\(591\) 0 0
\(592\) −0.607955 0.564100i −0.0249868 0.0231843i
\(593\) −35.2233 24.0148i −1.44645 0.986172i −0.995613 0.0935641i \(-0.970174\pi\)
−0.450835 0.892607i \(-0.648874\pi\)
\(594\) 0 0
\(595\) −3.74645 + 13.7615i −0.153590 + 0.564167i
\(596\) −4.83304 10.0359i −0.197969 0.411087i
\(597\) 0 0
\(598\) −10.4319 15.3008i −0.426593 0.625697i
\(599\) −4.84128 32.1198i −0.197809 1.31238i −0.838636 0.544693i \(-0.816646\pi\)
0.640826 0.767686i \(-0.278592\pi\)
\(600\) 0 0
\(601\) −32.4457 + 25.8746i −1.32349 + 1.05545i −0.329708 + 0.944083i \(0.606950\pi\)
−0.993780 + 0.111363i \(0.964478\pi\)
\(602\) 5.48359 28.3599i 0.223495 1.15587i
\(603\) 0 0
\(604\) −1.01795 13.5837i −0.0414200 0.552711i
\(605\) 7.03014 + 2.16851i 0.285816 + 0.0881625i
\(606\) 0 0
\(607\) −24.0498 + 13.8852i −0.976152 + 0.563582i −0.901106 0.433599i \(-0.857244\pi\)
−0.0750457 + 0.997180i \(0.523910\pi\)
\(608\) −0.0804693 0.352559i −0.00326346 0.0142982i
\(609\) 0 0
\(610\) −1.09876 + 4.81400i −0.0444876 + 0.194913i
\(611\) 11.1230 + 36.0598i 0.449988 + 1.45882i
\(612\) 0 0
\(613\) 11.1602 + 28.4358i 0.450757 + 1.14851i 0.958015 + 0.286717i \(0.0925638\pi\)
−0.507258 + 0.861794i \(0.669341\pi\)
\(614\) 1.48242 0.457265i 0.0598255 0.0184537i
\(615\) 0 0
\(616\) 3.44365 + 1.22047i 0.138749 + 0.0491742i
\(617\) 19.3209 4.40987i 0.777831 0.177535i 0.184867 0.982764i \(-0.440815\pi\)
0.592964 + 0.805229i \(0.297958\pi\)
\(618\) 0 0
\(619\) 27.2689 + 15.7437i 1.09603 + 0.632793i 0.935176 0.354185i \(-0.115242\pi\)
0.160855 + 0.986978i \(0.448575\pi\)
\(620\) −1.13207 + 3.67010i −0.0454652 + 0.147395i
\(621\) 0 0
\(622\) 9.32588 + 7.43714i 0.373934 + 0.298202i
\(623\) −4.10569 7.84414i −0.164491 0.314269i
\(624\) 0 0
\(625\) −11.4426 + 10.6171i −0.457703 + 0.424686i
\(626\) 9.22796 1.39089i 0.368824 0.0555912i
\(627\) 0 0
\(628\) 0.686119 4.55210i 0.0273791 0.181649i
\(629\) −4.97852 + 2.39753i −0.198507 + 0.0955958i
\(630\) 0 0
\(631\) 2.67693 + 1.28914i 0.106567 + 0.0513199i 0.486408 0.873732i \(-0.338307\pi\)
−0.379841 + 0.925052i \(0.624021\pi\)
\(632\) −5.51054 + 8.08247i −0.219197 + 0.321503i
\(633\) 0 0
\(634\) 2.55557 34.1017i 0.101494 1.35435i
\(635\) 5.20238 13.2555i 0.206450 0.526027i
\(636\) 0 0
\(637\) −14.8670 38.7902i −0.589052 1.53692i
\(638\) 3.05324i 0.120879i
\(639\) 0 0
\(640\) −0.806812 0.0604622i −0.0318920 0.00238998i
\(641\) 11.5502 12.4482i 0.456206 0.491673i −0.462498 0.886620i \(-0.653047\pi\)
