Properties

Label 882.2.bl.a.395.15
Level $882$
Weight $2$
Character 882.395
Analytic conductor $7.043$
Analytic rank $0$
Dimension $240$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [882,2,Mod(17,882)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("882.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(882, base_ring=CyclotomicField(42)) chi = DirichletCharacter(H, H._module([21, 25])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 882.bl (of order \(42\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.04280545828\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(20\) over \(\Q(\zeta_{42})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{42}]$

Embedding invariants

Embedding label 395.15
Character \(\chi\) \(=\) 882.395
Dual form 882.2.bl.a.719.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.930874 + 0.365341i) q^{2} +(0.733052 + 0.680173i) q^{4} +(-0.924397 - 0.630244i) q^{5} +(1.36229 - 2.26807i) q^{7} +(0.433884 + 0.900969i) q^{8} +(-0.630244 - 0.924397i) q^{10} +(-0.924207 - 6.13171i) q^{11} +(2.15845 - 1.72131i) q^{13} +(2.09674 - 1.61359i) q^{14} +(0.0747301 + 0.997204i) q^{16} +(-4.51289 - 1.39204i) q^{17} +(-4.88179 + 2.81850i) q^{19} +(-0.248957 - 1.09075i) q^{20} +(1.37985 - 6.04550i) q^{22} +(0.299773 + 0.971839i) q^{23} +(-1.36940 - 3.48918i) q^{25} +(2.63811 - 0.813750i) q^{26} +(2.54131 - 0.736021i) q^{28} +(1.14103 - 0.260434i) q^{29} +(5.75165 + 3.32072i) q^{31} +(-0.294755 + 0.955573i) q^{32} +(-3.69236 - 2.94456i) q^{34} +(-2.68874 + 1.23802i) q^{35} +(4.50654 - 4.18146i) q^{37} +(-5.57405 + 0.840152i) q^{38} +(0.166749 - 1.10631i) q^{40} +(7.52027 - 3.62157i) q^{41} +(8.54429 + 4.11471i) q^{43} +(3.49313 - 5.12348i) q^{44} +(-0.0760022 + 1.01418i) q^{46} +(0.589901 - 1.50304i) q^{47} +(-3.28831 - 6.17956i) q^{49} -3.74828i q^{50} +(2.75305 + 0.206312i) q^{52} +(0.592437 - 0.638495i) q^{53} +(-3.01014 + 6.25061i) q^{55} +(2.63454 + 0.243303i) q^{56} +(1.15731 + 0.174436i) q^{58} +(-1.05910 + 0.722085i) q^{59} +(8.96313 + 9.65996i) q^{61} +(4.14086 + 5.19248i) q^{62} +(-0.623490 + 0.781831i) q^{64} +(-3.08011 + 0.230823i) q^{65} +(2.32005 - 4.01844i) q^{67} +(-2.36135 - 4.08998i) q^{68} +(-2.95518 + 0.170138i) q^{70} +(-13.0590 - 2.98064i) q^{71} +(-7.08624 + 2.78115i) q^{73} +(5.72268 - 2.24598i) q^{74} +(-5.49568 - 1.25435i) q^{76} +(-15.1662 - 6.25702i) q^{77} +(1.51603 + 2.62584i) q^{79} +(0.559401 - 0.968911i) q^{80} +(8.32353 - 0.623762i) q^{82} +(-11.3221 + 14.1974i) q^{83} +(3.29438 + 4.13102i) q^{85} +(6.45038 + 6.95186i) q^{86} +(5.12348 - 3.49313i) q^{88} +(1.88234 + 0.283717i) q^{89} +(-0.963610 - 7.24046i) q^{91} +(-0.441270 + 0.916306i) q^{92} +(1.09825 - 1.18363i) q^{94} +(6.28906 + 0.471300i) q^{95} -0.768508i q^{97} +(-0.803359 - 6.95375i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240 q - 20 q^{4} - 4 q^{7} - 12 q^{10} + 20 q^{16} + 24 q^{19} - 20 q^{22} + 24 q^{25} + 4 q^{28} + 12 q^{31} - 32 q^{37} + 44 q^{40} - 48 q^{43} + 204 q^{49} + 140 q^{55} + 136 q^{58} + 88 q^{61} + 40 q^{64}+ \cdots + 80 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(e\left(\frac{1}{42}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.930874 + 0.365341i 0.658227 + 0.258335i
\(3\) 0 0
\(4\) 0.733052 + 0.680173i 0.366526 + 0.340086i
\(5\) −0.924397 0.630244i −0.413403 0.281853i 0.338706 0.940892i \(-0.390011\pi\)
−0.752109 + 0.659039i \(0.770963\pi\)
\(6\) 0 0
\(7\) 1.36229 2.26807i 0.514898 0.857251i
\(8\) 0.433884 + 0.900969i 0.153401 + 0.318541i
\(9\) 0 0
\(10\) −0.630244 0.924397i −0.199300 0.292320i
\(11\) −0.924207 6.13171i −0.278659 1.84878i −0.490455 0.871467i \(-0.663169\pi\)
0.211796 0.977314i \(-0.432069\pi\)
\(12\) 0 0
\(13\) 2.15845 1.72131i 0.598647 0.477405i −0.276663 0.960967i \(-0.589229\pi\)
0.875310 + 0.483562i \(0.160657\pi\)
\(14\) 2.09674 1.61359i 0.560378 0.431250i
\(15\) 0 0
\(16\) 0.0747301 + 0.997204i 0.0186825 + 0.249301i
\(17\) −4.51289 1.39204i −1.09454 0.337620i −0.305640 0.952147i \(-0.598871\pi\)
−0.788896 + 0.614527i \(0.789347\pi\)
\(18\) 0 0
\(19\) −4.88179 + 2.81850i −1.11996 + 0.646609i −0.941391 0.337318i \(-0.890480\pi\)
−0.178569 + 0.983927i \(0.557147\pi\)
\(20\) −0.248957 1.09075i −0.0556684 0.243899i
\(21\) 0 0
\(22\) 1.37985 6.04550i 0.294184 1.28891i
\(23\) 0.299773 + 0.971839i 0.0625069 + 0.202642i 0.981439 0.191772i \(-0.0614235\pi\)
−0.918933 + 0.394415i \(0.870947\pi\)
\(24\) 0 0
\(25\) −1.36940 3.48918i −0.273880 0.697836i
\(26\) 2.63811 0.813750i 0.517376 0.159590i
\(27\) 0 0
\(28\) 2.54131 0.736021i 0.480263 0.139095i
\(29\) 1.14103 0.260434i 0.211885 0.0483613i −0.115261 0.993335i \(-0.536770\pi\)
0.327146 + 0.944974i \(0.393913\pi\)
\(30\) 0 0
\(31\) 5.75165 + 3.32072i 1.03303 + 0.596418i 0.917850 0.396927i \(-0.129923\pi\)
0.115176 + 0.993345i \(0.463257\pi\)
\(32\) −0.294755 + 0.955573i −0.0521058 + 0.168923i
\(33\) 0 0
\(34\) −3.69236 2.94456i −0.633234 0.504988i
\(35\) −2.68874 + 1.23802i −0.454480 + 0.209264i
\(36\) 0 0
\(37\) 4.50654 4.18146i 0.740870 0.687427i −0.216503 0.976282i \(-0.569465\pi\)
0.957373 + 0.288855i \(0.0932745\pi\)
\(38\) −5.57405 + 0.840152i −0.904230 + 0.136291i
\(39\) 0 0
\(40\) 0.166749 1.10631i 0.0263653 0.174922i
\(41\) 7.52027 3.62157i 1.17447 0.565594i 0.258174 0.966099i \(-0.416879\pi\)
0.916295 + 0.400504i \(0.131165\pi\)
\(42\) 0 0
\(43\) 8.54429 + 4.11471i 1.30299 + 0.627488i 0.951196 0.308589i \(-0.0998567\pi\)
0.351796 + 0.936077i \(0.385571\pi\)
\(44\) 3.49313 5.12348i 0.526609 0.772394i
\(45\) 0 0
\(46\) −0.0760022 + 1.01418i −0.0112059 + 0.149533i
\(47\) 0.589901 1.50304i 0.0860459 0.219241i −0.881374 0.472420i \(-0.843381\pi\)
0.967420 + 0.253178i \(0.0814759\pi\)
\(48\) 0 0
\(49\) −3.28831 6.17956i −0.469759 0.882795i
\(50\) 3.74828i 0.530087i
\(51\) 0 0
\(52\) 2.75305 + 0.206312i 0.381779 + 0.0286104i
\(53\) 0.592437 0.638495i 0.0813774 0.0877040i −0.691050 0.722807i \(-0.742852\pi\)
0.772428 + 0.635103i \(0.219042\pi\)
\(54\) 0 0
\(55\) −3.01014 + 6.25061i −0.405887 + 0.842833i
\(56\) 2.63454 + 0.243303i 0.352055 + 0.0325128i
\(57\) 0 0
\(58\) 1.15731 + 0.174436i 0.151962 + 0.0229046i
\(59\) −1.05910 + 0.722085i −0.137884 + 0.0940075i −0.630297 0.776354i \(-0.717067\pi\)
0.492414 + 0.870361i \(0.336115\pi\)
\(60\) 0 0
\(61\) 8.96313 + 9.65996i 1.14761 + 1.23683i 0.967414 + 0.253200i \(0.0814831\pi\)
0.180197 + 0.983630i \(0.442326\pi\)
\(62\) 4.14086 + 5.19248i 0.525890 + 0.659446i
