Properties

Label 882.2.bl.a.395.13
Level $882$
Weight $2$
Character 882.395
Analytic conductor $7.043$
Analytic rank $0$
Dimension $240$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [882,2,Mod(17,882)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("882.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(882, base_ring=CyclotomicField(42)) chi = DirichletCharacter(H, H._module([21, 25])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 882.bl (of order \(42\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.04280545828\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(20\) over \(\Q(\zeta_{42})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{42}]$

Embedding invariants

Embedding label 395.13
Character \(\chi\) \(=\) 882.395
Dual form 882.2.bl.a.719.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.930874 + 0.365341i) q^{2} +(0.733052 + 0.680173i) q^{4} +(-1.63709 - 1.11615i) q^{5} +(-2.45942 - 0.975316i) q^{7} +(0.433884 + 0.900969i) q^{8} +(-1.11615 - 1.63709i) q^{10} +(0.838558 + 5.56347i) q^{11} +(-2.27837 + 1.81694i) q^{13} +(-1.93309 - 1.80642i) q^{14} +(0.0747301 + 0.997204i) q^{16} +(-1.68804 - 0.520691i) q^{17} +(-6.29755 + 3.63589i) q^{19} +(-0.440897 - 1.93170i) q^{20} +(-1.25197 + 5.48525i) q^{22} +(1.94874 + 6.31765i) q^{23} +(-0.392435 - 0.999907i) q^{25} +(-2.78468 + 0.858960i) q^{26} +(-1.13950 - 2.38779i) q^{28} +(8.15398 - 1.86109i) q^{29} +(3.38676 + 1.95535i) q^{31} +(-0.294755 + 0.955573i) q^{32} +(-1.38112 - 1.10141i) q^{34} +(2.93769 + 4.34176i) q^{35} +(0.211701 - 0.196430i) q^{37} +(-7.19056 + 1.08380i) q^{38} +(0.295308 - 1.95924i) q^{40} +(-9.79045 + 4.71483i) q^{41} +(-8.98886 - 4.32881i) q^{43} +(-3.16941 + 4.64868i) q^{44} +(-0.494069 + 6.59289i) q^{46} +(-2.58457 + 6.58538i) q^{47} +(5.09752 + 4.79743i) q^{49} -1.07416i q^{50} +(-2.90600 - 0.217774i) q^{52} +(-2.38375 + 2.56907i) q^{53} +(4.83686 - 10.0438i) q^{55} +(-0.188374 - 2.63904i) q^{56} +(8.27026 + 1.24654i) q^{58} +(11.4492 - 7.80592i) q^{59} +(-3.85220 - 4.15169i) q^{61} +(2.43828 + 3.05750i) q^{62} +(-0.623490 + 0.781831i) q^{64} +(5.75787 - 0.431493i) q^{65} +(3.06901 - 5.31569i) q^{67} +(-0.883260 - 1.52985i) q^{68} +(1.14840 + 5.11489i) q^{70} +(-4.16730 - 0.951159i) q^{71} +(-8.67775 + 3.40576i) q^{73} +(0.268831 - 0.105508i) q^{74} +(-7.08947 - 1.61812i) q^{76} +(3.36378 - 14.5008i) q^{77} +(-5.42299 - 9.39290i) q^{79} +(0.990687 - 1.71592i) q^{80} +(-10.8362 + 