0.918704 + 0.394947i \(0.129237\pi\)
\(642\) 0 0
\(643\) −5.15989 + 10.7146i −0.203486 + 0.422544i −0.977591 0.210514i \(-0.932486\pi\)
0.774104 + 0.633058i \(0.218200\pi\)
\(644\) −8.11820 + 1.50243i −0.319902 + 0.0592041i
\(645\) 0 0
\(646\) −2.38252 0.359106i −0.0937388 0.0141289i
\(647\) −21.7468 + 14.8267i −0.854956 + 0.582899i −0.909543 0.415610i \(-0.863568\pi\)
0.0545868 + 0.998509i \(0.482616\pi\)
\(648\) 0 0
\(649\) 3.45878 + 3.72768i 0.135769 + 0.146324i
\(650\) 16.0785 + 20.1618i 0.630649 + 0.790809i
\(651\) 0 0
\(652\) −0.462293 + 0.579697i −0.0181048 + 0.0227027i
\(653\) 27.6330 2.07080i 1.08136 0.0810369i 0.477889 0.878420i \(-0.341402\pi\)
0.603473 + 0.797383i \(0.293783\pi\)
\(654\) 0 0
\(655\) 1.37351 2.37899i 0.0536676 0.0929549i
\(656\) 5.60976 + 9.71639i 0.219024 + 0.379361i
\(657\) 0 0
\(658\) 16.7103 + 1.95053i 0.651436 + 0.0760395i
\(659\) −34.7609 7.93394i −1.35409 0.309062i −0.516934 0.856025i \(-0.672927\pi\)
−0.837157 + 0.546963i \(0.815784\pi\)
\(660\) 0 0
\(661\) 9.58966 3.76366i 0.372994 0.146390i −0.171437 0.985195i \(-0.554841\pi\)
0.544431 + 0.838806i \(0.316746\pi\)
\(662\) 6.26445 2.45862i 0.243475 0.0955568i
\(663\) 0 0
\(664\) 12.8643 + 2.93620i 0.499232 + 0.113947i
\(665\) −0.409221 0.657091i −0.0158689 0.0254809i
\(666\) 0 0
\(667\) −3.44977 5.97518i −0.133576 0.231360i
\(668\) 3.15743 5.46883i 0.122165 0.211596i
\(669\) 0 0
\(670\) −0.0196410 + 0.00147189i −0.000758797 + 5.68639e-5i
\(671\) 5.25458 6.58904i 0.202851 0.254367i
\(672\) 0 0
\(673\) −2.04694 2.56679i −0.0789039 0.0989423i 0.740813 0.671712i \(-0.234441\pi\)
−0.819717 + 0.572769i \(0.805869\pi\)
\(674\) −5.68735 6.12950i −0.219068 0.236100i
\(675\) 0 0
\(676\) 18.3578 12.5161i 0.706069 0.481390i
\(677\) 26.3138 + 3.96617i 1.01132 + 0.152432i 0.633742 0.773544i \(-0.281518\pi\)
0.377581 + 0.925977i \(0.376756\pi\)
\(678\) 0 0
\(679\) 14.0629 10.2923i 0.539686 0.394981i
\(680\) −2.33892 + 4.85682i −0.0896936 + 0.186251i
\(681\) 0 0
\(682\) 4.45870 4.80534i 0.170732 0.184006i
\(683\) −48.4611 3.63166i −1.85431 0.138961i −0.899642 0.436628i \(-0.856173\pi\)
−0.954670 + 0.297667i \(0.903792\pi\)
\(684\) 0 0
\(685\) 9.51341i 0.363489i
\(686\) −18.4977 0.914551i −0.706244 0.0349177i
\(687\) 0 0
\(688\) 3.98864 10.1629i 0.152066 0.387457i
\(689\) 1.36183 18.1723i 0.0518815 0.692311i
\(690\) 0 0
\(691\) 2.49429 3.65845i 0.0948872 0.139174i −0.775860 0.630906i \(-0.782684\pi\)