\(63\) 0 0
\(64\) −0.623490 + 0.781831i −0.0779362 + 0.0977289i
\(65\) −3.08011 + 0.230823i −0.382041 + 0.0286300i
\(66\) 0 0
\(67\) 2.32005 4.01844i 0.283439 0.490930i −0.688791 0.724960i \(-0.741858\pi\)
0.972229 + 0.234030i \(0.0751914\pi\)
\(68\) −2.36135 4.08998i −0.286356 0.495983i
\(69\) 0 0
\(70\) −2.95518 + 0.170138i −0.353211 + 0.0203354i
\(71\) −13.0590 2.98064i −1.54982 0.353737i −0.639881 0.768474i \(-0.721016\pi\)
−0.909941 + 0.414737i \(0.863874\pi\)
\(72\) 0 0
\(73\) −7.08624 + 2.78115i −0.829382 + 0.325508i −0.741777 0.670647i \(-0.766017\pi\)
−0.0876052 + 0.996155i \(0.527921\pi\)
\(74\) 5.72268 2.24598i 0.665248 0.261090i
\(75\) 0 0
\(76\) −5.49568 1.25435i −0.630397 0.143884i
\(77\) −15.1662 6.25702i −1.72835 0.713054i
\(78\) 0 0
\(79\) 1.51603 + 2.62584i 0.170567 + 0.295430i 0.938618 0.344958i \(-0.112107\pi\)
−0.768051 + 0.640388i \(0.778773\pi\)
\(80\) 0.559401 0.968911i 0.0625429 0.108328i
\(81\) 0 0
\(82\) 8.32353 0.623762i 0.919180 0.0688830i
\(83\) −11.3221 + 14.1974i −1.24276 + 1.55837i −0.557117 + 0.830434i \(0.688093\pi\)
−0.685643 + 0.727938i \(0.740479\pi\)
\(84\) 0 0
\(85\) 3.29438 + 4.13102i 0.357325 + 0.448072i
\(86\) 6.45038 + 6.95186i 0.695562 + 0.749638i
\(87\) 0 0
\(88\) 5.12348 3.49313i 0.546165 0.372369i
\(89\) 1.88234 + 0.283717i 0.199527 + 0.0300739i 0.248045 0.968748i \(-0.420212\pi\)
−0.0485181 + 0.998822i \(0.515450\pi\)
\(90\) 0 0
\(91\) −0.963610 7.24046i −0.101014 0.759006i
\(92\) −0.441270 + 0.916306i −0.0460055 + 0.0955315i
\(93\) 0 0
\(94\) 1.09825 1.18363i 0.113275 0.122082i
\(95\) 6.28906 + 0.471300i 0.645244 + 0.0483543i
\(96\) 0 0
\(97\) 0.768508i 0.0780301i −0.999239 0.0390151i \(-0.987578\pi\)
0.999239 0.0390151i \(-0.0124220\pi\)
\(98\) −0.803359 6.95375i −0.0811515 0.702435i
\(99\) 0 0
\(100\) 1.36940 3.48918i 0.136940 0.348918i
\(101\) −0.847999 + 11.3158i −0.0843790 + 1.12596i 0.780895 + 0.624662i \(0.214763\pi\)
−0.865275 + 0.501298i \(0.832856\pi\)
\(102\) 0 0
\(103\) −0.534269 + 0.783629i −0.0526431 + 0.0772132i −0.851658 0.524098i \(-0.824402\pi\)
0.799015 + 0.601311i \(0.205355\pi\)
\(104\) 2.48736 + 1.19785i 0.243906 + 0.117459i
\(105\) 0 0
\(106\) 0.784752 0.377917i 0.0762218 0.0367065i
\(107\) 2.33479 15.4903i 0.225713 1.49751i −0.533018 0.846104i \(-0.678942\pi\)
0.758731 0.651404i \(-0.225820\pi\)
\(108\) 0 0
\(109\) 15.8297 2.38594i 1.51621 0.228532i 0.662413 0.749139i \(-0.269532\pi\)
0.853797 + 0.520607i \(0.174294\pi\)
\(110\) −5.08566 + 4.71881i −0.484899 + 0.449921i
\(111\) 0 0
\(112\) 2.36354 + 1.18899i 0.223333 + 0.112349i
\(113\) 5.56859 + 4.44081i 0.523849 + 0.417756i 0.849385 0.527774i \(-0.176973\pi\)
−0.325536 + 0.945530i \(0.605545\pi\)
\(114\) 0 0
\(115\) 0.335386 1.08730i 0.0312749 0.101391i
\(116\) 1.01358 + 0.585189i 0.0941083 + 0.0543335i
\(117\) 0 0
\(118\) −1.24970 + 0.285236i −0.115044 + 0.0262581i
\(119\) −9.30513 + 8.33919i −0.853000 + 0.764453i
\(120\) 0 0
\(121\) −26.2324 + 8.09163i −2.38477 + 0.735603i
\(122\) 4.81436 + 12.2668i 0.435872 + 1.11058i
\(123\) 0 0
\(124\) 1.95760 + 6.34637i 0.175797 + 0.569921i
\(125\) −2.17794 + 9.54220i −0.194801 + 0.853480i
\(126\) 0 0
\(127\) 1.77537 + 7.77839i 0.157538 + 0.690221i 0.990571 + 0.136998i \(0.0437452\pi\)
−0.833033 + 0.553223i \(0.813398\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) −2.95153 0.910425i −0.258866 0.0798496i
\(131\) 0.955823 + 12.7546i 0.0835106 + 1.11437i 0.868774 + 0.495210i \(0.164909\pi\)
−0.785263 + 0.619162i \(0.787472\pi\)
\(132\) 0 0
\(133\) −0.257858 + 14.9119i −0.0223591 + 1.29302i
\(134\) 3.62777 2.89305i 0.313392 0.249921i
\(135\) 0 0
\(136\) −0.703883 4.66996i −0.0603574 0.400445i
\(137\) 3.86517 + 5.66916i 0.330223 + 0.484349i 0.955062 0.296405i \(-0.0957878\pi\)
−0.624839 + 0.780754i \(0.714835\pi\)
\(138\) 0 0
\(139\) −5.54916 11.5230i −0.470674 0.977364i −0.992261 0.124166i \(-0.960374\pi\)
0.521588 0.853198i \(-0.325340\pi\)
\(140\) −2.81306 0.921270i −0.237747 0.0778616i
\(141\) 0 0
\(142\) −11.0674 7.54560i −0.928752 0.633213i
\(143\) −12.5494 11.6442i −1.04944 0.973734i
\(144\) 0 0
\(145\) −1.21891 0.478385i −0.101225 0.0397277i
\(146\) −7.61246 −0.630012
\(147\) 0 0
\(148\) 6.14764 0.505333
\(149\) 10.4131 + 4.08686i 0.853078 + 0.334808i 0.751270 0.659996i \(-0.229442\pi\)
0.101809 + 0.994804i \(0.467537\pi\)
\(150\) 0 0
\(151\) −1.85718 1.72321i −0.151135 0.140233i 0.600982 0.799263i \(-0.294776\pi\)
−0.752117 + 0.659030i \(0.770967\pi\)
\(152\) −4.65751 3.17544i −0.377774 0.257562i
\(153\) 0 0
\(154\) −11.8319 11.3653i −0.953440 0.915845i
\(155\) −3.22395 6.69460i −0.258954 0.537723i
\(156\) 0 0
\(157\) −10.9897 16.1190i −0.877077 1.28644i −0.957134 0.289645i \(-0.906463\pi\)
0.0800576 0.996790i \(-0.474490\pi\)
\(158\) 0.451905 + 2.99820i 0.0359516 + 0.238524i
\(159\) 0 0
\(160\) 0.874714 0.697562i 0.0691523 0.0551471i
\(161\) 2.61258 + 0.644023i 0.205900 + 0.0507561i
\(162\) 0 0
\(163\) 1.51869 + 20.2654i 0.118953 + 1.58731i 0.663236 + 0.748411i \(0.269183\pi\)
−0.544283 + 0.838902i \(0.683198\pi\)
\(164\) 7.97604 + 2.46028i 0.622824 + 0.192116i
\(165\) 0 0
\(166\) −15.7263 + 9.07961i −1.22060 + 0.704714i
\(167\) −0.516575 2.26326i −0.0399738 0.175137i 0.951000 0.309190i \(-0.100058\pi\)
−0.990974 + 0.134053i \(0.957201\pi\)
\(168\) 0 0
\(169\) −1.19676 + 5.24333i −0.0920581 + 0.403333i
\(170\) 1.55742 + 5.04903i 0.119449 + 0.387243i
\(171\) 0 0
\(172\) 3.46469 + 8.82789i 0.264180 + 0.673120i
\(173\) 16.0441 4.94895i 1.21981 0.376262i 0.382997 0.923750i \(-0.374892\pi\)
0.836813 + 0.547488i \(0.184416\pi\)
\(174\) 0 0
\(175\) −9.77924 1.64738i −0.739241 0.124530i
\(176\) 6.04550 1.37985i 0.455697 0.104010i
\(177\) 0 0
\(178\) 1.64856 + 0.951799i 0.123565 + 0.0713404i
\(179\) 6.09437 19.7575i 0.455514 1.47674i −0.378814 0.925473i \(-0.623668\pi\)
0.834328 0.551268i \(-0.185856\pi\)
\(180\) 0 0
\(181\) 6.97049 + 5.55878i 0.518112 + 0.413181i 0.847325 0.531075i \(-0.178212\pi\)
−0.329213 + 0.944256i \(0.606783\pi\)
\(182\) 1.74824 7.09200i 0.129588 0.525694i
\(183\) 0 0
\(184\) −0.745530 + 0.691751i −0.0549612 + 0.0509966i
\(185\) −6.80117 + 1.02511i −0.500032 + 0.0753677i
\(186\) 0 0
\(187\) −4.36476 + 28.9583i −0.319183 + 2.11764i
\(188\) 1.45476 0.700574i 0.106099 0.0510946i
\(189\) 0 0
\(190\) 5.68214 + 2.73637i 0.412225 + 0.198517i
\(191\) 11.7684 17.2611i 0.851535 1.24897i −0.115238 0.993338i \(-0.536763\pi\)
0.966773 0.255635i \(-0.0822844\pi\)