0.812060i) q^{82} +(4.38954 - 5.50431i) q^{83} +(2.18230 + 2.73652i) q^{85} +(-6.78600 - 7.31357i) q^{86} +(-4.64868 + 3.16941i) q^{88} +(11.0890 + 1.67140i) q^{89} +(7.37557 - 2.24649i) q^{91} +(-2.86857 + 5.95665i) q^{92} +(-4.81182 + 5.18591i) q^{94} +(14.3678 + 1.07672i) q^{95} -9.55626i q^{97} +(2.99245 + 6.32813i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240 q - 20 q^{4} - 4 q^{7} - 12 q^{10} + 20 q^{16} + 24 q^{19} - 20 q^{22} + 24 q^{25} + 4 q^{28} + 12 q^{31} - 32 q^{37} + 44 q^{40} - 48 q^{43} + 204 q^{49} + 140 q^{55} + 136 q^{58} + 88 q^{61} + 40 q^{64}+ \cdots + 80 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(e\left(\frac{1}{42}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.930874 + 0.365341i 0.658227 + 0.258335i
\(3\) 0 0
\(4\) 0.733052 + 0.680173i 0.366526 + 0.340086i
\(5\) −1.63709 1.11615i −0.732128 0.499156i 0.138951 0.990299i \(-0.455627\pi\)
−0.871079 + 0.491143i \(0.836579\pi\)
\(6\) 0 0
\(7\) −2.45942 0.975316i −0.929574 0.368635i
\(8\) 0.433884 + 0.900969i 0.153401 + 0.318541i
\(9\) 0 0
\(10\) −1.11615 1.63709i −0.352957 0.517693i
\(11\) 0.838558 + 5.56347i 0.252835 + 1.67745i 0.650180 + 0.759780i \(0.274694\pi\)
−0.397345 + 0.917669i \(0.630068\pi\)
\(12\) 0 0
\(13\) −2.27837 + 1.81694i −0.631907 + 0.503929i −0.886263 0.463182i \(-0.846708\pi\)
0.254357 + 0.967110i \(0.418136\pi\)
\(14\) −1.93309 1.80642i −0.516640 0.482787i
\(15\) 0 0
\(16\) 0.0747301 + 0.997204i 0.0186825 + 0.249301i
\(17\) −1.68804 0.520691i −0.409409 0.126286i 0.0832078 0.996532i \(-0.473483\pi\)
−0.492617 + 0.870246i \(0.663960\pi\)
\(18\) 0 0
\(19\) −6.29755 + 3.63589i −1.44476 + 0.834131i −0.998162 0.0606052i \(-0.980697\pi\)
−0.446595 + 0.894736i \(0.647364\pi\)
\(20\) −0.440897 1.93170i −0.0985876 0.431940i
\(21\) 0 0
\(22\) −1.25197 + 5.48525i −0.266921 + 1.16946i
\(23\) 1.94874 + 6.31765i 0.406340 + 1.31732i 0.895474 + 0.445113i \(0.146837\pi\)
−0.489134 + 0.872209i \(0.662687\pi\)
\(24\) 0 0
\(25\) −0.392435 0.999907i −0.0784869 0.199981i
\(26\) −2.78468 + 0.858960i −0.546121 + 0.168456i
\(27\) 0 0
\(28\) −1.13950 2.38779i −0.215345 0.451250i
\(29\) 8.15398 1.86109i 1.51416 0.345596i 0.616877 0.787060i \(-0.288398\pi\)
0.897279 + 0.441464i \(0.145541\pi\)
\(30\) 0 0
\(31\) 3.38676 + 1.95535i 0.608280 + 0.351190i 0.772292 0.635268i \(-0.219110\pi\)
−0.164012 + 0.986458i \(0.552444\pi\)
\(32\) −0.294755 + 0.955573i −0.0521058 + 0.168923i
\(33\) 0 0
\(34\) −1.38112 1.10141i −0.236860 0.188890i