0.870747 + 0.491732i \(0.163636\pi\)
\(692\) −8.36129 4.02659i −0.317849 0.153068i
\(693\) 0 0
\(694\) −9.17563 + 4.41875i −0.348302 + 0.167734i
\(695\) −1.47406 + 9.77977i −0.0559144 + 0.370968i
\(696\) 0 0
\(697\) 73.9180 11.1414i 2.79985 0.422009i
\(698\) −2.99626 + 2.78012i −0.113410 + 0.105229i
\(699\) 0 0
\(700\) 11.1169 2.93115i 0.420180 0.110787i
\(701\) −0.967874 0.771854i −0.0365561 0.0291525i 0.605041 0.796194i \(-0.293157\pi\)
−0.641597 + 0.767042i \(0.721728\pi\)
\(702\) 0 0
\(703\) 0.0884011 0.286589i 0.00333411 0.0108089i
\(704\) 1.19590 + 0.690453i 0.0450721 + 0.0260224i
\(705\) 0 0
\(706\) −8.69844 + 1.98536i −0.327370 + 0.0747201i
\(707\) 8.62822 5.37345i 0.324498 0.202089i
\(708\) 0 0
\(709\) −22.3383 + 6.89045i −0.838933 + 0.258776i −0.684305 0.729196i \(-0.739894\pi\)
−0.154628 + 0.987973i \(0.549418\pi\)
\(710\) 4.26253 + 10.8607i 0.159970 + 0.407596i
\(711\) 0 0
\(712\) −0.986358 3.19770i −0.0369653 0.119839i
\(713\) −3.29625 + 14.4418i −0.123445 + 0.540850i
\(714\) 0 0
\(715\) 1.47540 + 6.46413i 0.0551767 + 0.241745i
\(716\) 11.1532 6.43932i 0.416816 0.240649i
\(717\) 0 0
\(718\) 1.37153 + 0.423061i 0.0511850 + 0.0157885i
\(719\) 3.41198 + 45.5297i 0.127245 + 1.69797i 0.586728 + 0.809784i \(0.300416\pi\)
−0.459483 + 0.888187i \(0.651965\pi\)
\(720\) 0 0
\(721\) 39.3439 1.31455i 1.46524 0.0489566i
\(722\) −14.7526 + 11.7648i −0.549033 + 0.437839i
\(723\) 0 0
\(724\) 2.81376 + 18.6681i 0.104572 + 0.693793i
\(725\) 5.41230 + 7.93839i 0.201008 + 0.294824i
\(726\) 0 0
\(727\) −2.73141 5.67184i −0.101302 0.210357i 0.844157 0.536095i \(-0.180101\pi\)
−0.945460 + 0.325739i \(0.894387\pi\)
\(728\) −2.85731 15.4391i −0.105899 0.572211i
\(729\) 0 0
\(730\) −4.23547 2.88769i −0.156762 0.106878i
\(731\) −53.3231 49.4766i −1.97223 1.82996i
\(732\) 0 0
\(733\) −21.1906 8.31668i −0.782691 0.307184i −0.0598585 0.998207i \(-0.519065\pi\)
−0.722833 + 0.691023i \(0.757160\pi\)
\(734\) −21.3732 −0.788899
\(735\) 0 0
\(736\) −3.12050 −0.115023
\(737\) 0.0312929 + 0.0122815i 0.00115269 + 0.000452396i
\(738\) 0 0
\(739\) 18.4673 + 17.1352i 0.679331 + 0.630327i 0.942415 0.334446i \(-0.108549\pi\)
−0.263084 + 0.964773i \(0.584740\pi\)
\(740\) −0.554409 0.377990i −0.0203805 0.0138952i
\(741\) 0 0
\(742\) −7.16765 3.82497i −0.263133 0.140419i
\(743\) 3.80760 + 7.90657i 0.139687 + 0.290064i 0.959063 0.283193i \(-0.0913938\pi\)
−0.819375 + 0.573257i \(0.805680\pi\)