\(192\) 0 0
\(193\) 1.01184 13.5021i 0.0728340 0.971903i −0.834368 0.551208i \(-0.814167\pi\)
0.907202 0.420695i \(-0.138214\pi\)
\(194\) 0.280767 0.715384i 0.0201579 0.0513616i
\(195\) 0 0
\(196\) 1.79266 6.76656i 0.128047 0.483326i
\(197\) 4.67784i 0.333282i 0.986018 + 0.166641i \(0.0532921\pi\)
−0.986018 + 0.166641i \(0.946708\pi\)
\(198\) 0 0
\(199\) −20.7359 1.55394i −1.46993 0.110156i −0.684456 0.729054i \(-0.739960\pi\)
−0.785471 + 0.618899i \(0.787579\pi\)
\(200\) 2.54948 2.74769i 0.180275 0.194291i
\(201\) 0 0
\(202\) −4.92349 + 10.2237i −0.346416 + 0.719339i
\(203\) 0.963741 2.94274i 0.0676413 0.206540i
\(204\) 0 0
\(205\) −9.23419 1.39183i −0.644944 0.0972096i
\(206\) −0.783629 + 0.534269i −0.0545980 + 0.0372243i
\(207\) 0 0
\(208\) 1.87780 + 2.02378i 0.130202 + 0.140324i
\(209\) 21.7940 + 27.3289i 1.50753 + 1.89038i
\(210\) 0 0
\(211\) 9.28004 11.6368i 0.638865 0.801111i −0.351996 0.936002i \(-0.614497\pi\)
0.990860 + 0.134891i \(0.0430683\pi\)
\(212\) 0.868573 0.0650906i 0.0596539 0.00447044i
\(213\) 0 0
\(214\) 7.83266 13.5666i 0.535429 0.927391i
\(215\) −5.30505 9.18861i −0.361801 0.626658i
\(216\) 0 0
\(217\) 15.3671 8.52137i 1.04318 0.578468i
\(218\) 15.6071 + 3.56223i 1.05705 + 0.241264i
\(219\) 0 0
\(220\) −6.45808 + 2.53461i −0.435404 + 0.170883i
\(221\) −12.1370 + 4.76342i −0.816422 + 0.320422i
\(222\) 0 0
\(223\) −20.8453 4.75781i −1.39591 0.318606i −0.542588 0.839999i \(-0.682556\pi\)
−0.853317 + 0.521393i \(0.825413\pi\)
\(224\) 1.76577 + 1.97030i 0.117980 + 0.131646i
\(225\) 0 0
\(226\) 3.56125 + 6.16826i 0.236891 + 0.410307i
\(227\) −3.18721 + 5.52041i −0.211542 + 0.366402i −0.952197 0.305483i \(-0.901182\pi\)
0.740655 + 0.671886i \(0.234515\pi\)
\(228\) 0 0
\(229\) −0.465808 + 0.0349075i −0.0307815 + 0.00230675i −0.0901119 0.995932i \(-0.528722\pi\)
0.0593305 + 0.998238i \(0.481103\pi\)
\(230\) 0.709436 0.889604i 0.0467788 0.0586588i
\(231\) 0 0
\(232\) 0.729719 + 0.915039i 0.0479084 + 0.0600752i
\(233\) 16.8250 + 18.1330i 1.10224 + 1.18793i 0.980735 + 0.195342i \(0.0625816\pi\)
0.121505 + 0.992591i \(0.461228\pi\)
\(234\) 0 0
\(235\) −1.49259 + 1.01763i −0.0973656 + 0.0663827i
\(236\) −1.26752 0.191048i −0.0825086 0.0124362i
\(237\) 0 0
\(238\) −11.7085 + 4.36319i −0.758952 + 0.282824i
\(239\) −6.23665 + 12.9505i −0.403416 + 0.837701i 0.595982 + 0.802998i \(0.296763\pi\)
−0.999398 + 0.0347034i \(0.988951\pi\)
\(240\) 0 0
\(241\) 4.53582 4.88846i 0.292178 0.314893i −0.569855 0.821745i \(-0.693001\pi\)
0.862033 + 0.506852i \(0.169191\pi\)
\(242\) −27.3753 2.05149i −1.75975 0.131875i
\(243\) 0 0
\(244\) 13.1777i 0.843617i
\(245\) −0.854919 + 7.78481i −0.0546188 + 0.497353i
\(246\) 0 0
\(247\) −5.68560 + 14.4867i −0.361766 + 0.921766i
\(248\) −0.496315 + 6.62286i −0.0315160 + 0.420552i
\(249\) 0 0
\(250\) −5.51355 + 8.08689i −0.348707 + 0.511460i
\(251\) 13.6293 + 6.56351i 0.860272 + 0.414285i 0.811380 0.584519i \(-0.198717\pi\)
0.0488921 + 0.998804i \(0.484431\pi\)
\(252\) 0 0
\(253\) 5.68199 2.73630i 0.357223 0.172030i
\(254\) −1.18912 + 7.88932i −0.0746122 + 0.495020i
\(255\) 0 0
\(256\) −0.988831 + 0.149042i −0.0618019 + 0.00931514i
\(257\) 7.15741 6.64111i 0.446467 0.414261i −0.424634 0.905365i \(-0.639597\pi\)
0.871101 + 0.491104i \(0.163407\pi\)
\(258\) 0 0
\(259\) −3.34462 15.9175i −0.207825 0.989067i
\(260\) −2.41488 1.92580i −0.149765 0.119433i
\(261\) 0 0
\(262\) −3.77002 + 12.2221i −0.232912 + 0.755084i
\(263\) 8.70607 + 5.02645i 0.536839 + 0.309944i 0.743797 0.668406i \(-0.233023\pi\)
−0.206958 + 0.978350i \(0.566356\pi\)
\(264\) 0 0
\(265\) −0.950054 + 0.216844i −0.0583614 + 0.0133206i
\(266\) −5.68796 + 13.7869i −0.348751 + 0.845328i
\(267\) 0 0
\(268\) 4.43394 1.36769i 0.270846 0.0835450i
\(269\) 1.42151 + 3.62195i 0.0866711 + 0.220834i 0.967637 0.252345i \(-0.0812016\pi\)
−0.880966 + 0.473179i \(0.843106\pi\)
\(270\) 0 0
\(271\) −3.68025 11.9311i −0.223559 0.724762i −0.995974 0.0896430i \(-0.971427\pi\)
0.772415 0.635119i \(-0.219049\pi\)
\(272\) 1.05090 4.60430i 0.0637202 0.279176i
\(273\) 0 0
\(274\) 1.52681 + 6.68937i 0.0922377 + 0.404120i
\(275\) −20.1290 + 11.6215i −1.21383 + 0.700803i
\(276\) 0 0
\(277\) −13.7508 4.24156i −0.826206 0.254851i −0.147315 0.989090i \(-0.547063\pi\)
−0.678891 + 0.734239i \(0.737539\pi\)
\(278\) −0.955761 12.7537i −0.0573228 0.764919i
\(279\) 0 0
\(280\) −2.28202 1.88531i −0.136377 0.112669i
\(281\) −0.450935 + 0.359608i −0.0269005 + 0.0214524i −0.636848 0.770990i \(-0.719762\pi\)
0.609947 + 0.792442i \(0.291191\pi\)
\(282\) 0 0
\(283\) 0.190057 + 1.26095i 0.0112977 + 0.0749556i 0.993769 0.111457i \(-0.0355519\pi\)
−0.982471 + 0.186413i \(0.940314\pi\)
\(284\) −7.54560 11.0674i −0.447749 0.656727i
\(285\) 0 0
\(286\) −7.42784 15.4241i −0.439218 0.912045i
\(287\) 2.03082 21.9902i 0.119876 1.29804i
\(288\) 0 0
\(289\) 4.38232 + 2.98781i 0.257783 + 0.175754i
\(290\) −0.959874 0.890633i −0.0563657 0.0522998i
\(291\) 0 0
\(292\) −7.08624 2.78115i −0.414691 0.162754i
\(293\) 11.4137 0.666797 0.333399 0.942786i \(-0.391805\pi\)
0.333399 + 0.942786i \(0.391805\pi\)
\(294\) 0 0
\(295\) 1.43412 0.0834979
\(296\) 5.72268 + 2.24598i 0.332624 + 0.130545i
\(297\) 0 0
\(298\) 8.20023 + 7.60870i 0.475026 + 0.440760i
\(299\) 2.31988 + 1.58167i 0.134162 + 0.0914702i
\(300\) 0 0
\(301\) 20.9723 13.7736i 1.20882 0.793899i
\(302\) −1.09924 2.28259i −0.0632540 0.131348i
\(303\) 0 0
\(304\) −3.17544 4.65751i −0.182124 0.267127i
\(305\) −2.19737 14.5786i −0.125821 0.834768i
\(306\) 0 0
\(307\) −9.66634 + 7.70865i −0.551687 + 0.439956i −0.859238 0.511576i \(-0.829062\pi\)
0.307551 + 0.951532i \(0.400490\pi\)
\(308\) −6.86177 14.9024i −0.390985 0.849141i
\(309\) 0 0
\(310\) −0.555278 7.40967i −0.0315377 0.420841i
\(311\) −6.06500 1.87080i −0.343914 0.106084i 0.117986 0.993015i \(-0.462356\pi\)
−0.461901 + 0.886932i \(0.652832\pi\)
\(312\) 0 0
\(313\) 26.3626 15.2204i 1.49010 0.860310i 0.490165 0.871630i \(-0.336936\pi\)
0.999936 + 0.0113192i \(0.00360310\pi\)
\(314\) −4.34113 19.0197i −0.244984 1.07335i
\(315\) 0 0
\(316\) −0.674697 + 2.95604i −0.0379547 + 0.166290i
\(317\) −0.562789 1.82452i −0.0316094 0.102475i 0.938393 0.345569i \(-0.112314\pi\)
−0.970003 + 0.243094i \(0.921838\pi\)
\(318\) 0 0
\(319\) −2.65146 6.75580i −0.148453 0.378252i
\(320\) 1.06910 0.329773i 0.0597643 0.0184349i
\(321\) 0 0
\(322\) 2.19669 + 1.55399i 0.122417 + 0.0866003i
\(323\) 25.9545 5.92393i 1.44414 0.329617i