\(35\) 2.93769 + 4.34176i 0.496561 + 0.733891i
\(36\) 0 0
\(37\) 0.211701 0.196430i 0.0348035 0.0322929i −0.662579 0.748992i \(-0.730538\pi\)
0.697383 + 0.716699i \(0.254348\pi\)
\(38\) −7.19056 + 1.08380i −1.16646 + 0.175816i
\(39\) 0 0
\(40\) 0.295308 1.95924i 0.0466924 0.309784i
\(41\) −9.79045 + 4.71483i −1.52901 + 0.736333i −0.994089 0.108569i \(-0.965373\pi\)
−0.534922 + 0.844902i \(0.679659\pi\)
\(42\) 0 0
\(43\) −8.98886 4.32881i −1.37079 0.660137i −0.403774 0.914859i \(-0.632302\pi\)
−0.967014 + 0.254722i \(0.918016\pi\)
\(44\) −3.16941 + 4.64868i −0.477807 + 0.700814i
\(45\) 0 0
\(46\) −0.494069 + 6.59289i −0.0728465 + 0.972069i
\(47\) −2.58457 + 6.58538i −0.376999 + 0.960577i 0.608902 + 0.793245i \(0.291610\pi\)
−0.985901 + 0.167331i \(0.946485\pi\)
\(48\) 0 0
\(49\) 5.09752 + 4.79743i 0.728217 + 0.685347i
\(50\) 1.07416i 0.151909i
\(51\) 0 0
\(52\) −2.90600 0.217774i −0.402989 0.0301999i
\(53\) −2.38375 + 2.56907i −0.327433 + 0.352889i −0.875217 0.483731i \(-0.839281\pi\)
0.547784 + 0.836620i \(0.315472\pi\)
\(54\) 0 0
\(55\) 4.83686 10.0438i 0.652202 1.35431i
\(56\) −0.188374 2.63904i −0.0251725 0.352656i
\(57\) 0 0
\(58\) 8.27026 + 1.24654i 1.08594 + 0.163679i
\(59\) 11.4492 7.80592i 1.49056 1.01624i 0.502087 0.864817i \(-0.332566\pi\)
0.988468 0.151427i \(-0.0483868\pi\)
\(60\) 0 0
\(61\) −3.85220 4.15169i −0.493224 0.531569i 0.436560 0.899675i \(-0.356197\pi\)
−0.929784 + 0.368106i \(0.880006\pi\)
\(62\) 2.43828 + 3.05750i 0.309661 + 0.388303i
\(63\) 0 0
\(64\) −0.623490 + 0.781831i −0.0779362 + 0.0977289i
\(65\) 5.75787 0.431493i 0.714176 0.0535201i
\(66\) 0 0
\(67\) 3.06901 5.31569i 0.374940 0.649415i −0.615378 0.788232i \(-0.710997\pi\)
0.990318 + 0.138817i \(0.0443301\pi\)
\(68\) −0.883260 1.52985i −0.107111 0.185522i
\(69\) 0 0
\(70\) 1.14840 + 5.11489i 0.137260 + 0.611346i
\(71\) −4.16730 0.951159i −0.494567 0.112882i −0.0320397 0.999487i \(-0.510200\pi\)
−0.462528 + 0.886605i \(0.653057\pi\)
\(72\) 0 0
\(73\) −8.67775 + 3.40576i −1.01565 + 0.398615i −0.814014 0.580845i \(-0.802722\pi\)
−0.201639 + 0.979460i \(0.564627\pi\)
\(74\) 0.268831 0.105508i 0.0312510 0.0122651i
\(75\) 0 0
\(76\) −7.08947 1.61812i −0.813217 0.185612i
\(77\) 3.36378 14.5008i 0.383338 1.65252i
\(78\) 0 0
\(79\) −5.42299 9.39290i −0.610134 1.05678i −0.991217 0.132243i \(-0.957782\pi\)
0.381083 0.924541i \(-0.375551\pi\)
\(80\) 0.990687 1.71592i 0.110762 0.191846i
\(81\) 0 0