\(744\) 0 0
\(745\) −5.07681 7.44631i −0.186000 0.272812i
\(746\) 3.10779 + 20.6188i 0.113784 + 0.754909i
\(747\) 0 0
\(748\) 7.19335 5.73651i 0.263015 0.209747i
\(749\) 31.2346 16.3485i 1.14129 0.597360i
\(750\) 0 0
\(751\) −2.32296 30.9978i −0.0847661 1.13112i −0.863696 0.504013i \(-0.831856\pi\)
0.778930 0.627111i \(-0.215763\pi\)
\(752\) 6.07628 + 1.87428i 0.221579 + 0.0683481i
\(753\) 0 0
\(754\) 11.3635 6.56074i 0.413835 0.238928i
\(755\) −2.45240 10.7447i −0.0892521 0.391039i
\(756\) 0 0
\(757\) 6.28875 27.5528i 0.228568 1.00142i −0.722240 0.691643i \(-0.756887\pi\)
0.950808 0.309781i \(-0.100256\pi\)
\(758\) 1.64164 + 5.32207i 0.0596271 + 0.193306i
\(759\) 0 0
\(760\) −0.106892 0.272357i −0.00387739 0.00987943i
\(761\) −25.9375 + 8.00066i −0.940234 + 0.290024i −0.726734 0.686919i \(-0.758963\pi\)
−0.213500 + 0.976943i \(0.568486\pi\)
\(762\) 0 0
\(763\) −32.5998 32.8617i −1.18019 1.18967i
\(764\) −2.89449 + 0.660649i −0.104719 + 0.0239014i
\(765\) 0 0
\(766\) 21.0822 + 12.1718i 0.761732 + 0.439786i
\(767\) 6.44151 20.8829i 0.232589 0.754036i
\(768\) 0 0
\(769\) −16.4789 13.1415i −0.594245 0.473895i 0.279588 0.960120i \(-0.409802\pi\)
−0.873834 + 0.486225i \(0.838374\pi\)
\(770\) 2.90222 + 0.561165i 0.104589 + 0.0202230i
\(771\) 0 0
\(772\) −3.30662 + 3.06810i −0.119008 + 0.110423i
\(773\) −14.2654 + 2.15016i −0.513090 + 0.0773358i −0.400484 0.916304i \(-0.631158\pi\)
−0.112606 + 0.993640i \(0.535920\pi\)
\(774\) 0 0
\(775\) 3.07443 20.3975i 0.110437 0.732700i
\(776\) 5.93446 2.85789i 0.213035 0.102592i
\(777\) 0 0
\(778\) −15.2627 7.35013i −0.547194 0.263515i
\(779\) −2.28554 + 3.35227i −0.0818880 + 0.120108i
\(780\) 0 0
\(781\) 1.48813 19.8577i 0.0532493 0.710563i
\(782\) −7.59585 + 19.3539i −0.271627 + 0.692094i
\(783\) 0 0
\(784\) −6.81181 1.61220i −0.243279 0.0575785i
\(785\) 3.72459i 0.132936i
\(786\) 0 0
\(787\) −51.0630 3.82664i −1.82020 0.136405i −0.879554 0.475799i \(-0.842159\pi\)
−0.940644 + 0.339394i \(0.889778\pi\)
\(788\) −15.3716 + 16.5666i −0.547590 + 0.590161i
\(789\) 0 0
\(790\) −3.43400 + 7.13077i −0.122176 + 0.253702i
\(791\) 1.89161 45.6646i 0.0672580 1.62365i
\(792\) 0 0
\(793\) −35.8140 5.39809i −1.27179 0.191692i
\(794\) −24.4711 + 16.6841i −0.868448 + 0.592098i
\(795\) 0 0
\(796\) 5.03283 + 5.42410i 0.178384 + 0.192252i
\(797\) −16.6044 20.8212i −0.588157 0.737526i 0.395323 0.918542i \(-0.370633\pi\)
−0.983480 + 0.181017i \(0.942061\pi\)