\(324\) 0 0
\(325\) −8.96174 5.17407i −0.497108 0.287005i
\(326\) −5.99009 + 19.4194i −0.331761 + 1.07554i
\(327\) 0 0
\(328\) 6.52584 + 5.20419i 0.360329 + 0.287353i
\(329\) −2.60539 3.38552i −0.143640 0.186650i
\(330\) 0 0
\(331\) −25.4192 + 23.5855i −1.39716 + 1.29638i −0.492461 + 0.870335i \(0.663902\pi\)
−0.904703 + 0.426043i \(0.859907\pi\)
\(332\) −17.9564 + 2.70649i −0.985485 + 0.148538i
\(333\) 0 0
\(334\) 0.345997 2.29554i 0.0189321 0.125606i
\(335\) −4.67724 + 2.25244i −0.255545 + 0.123064i
\(336\) 0 0
\(337\) 9.31415 + 4.48546i 0.507374 + 0.244338i 0.670016 0.742347i \(-0.266287\pi\)
−0.162642 + 0.986685i \(0.552002\pi\)
\(338\) −3.02963 + 4.44365i −0.164790 + 0.241703i
\(339\) 0 0
\(340\) −0.394857 + 5.26900i −0.0214141 + 0.285751i
\(341\) 15.0460 38.3365i 0.814784 2.07604i
\(342\) 0 0
\(343\) −18.4953 0.960235i −0.998655 0.0518478i
\(344\) 9.48344i 0.511313i
\(345\) 0 0
\(346\) 16.7431 + 1.25472i 0.900114 + 0.0674542i
\(347\) 1.08346 1.16769i 0.0581630 0.0626848i −0.703300 0.710893i \(-0.748291\pi\)
0.761463 + 0.648208i \(0.224481\pi\)
\(348\) 0 0
\(349\) 8.54305 17.7398i 0.457299 0.949591i −0.537062 0.843543i \(-0.680466\pi\)
0.994361 0.106048i \(-0.0338198\pi\)
\(350\) −8.50138 5.10626i −0.454418 0.272941i
\(351\) 0 0
\(352\) 6.13171 + 0.924207i 0.326821 + 0.0492604i
\(353\) −2.41313 + 1.64525i −0.128438 + 0.0875676i −0.625835 0.779955i \(-0.715242\pi\)
0.497397 + 0.867523i \(0.334289\pi\)
\(354\) 0 0
\(355\) 10.1932 + 10.9857i 0.540999 + 0.583059i
\(356\) 1.18687 + 1.48829i 0.0629042 + 0.0788794i
\(357\) 0 0
\(358\) 12.8913 16.1652i 0.681326 0.854356i
\(359\) −28.4978 + 2.13561i −1.50406 + 0.112713i −0.801105 0.598524i \(-0.795754\pi\)
−0.702951 + 0.711238i \(0.748135\pi\)
\(360\) 0 0
\(361\) 6.38793 11.0642i 0.336207 0.582327i
\(362\) 4.45779 + 7.72112i 0.234296 + 0.405813i
\(363\) 0 0
\(364\) 4.21839 5.96305i 0.221104 0.312549i
\(365\) 8.30330 + 1.89517i 0.434615 + 0.0991980i
\(366\) 0 0
\(367\) −2.37627 + 0.932615i −0.124040 + 0.0486821i −0.426549 0.904464i \(-0.640271\pi\)
0.302509 + 0.953146i \(0.402176\pi\)
\(368\) −0.946720 + 0.371560i −0.0493512 + 0.0193689i
\(369\) 0 0
\(370\) −6.70554 1.53050i −0.348605 0.0795667i
\(371\) −0.641081 2.21351i −0.0332833 0.114920i
\(372\) 0 0
\(373\) 1.73721 + 3.00893i 0.0899492 + 0.155797i 0.907489 0.420075i \(-0.137996\pi\)
−0.817540 + 0.575872i \(0.804663\pi\)
\(374\) −14.6427 + 25.3619i −0.757155 + 1.31143i
\(375\) 0 0
\(376\) 1.61014 0.120664i 0.0830368 0.00622275i
\(377\) 2.01458 2.52621i 0.103756 0.130106i
\(378\) 0 0
\(379\) 17.3272 + 21.7276i 0.890037 + 1.11607i 0.992610 + 0.121345i \(0.0387208\pi\)
−0.102574 + 0.994725i \(0.532708\pi\)
\(380\) 4.28964 + 4.62313i 0.220054 + 0.237162i
\(381\) 0 0
\(382\) 17.2611 11.7684i 0.883157 0.602126i
\(383\) 28.7750 + 4.33713i 1.47033 + 0.221617i 0.834842 0.550490i \(-0.185559\pi\)
0.635492 + 0.772107i \(0.280797\pi\)
\(384\) 0 0
\(385\) 10.0762 + 15.3424i 0.513529 + 0.781920i
\(386\) 5.87477 12.1991i 0.299018 0.620917i
\(387\) 0 0
\(388\) 0.522718 0.563356i 0.0265370 0.0286001i
\(389\) −14.1571 1.06093i −0.717793 0.0537911i −0.289174 0.957277i \(-0.593381\pi\)
−0.428619 + 0.903485i \(0.641000\pi\)
\(390\) 0 0
\(391\) 4.80310i 0.242903i
\(392\) 4.14085 5.64388i 0.209144 0.285059i
\(393\) 0 0
\(394\) −1.70901 + 4.35447i −0.0860984 + 0.219375i
\(395\) 0.253505 3.38279i 0.0127552 0.170207i
\(396\) 0 0
\(397\) 3.37261 4.94671i 0.169266 0.248268i −0.732227 0.681060i \(-0.761519\pi\)
0.901494 + 0.432792i \(0.142472\pi\)
\(398\) −18.7348 9.02218i −0.939088 0.452241i
\(399\) 0 0
\(400\) 3.37709 1.62632i 0.168854 0.0813159i
\(401\) −0.465492 + 3.08833i −0.0232455 + 0.154224i −0.997442 0.0714763i \(-0.977229\pi\)
0.974197 + 0.225700i \(0.0724671\pi\)
\(402\) 0 0
\(403\) 18.1306 2.73275i 0.903152 0.136128i
\(404\) −8.31830 + 7.71825i −0.413851 + 0.383997i
\(405\) 0 0
\(406\) 1.97222 2.38722i 0.0978798 0.118476i
\(407\) −29.8045 23.7683i −1.47735 1.17815i
\(408\) 0 0
\(409\) 5.63929 18.2821i 0.278845 0.903993i −0.702491 0.711693i \(-0.747929\pi\)
0.981336 0.192301i \(-0.0615949\pi\)
\(410\) −8.08737 4.66925i −0.399407 0.230598i
\(411\) 0 0
\(412\) −0.924650 + 0.211045i −0.0455542 + 0.0103975i
\(413\) 0.194932 + 3.38582i 0.00959196 + 0.166605i
\(414\) 0 0
\(415\) 19.4140 5.98841i 0.952993 0.293960i
\(416\) 1.00862 + 2.56992i 0.0494517 + 0.126001i
\(417\) 0 0
\(418\) 10.3031 + 33.4020i 0.503943 + 1.63374i
\(419\) −7.06400 + 30.9494i −0.345099 + 1.51198i 0.443052 + 0.896496i \(0.353896\pi\)
−0.788151 + 0.615482i \(0.788961\pi\)
\(420\) 0 0
\(421\) 8.41495 + 36.8683i 0.410120 + 1.79685i 0.583630 + 0.812020i \(0.301632\pi\)
−0.173510 + 0.984832i \(0.555511\pi\)
\(422\) 12.8900 7.44202i 0.627473 0.362272i
\(423\) 0 0
\(424\) 0.832312 + 0.256734i 0.0404207 + 0.0124681i
\(425\) 1.32287 + 17.6525i 0.0641688 + 0.856274i
\(426\) 0 0
\(427\) 34.1199 7.16935i 1.65118 0.346949i
\(428\) 12.2476 9.76716i 0.592012 0.472114i
\(429\) 0 0
\(430\) −1.58135 10.4916i −0.0762596 0.505949i
\(431\) −0.703991 1.03257i −0.0339101 0.0497369i 0.808909 0.587933i \(-0.200058\pi\)
−0.842819 + 0.538196i \(0.819106\pi\)
\(432\) 0 0
\(433\) 1.45210 + 3.01531i 0.0697834 + 0.144907i 0.932943 0.360025i \(-0.117232\pi\)
−0.863159 + 0.504932i \(0.831518\pi\)
\(434\) 17.4180 2.31811i 0.836091 0.111273i
\(435\) 0 0
\(436\) 13.2268 + 9.01791i 0.633451 + 0.431879i
\(437\) −4.20256 3.89941i −0.201036 0.186534i
\(438\) 0 0
\(439\) −18.1308 7.11581i −0.865336 0.339619i −0.109189 0.994021i \(-0.534825\pi\)
−0.756147 + 0.654402i \(0.772921\pi\)
\(440\) −6.93766 −0.330740
\(441\) 0 0
\(442\) −13.0383 −0.620168
\(443\) 26.9305 + 10.5694i 1.27951 + 0.502170i 0.905141 0.425111i \(-0.139765\pi\)
0.374366 + 0.927281i \(0.377860\pi\)
\(444\) 0 0
\(445\) −1.56122 1.44860i −0.0740088 0.0686701i
\(446\) −17.6661 12.0446i −0.836515 0.570327i
\(447\) 0 0
\(448\) 0.923875 + 2.47920i 0.0436490 + 0.117131i
\(449\) −9.22677 19.1596i −0.435438 0.904197i −0.997047 0.0767940i \(-0.975532\pi\)
0.561609 0.827403i \(-0.310183\pi\)
\(450\) 0 0
\(451\) −29.1567 42.7650i −1.37294 2.01373i
\(452\) 1.06155 + 7.04295i 0.0499313 + 0.331272i
\(453\) 0 0
\(454\) −4.98372 + 3.97438i −0.233898 + 0.186527i
\(455\) −3.67249 + 7.30037i −0.172169 + 0.342247i
\(456\) 0 0
\(457\) −0.905504 12.0831i −0.0423577 0.565224i −0.977498 0.210946i \(-0.932346\pi\)
0.935140 0.354278i \(-0.115273\pi\)
\(458\) −0.446362 0.137684i −0.0208571 0.00643357i