\(82\) −10.8362 + 0.812060i −1.19666 + 0.0896770i
\(83\) 4.38954 5.50431i 0.481814 0.604176i −0.480205 0.877156i \(-0.659438\pi\)
0.962020 + 0.272980i \(0.0880093\pi\)
\(84\) 0 0
\(85\) 2.18230 + 2.73652i 0.236703 + 0.296817i
\(86\) −6.78600 7.31357i −0.731754 0.788643i
\(87\) 0 0
\(88\) −4.64868 + 3.16941i −0.495551 + 0.337861i
\(89\) 11.0890 + 1.67140i 1.17543 + 0.177168i 0.707577 0.706636i \(-0.249788\pi\)
0.467856 + 0.883805i \(0.345026\pi\)
\(90\) 0 0
\(91\) 7.37557 2.24649i 0.773170 0.235496i
\(92\) −2.86857 + 5.95665i −0.299069 + 0.621023i
\(93\) 0 0
\(94\) −4.81182 + 5.18591i −0.496301 + 0.534886i
\(95\) 14.3678 + 1.07672i 1.47411 + 0.110469i
\(96\) 0 0
\(97\) 9.55626i 0.970291i −0.874433 0.485145i \(-0.838767\pi\)
0.874433 0.485145i \(-0.161233\pi\)
\(98\) 2.99245 + 6.32813i 0.302283 + 0.639238i
\(99\) 0 0
\(100\) 0.392435 0.999907i 0.0392435 0.0999907i
\(101\) 0.546464 7.29205i 0.0543752 0.725586i −0.901681 0.432402i \(-0.857666\pi\)
0.956056 0.293184i \(-0.0947148\pi\)
\(102\) 0 0
\(103\) −0.674705 + 0.989610i −0.0664806 + 0.0975092i −0.858039 0.513584i \(-0.828318\pi\)
0.791559 + 0.611093i \(0.209270\pi\)
\(104\) −2.62556 1.26440i −0.257457 0.123985i
\(105\) 0 0
\(106\) −3.15755 + 1.52060i −0.306689 + 0.147694i
\(107\) −2.37255 + 15.7409i −0.229363 + 1.52173i 0.516883 + 0.856056i \(0.327092\pi\)
−0.746246 + 0.665670i \(0.768146\pi\)
\(108\) 0 0
\(109\) 6.03223 0.909213i 0.577783 0.0870868i 0.146352 0.989233i \(-0.453247\pi\)
0.431431 + 0.902146i \(0.358009\pi\)
\(110\) 8.17193 7.58245i 0.779163 0.722958i
\(111\) 0 0
\(112\) 0.788796 2.52543i 0.0745342 0.238631i
\(113\) −5.93362 4.73190i −0.558188 0.445140i 0.303317 0.952890i \(-0.401906\pi\)
−0.861505 + 0.507750i \(0.830477\pi\)
\(114\) 0 0
\(115\) 3.86118 12.5176i 0.360057 1.16728i
\(116\) 7.24315 + 4.18184i 0.672510 + 0.388274i
\(117\) 0 0
\(118\) 13.5096 3.08347i 1.24366 0.283856i
\(119\) 3.64376 + 2.92697i 0.334023 + 0.268315i
\(120\) 0 0
\(121\) −19.7377 + 6.08828i −1.79434 + 0.553480i
\(122\) −2.06913 5.27207i −0.187331 0.477310i
\(123\) 0 0
\(124\) 1.15270 + 3.73695i 0.103515 + 0.335588i
\(125\) −2.67808 + 11.7334i −0.239535 + 1.04947i
\(126\) 0 0
\(127\) 4.54324 + 19.9052i 0.403147 + 1.76630i 0.614524 + 0.788898i \(0.289348\pi\)
−0.211376 + 0.977405i \(0.567795\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) 5.51749 + 1.70192i 0.483916 + 0.149268i
\(131\) 0.0646252 + 0.862363i 0.00564633 + 0.0753450i 0.999315 0.0370042i \(-0.0117815\pi\)