\(798\) 0 0
\(799\) 26.4154 33.1239i 0.934511 1.17184i
\(800\) 4.33325 0.324732i 0.153203 0.0114810i
\(801\) 0 0
\(802\) −4.09713 + 7.09644i −0.144675 + 0.250584i
\(803\) 4.37463 + 7.57708i 0.154377 + 0.267389i
\(804\) 0 0
\(805\) −6.31369 + 2.18095i −0.222528 + 0.0768682i
\(806\) −27.4652 6.26876i −0.967422 0.220808i
\(807\) 0 0
\(808\) 3.57630 1.40360i 0.125814 0.0493783i
\(809\) −13.5064 + 5.30089i −0.474861 + 0.186369i −0.590688 0.806900i \(-0.701143\pi\)
0.115827 + 0.993269i \(0.463048\pi\)
\(810\) 0 0
\(811\) −21.7049 4.95400i −0.762162 0.173958i −0.176263 0.984343i \(-0.556401\pi\)
−0.585898 + 0.810385i \(0.699258\pi\)
\(812\) −0.631718 5.81566i −0.0221689 0.204090i
\(813\) 0 0
\(814\) 0.572625 + 0.991816i 0.0200705 + 0.0347631i
\(815\) −0.299948 + 0.519526i −0.0105067 + 0.0181982i
\(816\) 0 0
\(817\) 3.93704 0.295041i 0.137740 0.0103222i
\(818\) −19.8430 + 24.8824i −0.693795 + 0.869992i
\(819\) 0 0
\(820\) 5.65968 + 7.09701i 0.197645 + 0.247838i
\(821\) −16.8051 18.1116i −0.586502 0.632099i 0.368170 0.929759i \(-0.379984\pi\)
−0.954672 + 0.297660i \(0.903794\pi\)
\(822\) 0 0
\(823\) −18.0787 + 12.3258i −0.630182 + 0.429651i −0.835840 0.548973i \(-0.815019\pi\)
0.205658 + 0.978624i \(0.434067\pi\)
\(824\) 14.7127 + 2.21758i 0.512542 + 0.0772532i
\(825\) 0 0
\(826\) −7.35938 6.38468i −0.256066 0.222151i
\(827\) 20.9286 43.4586i 0.727758 1.51120i −0.126846 0.991922i \(-0.540485\pi\)
0.854603 0.519282i \(-0.173800\pi\)
\(828\) 0 0
\(829\) 22.6838 24.4473i 0.787840 0.849090i −0.203681 0.979037i \(-0.565290\pi\)
0.991521 + 0.129948i \(0.0414809\pi\)
\(830\) 10.6460 + 0.797808i 0.369528 + 0.0276923i
\(831\) 0 0
\(832\) 5.93452i 0.205742i
\(833\) −26.5803 + 38.3238i −0.920954 + 1.32784i
\(834\) 0 0
\(835\) 1.86660 4.75602i 0.0645963 0.164589i
\(836\) −0.0373180 + 0.497975i −0.00129067 + 0.0172228i
\(837\) 0 0
\(838\) 0.497226 0.729297i 0.0171764 0.0251931i
\(839\) 39.4419 + 18.9942i 1.36169 + 0.655754i 0.965012 0.262205i \(-0.0844497\pi\)
0.396675 + 0.917959i \(0.370164\pi\)
\(840\) 0 0
\(841\) −21.7235 + 10.4615i −0.749087 + 0.360741i
\(842\) −5.45825 + 36.2131i −0.188104 + 1.24799i
\(843\) 0 0
\(844\) 27.8010 4.19032i 0.956948 0.144237i
\(845\) 13.1777 12.2271i 0.453325 0.420624i
\(846\) 0 0
\(847\) 19.2998 + 14.3635i 0.663148 + 0.493536i
\(848\) −2.40079 1.91457i −0.0824435 0.0657465i
\(849\) 0 0
\(850\) 8.53386 27.6661i 0.292709 0.948939i
\(851\) −2.24125 1.29399i −0.0768291 0.0443573i