\(459\) 0 0
\(460\) 0.985404 0.568923i 0.0459447 0.0265262i
\(461\) 5.24407 + 22.9758i 0.244241 + 1.07009i 0.937112 + 0.349028i \(0.113488\pi\)
−0.692871 + 0.721061i \(0.743655\pi\)
\(462\) 0 0
\(463\) 3.40613 14.9232i 0.158296 0.693541i −0.832024 0.554740i \(-0.812818\pi\)
0.990320 0.138801i \(-0.0443250\pi\)
\(464\) 0.344975 + 1.11838i 0.0160151 + 0.0519196i
\(465\) 0 0
\(466\) 9.03719 + 23.0264i 0.418640 + 1.06668i
\(467\) −11.5332 + 3.55753i −0.533694 + 0.164623i −0.549876 0.835246i \(-0.685325\pi\)
0.0161821 + 0.999869i \(0.494849\pi\)
\(468\) 0 0
\(469\) −5.95353 10.7363i −0.274908 0.495757i
\(470\) −1.76119 + 0.401980i −0.0812377 + 0.0185420i
\(471\) 0 0
\(472\) −1.11010 0.640919i −0.0510967 0.0295007i
\(473\) 17.3335 56.1940i 0.796997 2.58380i
\(474\) 0 0
\(475\) 16.5194 + 13.1738i 0.757962 + 0.604454i
\(476\) −12.4932 0.216034i −0.572626 0.00990190i
\(477\) 0 0
\(478\) −10.5369 + 9.77682i −0.481947 + 0.447181i
\(479\) 27.6836 4.17263i 1.26489 0.190652i 0.517876 0.855456i \(-0.326723\pi\)
0.747018 + 0.664804i \(0.231485\pi\)
\(480\) 0 0
\(481\) 2.52957 16.7826i 0.115339 0.765222i
\(482\) 6.00823 2.89341i 0.273667 0.131791i
\(483\) 0 0
\(484\) −24.7334 11.9110i −1.12425 0.541409i
\(485\) −0.484347 + 0.710407i −0.0219931 + 0.0322579i
\(486\) 0 0
\(487\) 0.231033 3.08293i 0.0104691 0.139701i −0.989520 0.144397i \(-0.953876\pi\)
0.999989 + 0.00469620i \(0.00149485\pi\)
\(488\) −4.81436 + 12.2668i −0.217936 + 0.555292i
\(489\) 0 0
\(490\) −3.63993 + 6.93434i −0.164435 + 0.313261i
\(491\) 5.31784i 0.239991i −0.992774 0.119995i \(-0.961712\pi\)
0.992774 0.119995i \(-0.0382880\pi\)
\(492\) 0 0
\(493\) −5.51190 0.413059i −0.248243 0.0186033i
\(494\) −10.5852 + 11.4081i −0.476249 + 0.513274i
\(495\) 0 0
\(496\) −2.88161 + 5.98372i −0.129388 + 0.268677i
\(497\) −24.5505 + 25.5583i −1.10124 + 1.14645i
\(498\) 0 0
\(499\) −7.35271 1.10824i −0.329152 0.0496117i −0.0176127 0.999845i \(-0.505607\pi\)
−0.311540 + 0.950233i \(0.600845\pi\)
\(500\) −8.08689 + 5.51355i −0.361657 + 0.246573i
\(501\) 0 0
\(502\) 10.2892 + 11.0891i 0.459230 + 0.494932i
\(503\) −27.5828 34.5877i −1.22985 1.54219i −0.744054 0.668120i \(-0.767099\pi\)
−0.485801 0.874069i \(-0.661472\pi\)
\(504\) 0 0
\(505\) 7.91557 9.92581i 0.352238 0.441693i
\(506\) 6.28889 0.471287i 0.279575 0.0209513i
\(507\) 0 0
\(508\) −3.98922 + 6.90952i −0.176993 + 0.306561i
\(509\) 13.4763 + 23.3416i 0.597325 + 1.03460i 0.993214 + 0.116299i \(0.0371031\pi\)
−0.395889 + 0.918298i \(0.629564\pi\)
\(510\) 0 0
\(511\) −3.34570 + 19.8609i −0.148005 + 0.878593i
\(512\) −0.974928 0.222521i −0.0430861 0.00983413i
\(513\) 0 0
\(514\) 9.08892 3.56714i 0.400895 0.157340i
\(515\) 0.987754 0.387665i 0.0435256 0.0170826i
\(516\) 0 0
\(517\) −9.76142 2.22798i −0.429307 0.0979864i
\(518\) 2.70190 16.0391i 0.118715 0.704719i
\(519\) 0 0
\(520\) −1.54437 2.67494i −0.0677253 0.117304i
\(521\) 10.2929 17.8279i 0.450941 0.781053i −0.547504 0.836803i \(-0.684422\pi\)
0.998445 + 0.0557505i \(0.0177551\pi\)
\(522\) 0 0
\(523\) 35.9621 2.69498i 1.57251 0.117843i 0.740290 0.672288i \(-0.234688\pi\)
0.832221 + 0.554444i \(0.187069\pi\)
\(524\) −7.97464 + 9.99989i −0.348374 + 0.436847i
\(525\) 0 0
\(526\) 6.26788 + 7.85968i 0.273293 + 0.342698i
\(527\) −21.3340 22.9925i −0.929322 1.00157i
\(528\) 0 0
\(529\) 18.1489 12.3737i 0.789082 0.537987i
\(530\) −0.963602 0.145240i −0.0418562 0.00630881i
\(531\) 0 0
\(532\) −10.3317 + 10.7558i −0.447935 + 0.466323i
\(533\) 9.99831 20.7617i 0.433075 0.899289i
\(534\) 0 0
\(535\) −11.9210 + 12.8477i −0.515388 + 0.555456i
\(536\) 4.62712 + 0.346754i 0.199861 + 0.0149775i
\(537\) 0 0
\(538\) 3.89092i 0.167749i
\(539\) −34.8522 + 25.8742i −1.50119 + 1.11448i
\(540\) 0 0
\(541\) 7.10015 18.0909i 0.305259 0.777788i −0.693117 0.720825i \(-0.743763\pi\)
0.998376 0.0569631i \(-0.0181417\pi\)
\(542\) 0.933064 12.4509i 0.0400785 0.534811i
\(543\) 0 0
\(544\) 2.66039 3.90208i 0.114063 0.167300i
\(545\) −16.1367 7.77100i −0.691218 0.332873i
\(546\) 0 0
\(547\) 13.0575 6.28814i 0.558297 0.268862i −0.133385 0.991064i \(-0.542585\pi\)
0.691681 + 0.722203i \(0.256870\pi\)
\(548\) −1.02264 + 6.78477i −0.0436850 + 0.289831i
\(549\) 0 0
\(550\) −22.9834 + 3.46419i −0.980015 + 0.147713i
\(551\) −4.83626 + 4.48739i −0.206032 + 0.191169i
\(552\) 0 0
\(553\) 8.02088 + 0.138698i 0.341082 + 0.00589802i
\(554\) −11.2507 8.97210i −0.477995 0.381188i
\(555\) 0 0
\(556\) 3.76977 12.2213i 0.159874 0.518299i
\(557\) 17.3953 + 10.0432i 0.737064 + 0.425544i 0.821001 0.570927i \(-0.193416\pi\)
−0.0839368 + 0.996471i \(0.526749\pi\)
\(558\) 0 0
\(559\) 25.5251 5.82595i 1.07960 0.246411i
\(560\) −1.43549 2.58870i −0.0606606 0.109393i
\(561\) 0 0
\(562\) −0.551143 + 0.170005i −0.0232486 + 0.00717123i
\(563\) −3.05588 7.78626i −0.128790 0.328152i 0.851905 0.523697i \(-0.175448\pi\)
−0.980695 + 0.195545i \(0.937352\pi\)
\(564\) 0 0
\(565\) −2.34880 7.61464i −0.0988150 0.320350i
\(566\) −0.283757 + 1.24322i −0.0119272 + 0.0522564i
\(567\) 0 0
\(568\) −2.98064 13.0590i −0.125065 0.547945i
\(569\) 25.4923 14.7180i 1.06869 0.617011i 0.140870 0.990028i \(-0.455010\pi\)
0.927825 + 0.373017i \(0.121677\pi\)
\(570\) 0 0
\(571\) 39.2458 + 12.1057i 1.64239 + 0.506609i 0.971916 0.235326i \(-0.0756158\pi\)
0.670471 + 0.741936i \(0.266092\pi\)
\(572\) −1.27934 17.0716i −0.0534918 0.713798i
\(573\) 0 0
\(574\) 9.92435 19.7281i 0.414234 0.823436i
\(575\) 2.98041 2.37680i 0.124292 0.0991193i
\(576\) 0 0
\(577\) 6.21797 + 41.2535i 0.258857 + 1.71741i 0.619750 + 0.784799i \(0.287234\pi\)
−0.360893 + 0.932607i \(0.617528\pi\)
\(578\) 2.98781 + 4.38232i 0.124277 + 0.182280i
\(579\) 0 0
\(580\) −0.568137 1.17975i −0.0235906 0.0489864i
\(581\) 16.7769 + 45.0204i 0.696021 + 1.86776i
\(582\) 0 0
\(583\) −4.46260 3.04255i −0.184822 0.126009i
\(584\) −5.58033 5.17779i −0.230916 0.214259i
\(585\) 0 0
\(586\) 10.6247 + 4.16990i 0.438904 + 0.172257i
\(587\) 0.379130 0.0156484 0.00782419 0.999969i \(-0.497509\pi\)
0.00782419 + 0.999969i \(0.497509\pi\)
\(588\) 0 0
\(589\) −37.4378 −1.54260
\(590\) 1.33499 + 0.523944i 0.0549606 + 0.0215704i
\(591\) 0 0
\(592\) 4.50654 + 4.18146i 0.185218 + 0.171857i
\(593\) 18.9595 + 12.9263i 0.778571 + 0.530821i 0.886163 0.463374i \(-0.153361\pi\)
−0.107591 + 0.994195i \(0.534314\pi\)
\(594\) 0 0
\(595\) 13.8574 1.84423i 0.568096 0.0756061i
\(596\) 4.85361 + 10.0786i 0.198811 + 0.412836i
\(597\) 0 0