−0.993669 + 0.112349i \(0.964162\pi\)
\(132\) 0 0
\(133\) 19.0345 2.80009i 1.65050 0.242799i
\(134\) 4.79890 3.82700i 0.414562 0.330602i
\(135\) 0 0
\(136\) −0.263286 1.74679i −0.0225766 0.149786i
\(137\) 1.79241 + 2.62898i 0.153136 + 0.224609i 0.895139 0.445788i \(-0.147076\pi\)
−0.742003 + 0.670397i \(0.766124\pi\)
\(138\) 0 0
\(139\) 4.62497 + 9.60384i 0.392285 + 0.814587i 0.999794 + 0.0202752i \(0.00645425\pi\)
−0.607510 + 0.794312i \(0.707831\pi\)
\(140\) −0.799663 + 5.18087i −0.0675838 + 0.437863i
\(141\) 0 0
\(142\) −3.53173 2.40789i −0.296376 0.202066i
\(143\) −12.0190 11.1520i −1.00508 0.932581i
\(144\) 0 0
\(145\) −15.4260 6.05427i −1.28106 0.502780i
\(146\) −9.32215 −0.771507
\(147\) 0 0
\(148\) 0.288794 0.0237387
\(149\) 1.71769 + 0.674143i 0.140719 + 0.0552280i 0.434655 0.900597i \(-0.356870\pi\)
−0.293937 + 0.955825i \(0.594965\pi\)
\(150\) 0 0
\(151\) 17.1903 + 15.9503i 1.39893 + 1.29802i 0.902991 + 0.429658i \(0.141366\pi\)
0.495938 + 0.868358i \(0.334824\pi\)
\(152\) −6.00823 4.09634i −0.487332 0.332257i
\(153\) 0 0
\(154\) 8.42898 12.2695i 0.679227 0.988702i
\(155\) −3.36196 6.98119i −0.270039 0.560743i
\(156\) 0 0
\(157\) −3.19585 4.68745i −0.255056 0.374099i 0.677259 0.735744i \(-0.263168\pi\)
−0.932316 + 0.361645i \(0.882215\pi\)
\(158\) −1.61651 10.7248i −0.128603 0.853223i
\(159\) 0 0
\(160\) 1.54910 1.23537i 0.122467 0.0976643i
\(161\) 1.36894 17.4384i 0.107888 1.37434i
\(162\) 0 0
\(163\) −1.45441 19.4077i −0.113918 1.52013i −0.702495 0.711689i \(-0.747930\pi\)
0.588577 0.808442i \(-0.299689\pi\)
\(164\) −10.3838 3.20298i −0.810839 0.250111i
\(165\) 0 0
\(166\) 6.09705 3.52014i 0.473223 0.273216i
\(167\) 4.13038 + 18.0964i 0.319619 + 1.40034i 0.838223 + 0.545327i \(0.183594\pi\)
−0.518605 + 0.855014i \(0.673548\pi\)
\(168\) 0 0
\(169\) −1.00307 + 4.39473i −0.0771591 + 0.338056i
\(170\) 1.03168 + 3.34463i 0.0791264 + 0.256522i
\(171\) 0 0
\(172\) −3.64497 9.28722i −0.277926 0.708144i
\(173\) −0.144414 + 0.0445457i −0.0109796 + 0.00338675i −0.300240 0.953864i \(-0.597067\pi\)
0.289261 + 0.957250i \(0.406591\pi\)
\(174\) 0 0
\(175\) −0.0100633 + 2.84194i −0.000760711 + 0.214831i
\(176\) −5.48525 + 1.25197i −0.413466 + 0.0943710i
\(177\) 0 0
\(178\) 9.71184 + 5.60713i 0.727933 + 0.420272i
\(179\) 1.60449 5.20164i 0.119925 0.388789i −0.875628 0.482986i \(-0.839552\pi\)
0.995554 + 0.0941971i \(0.0300284\pi\)
\(180\) 0 0
\(181\) 6.81760 + 5.43686i 0.506748 + 0.404118i 0.843214 0.537577i \(-0.180660\pi\)