\(852\) 0 0
\(853\) 36.1336 8.24725i 1.23719 0.282381i 0.446604 0.894732i \(-0.352633\pi\)
0.790586 + 0.612351i \(0.209776\pi\)
\(854\) −8.64539 + 13.6376i −0.295839 + 0.466671i
\(855\) 0 0
\(856\) 12.7329 3.92759i 0.435203 0.134242i
\(857\) 4.67474 + 11.9110i 0.159686 + 0.406873i 0.988215 0.153073i \(-0.0489170\pi\)
−0.828529 + 0.559946i \(0.810822\pi\)
\(858\) 0 0
\(859\) 1.52058 + 4.92959i 0.0518815 + 0.168196i 0.977806 0.209514i \(-0.0671881\pi\)
−0.925924 + 0.377709i \(0.876712\pi\)
\(860\) 1.96556 8.61168i 0.0670250 0.293656i
\(861\) 0 0
\(862\) 8.43783 + 36.9686i 0.287394 + 1.25915i
\(863\) −4.54255 + 2.62264i −0.154630 + 0.0892757i −0.575319 0.817929i \(-0.695122\pi\)
0.420688 + 0.907205i \(0.361789\pi\)
\(864\) 0 0
\(865\) −7.17490 2.21316i −0.243954 0.0752498i
\(866\) −1.73055 23.0926i −0.0588066 0.784719i
\(867\) 0 0
\(868\) −7.49848 + 10.0755i −0.254515 + 0.341984i
\(869\) 10.5613 8.42232i 0.358266 0.285708i
\(870\) 0 0
\(871\) −0.0215321 0.142856i −0.000729586 0.00484049i
\(872\) −9.85555 14.4554i −0.333751 0.489523i
\(873\) 0 0
\(874\) −0.489617 1.01670i −0.0165615 0.0343904i
\(875\) 18.3675 7.92636i 0.620936 0.267960i
\(876\) 0 0
\(877\) −1.79308 1.22250i −0.0605479 0.0412809i 0.532668 0.846324i \(-0.321190\pi\)
−0.593216 + 0.805044i \(0.702142\pi\)
\(878\) −4.28071 3.97192i −0.144467 0.134046i
\(879\) 0 0
\(880\) 1.04002 + 0.408179i 0.0350592 + 0.0137597i
\(881\) 39.2851 1.32355 0.661775 0.749703i \(-0.269804\pi\)
0.661775 + 0.749703i \(0.269804\pi\)
\(882\) 0 0
\(883\) −58.3420 −1.96336 −0.981682 0.190526i \(-0.938981\pi\)
−0.981682 + 0.190526i \(0.938981\pi\)
\(884\) −36.8070 14.4457i −1.23795 0.485861i
\(885\) 0 0
\(886\) 3.44888 + 3.20009i 0.115867 + 0.107509i
\(887\) −18.3650 12.5210i −0.616635 0.420415i 0.214313 0.976765i \(-0.431249\pi\)
−0.830948 + 0.556351i \(0.812201\pi\)
\(888\) 0 0
\(889\) 30.5151 35.1736i 1.02344 1.17968i
\(890\) −1.17472 2.43934i −0.0393768 0.0817667i
\(891\) 0 0
\(892\) −7.14809 10.4843i −0.239336 0.351041i
\(893\) 0.342723 + 2.27382i 0.0114688 + 0.0760904i
\(894\) 0 0
\(895\) 8.14651 6.49662i 0.272308 0.217158i
\(896\) −2.42074 1.06771i −0.0808714 0.0356696i
\(897\) 0 0
\(898\) −0.781473 10.4280i −0.0260781 0.347988i
\(899\) −10.0297 3.09374i −0.334508 0.103182i
\(900\) 0 0
\(901\) −17.7185 + 10.2298i −0.590288 + 0.340803i
\(902\) −3.44754 15.1046i −0.114790 0.502930i
\(903\) 0 0
\(904\) 3.84392 16.8413i 0.127847 0.560133i