\(598\) 1.58167 + 2.31988i 0.0646792 + 0.0948670i
\(599\) 0.144436 + 0.958267i 0.00590148 + 0.0391537i 0.991588 0.129436i \(-0.0413167\pi\)
−0.985686 + 0.168590i \(0.946079\pi\)
\(600\) 0 0
\(601\) −26.4395 + 21.0848i −1.07849 + 0.860066i −0.990699 0.136074i \(-0.956552\pi\)
−0.0877893 + 0.996139i \(0.527980\pi\)
\(602\) 24.5546 5.15947i 1.00077 0.210284i
\(603\) 0 0
\(604\) −0.189328 2.52640i −0.00770363 0.102798i
\(605\) 29.3489 + 9.05293i 1.19320 + 0.368054i
\(606\) 0 0
\(607\) −3.05951 + 1.76641i −0.124182 + 0.0716964i −0.560804 0.827948i \(-0.689508\pi\)
0.436622 + 0.899645i \(0.356175\pi\)
\(608\) −1.25435 5.49568i −0.0508707 0.222879i
\(609\) 0 0
\(610\) 3.28068 14.3736i 0.132831 0.581971i
\(611\) −1.31393 4.25965i −0.0531559 0.172327i
\(612\) 0 0
\(613\) −8.07521 20.5753i −0.326155 0.831029i −0.996068 0.0885895i \(-0.971764\pi\)
0.669914 0.742439i \(-0.266331\pi\)
\(614\) −11.8144 + 3.64427i −0.476791 + 0.147071i
\(615\) 0 0
\(616\) −0.942994 16.3791i −0.0379943 0.659933i
\(617\) −5.33113 + 1.21679i −0.214623 + 0.0489863i −0.328480 0.944511i \(-0.606536\pi\)
0.113857 + 0.993497i \(0.463679\pi\)
\(618\) 0 0
\(619\) −9.10119 5.25457i −0.365808 0.211199i 0.305818 0.952090i \(-0.401070\pi\)
−0.671625 + 0.740891i \(0.734404\pi\)
\(620\) 2.19016 7.10033i 0.0879590 0.285156i
\(621\) 0 0
\(622\) −4.96227 3.95727i −0.198969 0.158672i
\(623\) 3.20778 3.88277i 0.128517 0.155560i
\(624\) 0 0
\(625\) −5.71123 + 5.29925i −0.228449 + 0.211970i
\(626\) 30.1009 4.53698i 1.20307 0.181334i
\(627\) 0 0
\(628\) 2.90765 19.2910i 0.116028 0.769794i
\(629\) −26.1583 + 12.5972i −1.04300 + 0.502281i
\(630\) 0 0
\(631\) −28.5738 13.7604i −1.13751 0.547794i −0.232248 0.972657i \(-0.574608\pi\)
−0.905258 + 0.424863i \(0.860322\pi\)
\(632\) −1.70802 + 2.50521i −0.0679414 + 0.0996517i
\(633\) 0 0
\(634\) 0.142685 1.90401i 0.00566676 0.0756177i
\(635\) 3.26114 8.30924i 0.129414 0.329742i
\(636\) 0 0
\(637\) −17.7346 7.67809i −0.702671 0.304217i
\(638\) 7.25748i 0.287327i
\(639\) 0 0
\(640\) 1.11567 + 0.0836082i 0.0441009 + 0.00330490i
\(641\) −6.93796 + 7.47734i −0.274033 + 0.295337i −0.855041 0.518561i \(-0.826468\pi\)
0.581008 + 0.813898i \(0.302658\pi\)
\(642\) 0 0
\(643\) 0.108664 0.225643i 0.00428529 0.00889850i −0.898815 0.438328i \(-0.855571\pi\)
0.903101 + 0.429429i \(0.141285\pi\)
\(644\) 1.47711 + 2.24911i 0.0582063 + 0.0886273i
\(645\) 0 0
\(646\) 26.3246 + 3.96779i 1.03573 + 0.156111i
\(647\) 15.4916 10.5620i 0.609039 0.415236i −0.219145 0.975692i \(-0.570327\pi\)
0.828184 + 0.560457i \(0.189374\pi\)
\(648\) 0 0
\(649\) 5.40645 + 5.82677i 0.212222 + 0.228721i
\(650\) −6.45195 8.09049i −0.253066 0.317335i
\(651\) 0 0
\(652\) −12.6707 + 15.8886i −0.496224 + 0.622245i
\(653\) −8.89481 + 0.666574i −0.348081 + 0.0260850i −0.247624 0.968856i \(-0.579650\pi\)
−0.100457 + 0.994941i \(0.532031\pi\)
\(654\) 0 0
\(655\) 7.15493 12.3927i 0.279566 0.484223i
\(656\) 4.17343 + 7.22860i 0.162945 + 0.282229i
\(657\) 0 0
\(658\) −1.18842 4.10335i −0.0463295 0.159965i
\(659\) −18.5140 4.22570i −0.721204 0.164610i −0.153862 0.988092i \(-0.549171\pi\)
−0.567342 + 0.823482i \(0.692028\pi\)
\(660\) 0 0
\(661\) 6.47521 2.54133i 0.251857 0.0988464i −0.236054 0.971740i \(-0.575854\pi\)
0.487911 + 0.872893i \(0.337759\pi\)
\(662\) −32.2788 + 12.6685i −1.25455 + 0.492375i
\(663\) 0 0
\(664\) −17.7039 4.04080i −0.687045 0.156814i
\(665\) 9.63649 13.6220i 0.373687 0.528239i
\(666\) 0 0
\(667\) 0.595151 + 1.03083i 0.0230443 + 0.0399139i
\(668\) 1.16073 2.01045i 0.0449101 0.0777866i
\(669\) 0 0
\(670\) −5.17683 + 0.387949i −0.199998 + 0.0149878i
\(671\) 50.9483 63.8871i 1.96684 2.46634i
\(672\) 0 0
\(673\) 15.7901 + 19.8001i 0.608662 + 0.763238i 0.986700 0.162552i \(-0.0519726\pi\)
−0.378038 + 0.925790i \(0.623401\pi\)
\(674\) 7.03158 + 7.57824i 0.270846 + 0.291903i
\(675\) 0 0
\(676\) −4.44365 + 3.02963i −0.170910 + 0.116524i
\(677\) 31.7511 + 4.78571i 1.22029 + 0.183930i 0.727434 0.686178i \(-0.240713\pi\)
0.492861 + 0.870108i \(0.335951\pi\)
\(678\) 0 0
\(679\) −1.74303 1.04693i −0.0668914 0.0401776i
\(680\) −2.29254 + 4.76051i −0.0879150 + 0.182557i
\(681\) 0 0
\(682\) 28.0118 30.1895i 1.07263 1.15602i
\(683\) −11.1878 0.838407i −0.428088 0.0320808i −0.141056 0.990002i \(-0.545050\pi\)
−0.287032 + 0.957921i \(0.592669\pi\)
\(684\) 0 0
\(685\) 7.67655i 0.293306i
\(686\) −16.8660 7.65097i −0.643948 0.292115i
\(687\) 0 0
\(688\) −3.46469 + 8.82789i −0.132090 + 0.336560i
\(689\) 0.179700 2.39793i 0.00684602 0.0913538i
\(690\) 0 0
\(691\) −11.0978 + 16.2775i −0.422181 + 0.619225i −0.977126 0.212662i \(-0.931787\pi\)
0.554945 + 0.831887i \(0.312739\pi\)
\(692\) 15.1273 + 7.28492i 0.575054 + 0.276931i
\(693\) 0 0
\(694\) 1.43516 0.691139i 0.0544781 0.0262353i
\(695\) −2.13263 + 14.1491i −0.0808955 + 0.536706i
\(696\) 0 0
\(697\) −38.9795 + 5.87521i −1.47645 + 0.222540i
\(698\) 14.4336 13.3924i 0.546319 0.506910i
\(699\) 0 0
\(700\) −6.04819 7.85919i −0.228600 0.297049i
\(701\) −26.4633 21.1038i −0.999506 0.797079i −0.0202681 0.999795i \(-0.506452\pi\)
−0.979238 + 0.202715i \(0.935023\pi\)
\(702\) 0 0
\(703\) −10.2145 + 33.1147i −0.385248 + 1.24894i
\(704\) 5.37020 + 3.10049i 0.202397 + 0.116854i
\(705\) 0 0
\(706\) −2.84740 + 0.649900i −0.107163 + 0.0244593i
\(707\) 24.5097 + 17.3387i 0.921784 + 0.652089i
\(708\) 0 0
\(709\) −25.2108 + 7.77651i −0.946813 + 0.292053i −0.729447 0.684037i \(-0.760223\pi\)
−0.217366 + 0.976090i \(0.569746\pi\)
\(710\) 5.47508 + 13.9503i 0.205476 + 0.523544i
\(711\) 0 0
\(712\) 0.561095 + 1.81903i 0.0210279 + 0.0681709i
\(713\) −1.50301 + 6.58514i −0.0562883 + 0.246615i
\(714\) 0 0
\(715\) 4.26200 + 18.6730i 0.159390 + 0.698332i
\(716\) 17.9060 10.3380i 0.669177 0.386350i
\(717\) 0 0
\(718\) −27.3081 8.42343i −1.01913 0.314359i
\(719\) 0.0835564 + 1.11498i 0.00311613 + 0.0415818i 0.998545 0.0539229i \(-0.0171725\pi\)
−0.995429 + 0.0955048i \(0.969553\pi\)
\(720\) 0 0
\(721\) 1.04950 + 2.27929i 0.0390853 + 0.0848853i
\(722\) 9.98857 7.96562i 0.371736 0.296450i
\(723\) 0 0
\(724\) 1.32880 + 8.81601i 0.0493844 + 0.327644i
\(725\) −2.47123 3.62463i −0.0917793 0.134616i
\(726\) 0 0
\(727\) 10.8231 + 22.4743i 0.401405 + 0.833526i 0.999485 + 0.0320894i \(0.0102161\pi\)
−0.598080 + 0.801436i \(0.704070\pi\)
\(728\) 6.10533 4.00970i 0.226279 0.148609i
\(729\) 0 0
\(730\) 7.03694 + 4.79771i 0.260449 + 0.177571i
\(731\) −32.8316 30.4632i −1.21432 1.12672i
\(732\) 0 0