−0.336466 + 0.941696i \(0.609232\pi\)
\(182\) 7.68646 + 0.603398i 0.569758 + 0.0447269i
\(183\) 0 0
\(184\) −4.84648 + 4.49688i −0.357288 + 0.331514i
\(185\) −0.565818 + 0.0852834i −0.0415998 + 0.00627016i
\(186\) 0 0
\(187\) 1.48133 9.82798i 0.108326 0.718693i
\(188\) −6.37382 + 3.06947i −0.464859 + 0.223864i
\(189\) 0 0
\(190\) 12.9813 + 6.25145i 0.941760 + 0.453528i
\(191\) 5.48231 8.04107i 0.396686 0.581832i −0.574986 0.818163i \(-0.694993\pi\)
0.971673 + 0.236331i \(0.0759451\pi\)
\(192\) 0 0
\(193\) −1.52829 + 20.3936i −0.110009 + 1.46797i 0.620039 + 0.784571i \(0.287117\pi\)
−0.730048 + 0.683396i \(0.760502\pi\)
\(194\) 3.49129 8.89567i 0.250660 0.638672i
\(195\) 0 0
\(196\) 0.473663 + 6.98396i 0.0338331 + 0.498854i
\(197\) 8.17589i 0.582508i 0.956646 + 0.291254i \(0.0940725\pi\)
−0.956646 + 0.291254i \(0.905927\pi\)
\(198\) 0 0
\(199\) 27.2666 + 2.04335i 1.93288 + 0.144849i 0.984858 0.173365i \(-0.0554640\pi\)
0.948019 + 0.318214i \(0.103083\pi\)
\(200\) 0.730614 0.787415i 0.0516622 0.0556786i
\(201\) 0 0
\(202\) 3.17277 6.58833i 0.223236 0.463553i
\(203\) −21.8692 3.37550i −1.53492 0.236913i
\(204\) 0 0
\(205\) 21.2903 + 3.20899i 1.48698 + 0.224126i
\(206\) −0.989610 + 0.674705i −0.0689494 + 0.0470089i
\(207\) 0 0
\(208\) −1.98212 2.13622i −0.137436 0.148120i
\(209\) −25.5090 31.9873i −1.76450 2.21261i
\(210\) 0 0
\(211\) 1.48202 1.85840i 0.102027 0.127937i −0.728197 0.685368i \(-0.759641\pi\)
0.830224 + 0.557431i \(0.188213\pi\)
\(212\) −3.49482 + 0.261901i −0.240025 + 0.0179874i
\(213\) 0 0
\(214\) −7.95933 + 13.7860i −0.544089 + 0.942389i
\(215\) 9.88397 + 17.1195i 0.674081 + 1.16754i
\(216\) 0 0
\(217\) −6.42239 8.11218i −0.435980 0.550691i
\(218\) 5.94742 + 1.35746i 0.402810 + 0.0919387i
\(219\) 0 0
\(220\) 10.3772 4.07276i 0.699632 0.274585i
\(221\) 4.79204 1.88074i 0.322348 0.126512i
\(222\) 0 0
\(223\) −1.19798 0.273431i −0.0802225 0.0183103i 0.182221 0.983258i \(-0.441671\pi\)
−0.262444 + 0.964947i \(0.584528\pi\)
\(224\) 1.65691 2.06268i 0.110707 0.137818i
\(225\) 0 0
\(226\) −3.79469 6.57260i −0.252419 0.437203i
\(227\) 0.369513 0.640016i 0.0245255 0.0424793i −0.853502 0.521089i \(-0.825526\pi\)
0.878028 + 0.478610i \(0.158859\pi\)
\(228\) 0 0
\(229\) 0.609539 0.0456786i 0.0402795 0.00301853i −0.0545751 0.998510i \(-0.517380\pi\)
0.0948546 + 0.995491i \(0.469761\pi\)
\(230\) 8.16747 10.2417i 0.538547 0.675317i
\(231\) 0 0
\(232\) 5.21466 + 6.53898i 0.342359 + 0.429305i