\(905\) 4.50222 + 14.5958i 0.149659 + 0.485182i
\(906\) 0 0
\(907\) 2.69058 + 6.85548i 0.0893392 + 0.227632i 0.968559 0.248784i \(-0.0800308\pi\)
−0.879220 + 0.476416i \(0.841936\pi\)
\(908\) −0.0314025 + 0.00968639i −0.00104213 + 0.000321454i
\(909\) 0 0
\(910\) −4.14769 12.0073i −0.137495 0.398038i
\(911\) 35.3111 8.05953i 1.16991 0.267024i 0.406937 0.913456i \(-0.366597\pi\)
0.762971 + 0.646432i \(0.223740\pi\)
\(912\) 0 0
\(913\) −15.7801 9.11063i −0.522244 0.301518i
\(914\) 4.62560 14.9958i 0.153001 0.496018i
\(915\) 0 0
\(916\) 7.82907 + 6.24348i 0.258680 + 0.206290i
\(917\) 6.83227 5.83224i 0.225622 0.192597i
\(918\) 0 0
\(919\) 34.7798 32.2709i 1.14728 1.06452i 0.150160 0.988662i \(-0.452021\pi\)
0.997119 0.0758571i \(-0.0241693\pi\)
\(920\) −2.49651 + 0.376289i −0.0823076 + 0.0124059i
\(921\) 0 0
\(922\) 1.42104 9.42797i 0.0467994 0.310494i
\(923\) −77.1038 + 37.1312i −2.53790 + 1.22219i
\(924\) 0 0
\(925\) 3.24695 + 1.56365i 0.106759 + 0.0514125i
\(926\) 1.30167 1.90920i 0.0427755 0.0627401i
\(927\) 0 0
\(928\) 0.165231 2.20486i 0.00542399 0.0723781i
\(929\) 21.4029 54.5338i 0.702207 1.78920i 0.0937696 0.995594i \(-0.470108\pi\)
0.608438 0.793602i \(-0.291796\pi\)
\(930\) 0 0
\(931\) −0.543522 2.47234i −0.0178132 0.0810277i
\(932\) 16.4729i 0.539587i
\(933\) 0 0
\(934\) 26.1817 + 1.96204i 0.856690 + 0.0642001i
\(935\) 5.06321 5.45684i 0.165585 0.178458i
\(936\) 0 0
\(937\) 9.72811 20.2006i 0.317804 0.659926i −0.679471 0.733702i \(-0.737791\pi\)
0.997275 + 0.0737762i \(0.0235051\pi\)
\(938\) −0.0621461 0.0169188i −0.00202914 0.000552417i
\(939\) 0 0
\(940\) 5.08727 + 0.766782i 0.165928 + 0.0250097i
\(941\) −13.4484 + 9.16899i −0.438406 + 0.298900i −0.762337 0.647180i \(-0.775948\pi\)
0.323930 + 0.946081i \(0.394996\pi\)
\(942\) 0 0
\(943\) 23.8132 + 25.6645i 0.775463 + 0.835750i
\(944\) −2.29599 2.87908i −0.0747281 0.0937060i
\(945\) 0 0
\(946\) −9.39983 + 11.7870i −0.305615 + 0.383229i
\(947\) −27.6413 + 2.07143i −0.898220 + 0.0673123i −0.515832 0.856690i \(-0.672517\pi\)
−0.382388 + 0.924002i \(0.624898\pi\)
\(948\) 0 0
\(949\) 18.8002 32.5629i 0.610281 1.05704i
\(950\) 0.785704 + 1.36088i 0.0254916 + 0.0441528i
\(951\) 0 0
\(952\) −12.5146 + 12.4149i −0.405602 + 0.402370i
\(953\) 11.5695 + 2.64067i 0.374774 + 0.0855396i 0.405759 0.913980i \(-0.367007\pi\)
−0.0309852 + 0.999520i \(0.509864\pi\)
\(954\) 0 0
\(955\) −2.23604 + 0.877580i −0.0723565 + 0.0283978i