\(733\) −16.9226 6.64161i −0.625049 0.245314i 0.0316113 0.999500i \(-0.489936\pi\)
−0.656660 + 0.754187i \(0.728031\pi\)
\(734\) −2.55273 −0.0942228
\(735\) 0 0
\(736\) −1.01702 −0.0374880
\(737\) −26.7841 10.5120i −0.986605 0.387214i
\(738\) 0 0
\(739\) −26.7446 24.8154i −0.983816 0.912848i 0.0123858 0.999923i \(-0.496057\pi\)
−0.996202 + 0.0870755i \(0.972248\pi\)
\(740\) −5.68286 3.87451i −0.208906 0.142430i
\(741\) 0 0
\(742\) 0.211919 2.29471i 0.00777981 0.0842414i
\(743\) 14.7106 + 30.5469i 0.539681 + 1.12066i 0.975373 + 0.220562i \(0.0707893\pi\)
−0.435692 + 0.900096i \(0.643496\pi\)
\(744\) 0 0
\(745\) −7.05017 10.3407i −0.258298 0.378854i
\(746\) 0.517835 + 3.43561i 0.0189593 + 0.125787i
\(747\) 0 0
\(748\) −22.8962 + 18.2591i −0.837168 + 0.667620i
\(749\) −31.9526 26.3979i −1.16752 0.964557i
\(750\) 0 0
\(751\) 0.164133 + 2.19020i 0.00598930 + 0.0799217i 0.999397 0.0347092i \(-0.0110505\pi\)
−0.993408 + 0.114631i \(0.963431\pi\)
\(752\) 1.54292 + 0.475929i 0.0562646 + 0.0173553i
\(753\) 0 0
\(754\) 2.79825 1.61557i 0.101906 0.0588356i
\(755\) 0.630729 + 2.76340i 0.0229546 + 0.100571i
\(756\) 0 0
\(757\) 2.06873 9.06369i 0.0751892 0.329426i −0.923319 0.384035i \(-0.874534\pi\)
0.998508 + 0.0546094i \(0.0173914\pi\)
\(758\) 8.19143 + 26.5560i 0.297526 + 0.964556i
\(759\) 0 0
\(760\) 2.30409 + 5.87074i 0.0835783 + 0.212954i
\(761\) −22.1878 + 6.84402i −0.804305 + 0.248095i −0.669534 0.742781i \(-0.733506\pi\)
−0.134771 + 0.990877i \(0.543030\pi\)
\(762\) 0 0
\(763\) 16.1532 39.1533i 0.584785 1.41744i
\(764\) 20.3674 4.64874i 0.736868 0.168185i
\(765\) 0 0
\(766\) 25.2014 + 14.5500i 0.910562 + 0.525713i
\(767\) −1.04310 + 3.38163i −0.0376640 + 0.122104i
\(768\) 0 0
\(769\) −25.1878 20.0866i −0.908295 0.724341i 0.0533682 0.998575i \(-0.483004\pi\)
−0.961663 + 0.274234i \(0.911576\pi\)
\(770\) 3.77443 + 17.9631i 0.136021 + 0.647344i
\(771\) 0 0
\(772\) 9.92550 9.20951i 0.357226 0.331458i
\(773\) −25.4127 + 3.83035i −0.914032 + 0.137768i −0.589185 0.807998i \(-0.700551\pi\)
−0.324847 + 0.945767i \(0.605313\pi\)
\(774\) 0 0
\(775\) 3.71025 24.6159i 0.133276 0.884230i
\(776\) 0.692402 0.333443i 0.0248558 0.0119699i
\(777\) 0 0
\(778\) −12.7909 6.15975i −0.458574 0.220838i
\(779\) −26.5050 + 38.8757i −0.949639 + 1.39287i
\(780\) 0 0
\(781\) −6.20717 + 82.8290i −0.222110 + 2.96385i
\(782\) 1.75477 4.47108i 0.0627504 0.159885i
\(783\) 0 0
\(784\) 5.91655 3.74092i 0.211305 0.133604i
\(785\) 21.8266i 0.779023i
\(786\) 0 0
\(787\) −22.9010 1.71620i −0.816334 0.0611758i −0.339984 0.940431i \(-0.610422\pi\)
−0.476350 + 0.879256i \(0.658041\pi\)
\(788\) −3.18174 + 3.42910i −0.113345 + 0.122156i
\(789\) 0 0
\(790\) 1.47185 3.05633i 0.0523662 0.108739i
\(791\) 17.6581 6.58030i 0.627851 0.233969i
\(792\) 0 0
\(793\) 35.9743 + 5.42225i 1.27748 + 0.192550i
\(794\) 4.94671 3.37261i 0.175552 0.119689i
\(795\) 0 0
\(796\) −14.1435 15.2431i −0.501304 0.540277i
\(797\) 19.6475 + 24.6372i 0.695950 + 0.872694i 0.996714 0.0810051i \(-0.0258130\pi\)
−0.300764 + 0.953699i \(0.597242\pi\)
\(798\) 0 0
\(799\) −4.75446 + 5.96190i −0.168201 + 0.210917i
\(800\) 3.73780 0.280110i 0.132151 0.00990337i
\(801\) 0 0
\(802\) −1.56161 + 2.70479i −0.0551423 + 0.0955093i
\(803\) 23.6023 + 40.8804i 0.832908 + 1.44264i
\(804\) 0 0
\(805\) −2.00917 2.24190i −0.0708140 0.0790164i
\(806\) 17.8757 + 4.08002i 0.629646 + 0.143713i
\(807\) 0 0
\(808\) −10.5631 + 4.14570i −0.371608 + 0.145845i
\(809\) −8.55126 + 3.35612i −0.300646 + 0.117995i −0.510869 0.859658i \(-0.670676\pi\)
0.210223 + 0.977654i \(0.432581\pi\)
\(810\) 0 0
\(811\) −37.5695 8.57499i −1.31924 0.301108i −0.495765 0.868457i \(-0.665112\pi\)
−0.823478 + 0.567348i \(0.807969\pi\)
\(812\) 2.70804 1.50167i 0.0950336 0.0526983i
\(813\) 0 0
\(814\) −19.0607 33.0140i −0.668076 1.15714i
\(815\) 11.3683 19.6905i 0.398214 0.689727i
\(816\) 0 0
\(817\) −53.3088 + 3.99494i −1.86504 + 0.139765i
\(818\) 11.9287 14.9581i 0.417077 0.522997i
\(819\) 0 0
\(820\) −5.82245 7.30113i −0.203329 0.254966i
\(821\) −24.2309 26.1147i −0.845663 0.911408i 0.151363 0.988478i \(-0.451634\pi\)
−0.997026 + 0.0770706i \(0.975443\pi\)
\(822\) 0 0
\(823\) −8.64165 + 5.89178i −0.301229 + 0.205374i −0.704496 0.709708i \(-0.748827\pi\)
0.403267 + 0.915082i \(0.367875\pi\)
\(824\) −0.937836 0.141356i −0.0326711 0.00492437i
\(825\) 0 0
\(826\) −1.05552 + 3.22299i −0.0367263 + 0.112142i
\(827\) −20.9530 + 43.5094i −0.728608 + 1.51297i 0.125058 + 0.992149i \(0.460088\pi\)
−0.853666 + 0.520821i \(0.825626\pi\)
\(828\) 0 0
\(829\) 16.1253 17.3790i 0.560056 0.603597i −0.388016 0.921653i \(-0.626840\pi\)
0.948072 + 0.318056i \(0.103030\pi\)
\(830\) 20.2598 + 1.51826i 0.703226 + 0.0526995i
\(831\) 0 0
\(832\) 2.76077i 0.0957123i
\(833\) 6.23759 + 32.4651i 0.216120 + 1.12485i
\(834\) 0 0
\(835\) −0.948886 + 2.41772i −0.0328376 + 0.0836687i
\(836\) −2.61218 + 34.8572i −0.0903443 + 1.20556i
\(837\) 0 0
\(838\) −17.8828 + 26.2292i −0.617751 + 0.906074i
\(839\) −5.82225 2.80385i −0.201006 0.0967995i 0.330673 0.943746i \(-0.392724\pi\)
−0.531679 + 0.846946i \(0.678439\pi\)
\(840\) 0 0
\(841\) −24.8940 + 11.9883i −0.858413 + 0.413390i
\(842\) −5.63625 + 37.3941i −0.194238 + 1.28869i
\(843\) 0 0
\(844\) 14.7178 2.21835i 0.506607 0.0763588i
\(845\) 4.41085 4.09267i 0.151738 0.140792i
\(846\) 0 0
\(847\) −17.3838 + 70.5203i −0.597316 + 2.42310i
\(848\) 0.680982 + 0.543065i 0.0233850 + 0.0186489i
\(849\) 0 0
\(850\) −5.21776 + 16.9156i −0.178968 + 0.580200i
\(851\) 5.41464 + 3.12614i 0.185611 + 0.107163i
\(852\) 0 0
\(853\) 26.9338 6.14746i 0.922195 0.210485i 0.265037 0.964238i \(-0.414616\pi\)
0.657158 + 0.753753i \(0.271759\pi\)
\(854\) 34.3806 + 5.79164i 1.17648 + 0.198186i
\(855\) 0 0
\(856\) 14.9693 4.61743i 0.511642 0.157821i
\(857\) 17.4852 + 44.5514i 0.597282 + 1.52185i 0.834850 + 0.550478i \(0.185554\pi\)
−0.237568 + 0.971371i \(0.576350\pi\)
\(858\) 0 0
\(859\) −5.37190 17.4153i −0.183287 0.594202i −0.999856 0.0169543i \(-0.994603\pi\)
0.816569 0.577247i \(-0.195873\pi\)
\(860\) 2.36097 10.3441i 0.0805083 0.352730i
\(861\) 0 0
\(862\) −0.278088 1.21838i −0.00947173 0.0414984i
\(863\) −27.9042 + 16.1105i −0.949870 + 0.548407i −0.893040 0.449976i \(-0.851432\pi\)
−0.0568292 + 0.998384i \(0.518099\pi\)
\(864\) 0 0
\(865\) −17.9502 5.53689i −0.610324 0.188260i
\(866\) 0.250103 + 3.33739i 0.00849883 + 0.113409i
\(867\) 0 0
\(868\) 17.0609 + 4.20564i 0.579083 + 0.142749i
\(869\) 14.6998 11.7227i 0.498656 0.397665i
\(870\) 0 0
\(871\) −1.90926 12.6671i −0.0646929 0.429209i
\(872\) 9.01791 + 13.2268i 0.305385 + 0.447917i
\(873\) 0 0
\(874\) −2.48744 5.16522i −0.0841389 0.174716i
\(875\) 18.6754 + 17.9390i 0.631344 + 0.606449i
\(876\) 0 0
\(877\) 40.6156 + 27.6912i 1.37149 + 0.935067i 0.999978 + 0.00663917i \(0.00211333\pi\)
0.371513 + 0.928428i \(0.378839\pi\)
\(878\) −14.2778 13.2478i −0.481852 0.447093i
\(879\) 0 0
\(880\) −6.45808 2.53461i −0.217702 0.0854417i
\(881\) 20.1106 0.677542 0.338771 0.940869i \(-0.389989\pi\)
0.338771 + 0.940869i \(0.389989\pi\)
\(882\) 0 0
\(883\) 0.823811 0.0277234 0.0138617 0.999904i \(-0.495588\pi\)
0.0138617 + 0.999904i \(0.495588\pi\)
\(884\) −12.1370 4.76342i −0.408211 0.160211i
\(885\) 0 0
\(886\) 21.2075 + 19.6776i 0.712478 + 0.661083i
\(887\) −34.1998 23.3170i −1.14832 0.782910i −0.169076 0.985603i \(-0.554078\pi\)
−0.979242 + 0.202693i \(0.935031\pi\)
\(888\) 0 0
\(889\) 20.0605 + 6.56979i 0.672809 + 0.220344i
\(890\) −0.924064 1.91884i −0.0309747 0.0643196i
\(891\) 0 0
\(892\) −12.0446 17.6661i −0.403282 0.591506i
\(893\) 1.35656 + 9.00018i 0.0453955 + 0.301180i
\(894\) 0 0
\(895\) −18.0856 + 14.4228i −0.604536 + 0.482101i
\(896\) −0.0457437 + 2.64536i −0.00152819 + 0.0883751i
\(897\) 0 0
\(898\) −1.58918 21.2061i −0.0530315 0.707656i
\(899\) 7.42766 + 2.29113i 0.247726 + 0.0764134i
\(900\) 0 0
\(901\) −3.56241 + 2.05676i −0.118681 + 0.0685206i
\(902\) −11.5174 50.4610i −0.383487 1.68017i
\(903\) 0 0
\(904\) −1.58490 + 6.94392i −0.0527132 + 0.230951i
\(905\) −2.94012 9.53162i −0.0977328 0.316842i
\(906\) 0 0
\(907\) 19.1515 + 48.7973i 0.635916 + 1.62029i 0.776426 + 0.630209i \(0.217031\pi\)
−0.140509 + 0.990079i \(0.544874\pi\)
\(908\) −6.09122 + 1.87889i −0.202144 + 0.0623532i
\(909\) 0 0
\(910\) −6.08575 + 5.45401i −0.201741 + 0.180799i
\(911\) −17.3284 + 3.95510i −0.574116 + 0.131038i −0.499715 0.866190i \(-0.666562\pi\)
−0.0744015 + 0.997228i \(0.523705\pi\)
\(912\) 0 0
\(913\) 97.5186 + 56.3024i 3.22739 + 1.86334i
\(914\) 3.57155 11.5787i 0.118136 0.382988i
\(915\) 0 0
\(916\) −0.365205 0.291241i −0.0120667 0.00962287i
\(917\) 30.2304 + 15.2076i 0.998296 + 0.502199i
\(918\) 0 0
\(919\) −23.2650 + 21.5868i −0.767442 + 0.712082i −0.963264 0.268558i \(-0.913453\pi\)
0.195822 + 0.980639i \(0.437263\pi\)
\(920\) 1.12514 0.169587i 0.0370947 0.00559113i
\(921\) 0 0
\(922\) −3.51243 + 23.3034i −0.115676 + 0.767458i
\(923\) −33.3179 + 16.0451i −1.09667 + 0.528130i
\(924\) 0 0
\(925\) −20.7611 9.99802i −0.682621 0.328733i
\(926\) 8.62274 12.6472i 0.283361 0.415614i
\(927\) 0 0
\(928\) −0.0874625 + 1.16711i −0.00287110 + 0.0383121i
\(929\) −1.23989 + 3.15918i −0.0406794 + 0.103649i −0.949770 0.312950i \(-0.898683\pi\)
0.909090 + 0.416599i \(0.136778\pi\)
\(930\) 0 0
\(931\) 33.4700 + 20.8992i 1.09693 + 0.684944i
\(932\) 24.7363i 0.810265i
\(933\) 0 0
\(934\) −12.0357 0.901950i −0.393820 0.0295127i
\(935\) 22.2855 24.0181i 0.728815 0.785475i
\(936\) 0 0
\(937\) 20.2195 41.9862i 0.660542 1.37163i −0.254026 0.967197i \(-0.581755\pi\)
0.914568 0.404432i \(-0.132531\pi\)
\(938\) −1.61956 12.1692i −0.0528806 0.397339i
\(939\) 0 0
\(940\) −1.78631 0.269242i −0.0582629 0.00878172i
\(941\) −20.6729 + 14.0946i −0.673918 + 0.459470i −0.851305 0.524672i \(-0.824188\pi\)
0.177387 + 0.984141i \(0.443236\pi\)
\(942\) 0 0
\(943\) 5.77395 + 6.22284i 0.188026 + 0.202644i
\(944\) −0.799213 1.00218i −0.0260122 0.0326182i
\(945\) 0 0
\(946\) 36.6653 45.9768i 1.19209 1.49484i
\(947\) 16.3579 1.22585i 0.531560 0.0398349i 0.193753 0.981050i \(-0.437934\pi\)
0.337807 + 0.941215i \(0.390315\pi\)
\(948\) 0 0
\(949\) −10.5081 + 18.2006i −0.341108 + 0.590816i
\(950\) 10.5645 + 18.2983i 0.342759 + 0.593676i
\(951\) 0 0
\(952\) −11.5507 4.76539i −0.374360 0.154447i
\(953\) −30.0796 6.86547i −0.974373 0.222394i −0.294441 0.955670i \(-0.595133\pi\)
−0.679932 + 0.733275i \(0.737991\pi\)
\(954\) 0 0
\(955\) −21.7574 + 8.53917i −0.704054 + 0.276321i
\(956\) −13.3804 + 5.25142i −0.432753 + 0.169843i
\(957\) 0 0
\(958\) 27.2943 + 6.22975i 0.881840 + 0.201274i
\(959\) 18.1235 1.04343i 0.585240 0.0336940i
\(960\) 0 0
\(961\) 6.55430 + 11.3524i 0.211429 + 0.366206i
\(962\) 8.48610 14.6984i 0.273603 0.473894i
\(963\) 0 0
\(964\) 6.64999 0.498348i 0.214182 0.0160507i
\(965\) −9.44496 + 11.8436i −0.304044 + 0.381259i
\(966\) 0 0
\(967\) −8.20129 10.2841i −0.263736 0.330714i 0.632277 0.774742i \(-0.282120\pi\)
−0.896013 + 0.444028i \(0.853549\pi\)
\(968\) −18.6721 20.1238i −0.600145 0.646803i
\(969\) 0 0
\(970\) −0.710407 + 0.484347i −0.0228098 + 0.0155514i
\(971\) 17.1731 + 2.58843i 0.551112 + 0.0830668i 0.418695 0.908127i \(-0.362488\pi\)
0.132418 + 0.991194i \(0.457726\pi\)
\(972\) 0 0
\(973\) −33.6945 3.11173i −1.08020 0.0997576i
\(974\) 1.34138 2.78541i 0.0429806 0.0892502i
\(975\) 0 0
\(976\) −8.96313 + 9.65996i −0.286903 + 0.309208i
\(977\) −22.1489 1.65983i −0.708607 0.0531027i −0.284449 0.958691i \(-0.591811\pi\)
−0.424158 + 0.905588i \(0.639430\pi\)
\(978\) 0 0
\(979\) 11.8042i 0.377263i
\(980\) −5.92172 + 5.12518i −0.189162 + 0.163718i
\(981\) 0 0
\(982\) 1.94282 4.95024i 0.0619980 0.157968i
\(983\) 3.82918 51.0969i 0.122132 1.62974i −0.513742 0.857945i \(-0.671741\pi\)
0.635874 0.771793i \(-0.280640\pi\)
\(984\) 0 0
\(985\) 2.94818 4.32418i 0.0939367 0.137780i
\(986\) −4.97997 2.39823i −0.158595 0.0763751i
\(987\) 0 0
\(988\) −14.0213 + 6.75230i −0.446077 + 0.214819i
\(989\) −1.43749 + 9.53715i −0.0457097 + 0.303264i
\(990\) 0 0
\(991\) −34.8901 + 5.25883i −1.10832 + 0.167052i −0.677598 0.735433i \(-0.736979\pi\)
−0.430721 + 0.902485i \(0.641741\pi\)
\(992\) −4.86851 + 4.51732i −0.154575 + 0.143425i
\(993\) 0 0
\(994\) −32.1910 + 14.8223i −1.02104 + 0.470134i
\(995\) 18.1888 + 14.5051i 0.576624 + 0.459843i
\(996\) 0 0
\(997\) −12.6944 + 41.1544i −0.402037 + 1.30337i 0.497855 + 0.867260i \(0.334121\pi\)
−0.899892 + 0.436112i \(0.856355\pi\)
\(998\) −6.43956 3.71788i −0.203841 0.117687i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.2.bl.a.395.15 yes 240
3.2 odd 2 inner 882.2.bl.a.395.6 240
49.33 odd 42 inner 882.2.bl.a.719.6 yes 240
147.131 even 42 inner 882.2.bl.a.719.15 yes 240
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
882.2.bl.a.395.6 240 3.2 odd 2 inner
882.2.bl.a.395.15 yes 240 1.1 even 1 trivial
882.2.bl.a.719.6 yes 240 49.33 odd 42 inner
882.2.bl.a.719.15 yes 240 147.131 even 42 inner