\(956\) 6.01849 2.36208i 0.194652 0.0763952i
\(957\) 0 0
\(958\) −22.4360 5.12088i −0.724875 0.165448i
\(959\) 10.3923 29.3226i 0.335585 0.946878i
\(960\) 0 0
\(961\) −4.23268 7.33122i −0.136538 0.236491i
\(962\) 2.46089 4.26239i 0.0793423 0.137425i
\(963\) 0 0
\(964\) −11.3814 + 0.852920i −0.366571 + 0.0274707i
\(965\) −2.27545 + 2.85333i −0.0732494 + 0.0918518i
\(966\) 0 0
\(967\) 31.3712 + 39.3382i 1.00883 + 1.26503i 0.963962 + 0.266040i \(0.0857153\pi\)
0.0448679 + 0.998993i \(0.485713\pi\)
\(968\) 6.18488 + 6.66571i 0.198790 + 0.214244i
\(969\) 0 0
\(970\) 4.40317 3.00203i 0.141377 0.0963894i
\(971\) −25.1856 3.79612i −0.808245 0.121823i −0.268095 0.963392i \(-0.586394\pi\)
−0.540150 + 0.841569i \(0.681632\pi\)
\(972\) 0 0
\(973\) −15.2267 + 28.5334i −0.488145 + 0.914739i
\(974\) 2.56351 5.32318i 0.0821401 0.170566i
\(975\) 0 0
\(976\) −4.15111 + 4.47383i −0.132874 + 0.143204i
\(977\) 3.72121 + 0.278866i 0.119052 + 0.00892171i 0.134123 0.990965i \(-0.457178\pi\)
−0.0150708 + 0.999886i \(0.504797\pi\)
\(978\) 0 0
\(979\) 4.62101i 0.147688i
\(980\) −5.64412 0.468408i −0.180295 0.0149627i
\(981\) 0 0
\(982\) −4.06492 + 10.3572i −0.129717 + 0.330513i
\(983\) 2.45882 32.8106i 0.0784241 1.04650i −0.809685 0.586865i \(-0.800362\pi\)
0.888109 0.459633i \(-0.152019\pi\)
\(984\) 0 0
\(985\) −10.3001 + 15.1075i −0.328189 + 0.481366i
\(986\) −13.2728 6.39182i −0.422691 0.203557i
\(987\) 0 0
\(988\) 1.93355 0.931147i 0.0615143 0.0296237i
\(989\) 5.07761 33.6878i 0.161459 1.07121i
\(990\) 0 0
\(991\) −5.27811 + 0.795548i −0.167665 + 0.0252714i −0.232338 0.972635i \(-0.574638\pi\)
0.0646733 + 0.997906i \(0.479399\pi\)
\(992\) −3.47985 + 3.22882i −0.110485 + 0.102515i
\(993\) 0 0
\(994\) 1.27406 + 38.1318i 0.0404106 + 1.20947i
\(995\) 4.68052 + 3.73259i 0.148383 + 0.118331i
\(996\) 0 0
\(997\) 14.8014 47.9848i 0.468764 1.51970i −0.345058 0.938581i \(-0.612141\pi\)
0.813822 0.581114i \(-0.197383\pi\)
\(998\) 35.1083 + 20.2698i 1.11133 + 0.641628i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.2.bl.a.395.17 yes 240
3.2 odd 2 inner 882.2.bl.a.395.4 240
49.33 odd 42 inner 882.2.bl.a.719.4 yes 240
147.131 even 42 inner 882.2.bl.a.719.17 yes 240
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
882.2.bl.a.395.4 240 3.2 odd 2 inner
882.2.bl.a.395.17 yes 240 1.1 even 1 trivial
882.2.bl.a.719.4 yes 240 49.33 odd 42 inner
882.2.bl.a.719.17 yes 240 147.131 even 42 inner