\(233\) −2.32897 2.51003i −0.152576 0.164437i 0.652139 0.758100i \(-0.273872\pi\)
−0.804714 + 0.593662i \(0.797682\pi\)
\(234\) 0 0
\(235\) 11.5814 7.89608i 0.755489 0.515084i
\(236\) 13.7022 + 2.06528i 0.891938 + 0.134438i
\(237\) 0 0
\(238\) 2.32254 + 4.05585i 0.150548 + 0.262902i
\(239\) −3.01310 + 6.25677i −0.194901 + 0.404717i −0.975401 0.220440i \(-0.929251\pi\)
0.780499 + 0.625157i \(0.214965\pi\)
\(240\) 0 0
\(241\) 14.9791 16.1436i 0.964887 1.03990i −0.0342928 0.999412i \(-0.510918\pi\)
0.999180 0.0404893i \(-0.0128917\pi\)
\(242\) −20.5976 1.54358i −1.32407 0.0992250i
\(243\) 0 0
\(244\) 5.66357i 0.362573i
\(245\) −2.99044 13.5434i −0.191052 0.865256i
\(246\) 0 0
\(247\) 7.74196 19.7262i 0.492609 1.25515i
\(248\) −0.292246 + 3.89975i −0.0185577 + 0.247635i
\(249\) 0 0
\(250\) −6.77966 + 9.94393i −0.428783 + 0.628909i
\(251\) −10.5792 5.09466i −0.667751 0.321572i 0.0691172 0.997609i \(-0.477982\pi\)
−0.736868 + 0.676037i \(0.763696\pi\)
\(252\) 0 0
\(253\) −33.5140 + 16.1395i −2.10700 + 1.01468i
\(254\) −3.04301 + 20.1891i −0.190936 + 1.26678i
\(255\) 0 0
\(256\) −0.988831 + 0.149042i −0.0618019 + 0.00931514i
\(257\) −7.77023 + 7.20972i −0.484694 + 0.449730i −0.884274 0.466968i \(-0.845346\pi\)
0.399581 + 0.916698i \(0.369156\pi\)
\(258\) 0 0
\(259\) −0.712244 + 0.276629i −0.0442567 + 0.0171889i
\(260\) 4.51431 + 3.60004i 0.279965 + 0.223265i
\(261\) 0 0
\(262\) −0.254899 + 0.826362i −0.0157477 + 0.0510528i
\(263\) 0.771865 + 0.445636i 0.0475952 + 0.0274791i 0.523609 0.851959i \(-0.324585\pi\)
−0.476014 + 0.879438i \(0.657919\pi\)
\(264\) 0 0
\(265\) 6.76986 1.54518i 0.415869 0.0949194i
\(266\) 18.7417 + 4.34755i 1.14913 + 0.266565i
\(267\) 0 0
\(268\) 5.86533 1.80922i 0.358282 0.110515i
\(269\) 5.33362 + 13.5898i 0.325197 + 0.828588i 0.996197 + 0.0871305i \(0.0277697\pi\)
−0.671000 + 0.741457i \(0.734135\pi\)
\(270\) 0 0
\(271\) 4.62715 + 15.0009i 0.281080 + 0.911238i 0.980499 + 0.196526i \(0.0629660\pi\)
−0.699419 + 0.714712i \(0.746558\pi\)
\(272\) 0.393088 1.72223i 0.0238344 0.104425i
\(273\) 0 0
\(274\) 0.708032 + 3.10209i 0.0427738 + 0.187404i
\(275\) 5.23387 3.02178i 0.315614 0.182220i
\(276\) 0 0
\(277\) −3.91052 1.20623i −0.234960 0.0724756i 0.175039 0.984561i \(-0.443995\pi\)
−0.409999 + 0.912086i \(0.634471\pi\)
\(278\) 0.796583 + 10.6297i 0.0477759 + 0.637524i
\(279\) 0 0
\(280\) −2.63717 + 4.53059i −0.157601 + 0.270754i
\(281\) 2.06520 1.64694i 0.123199 0.0982481i −0.559952 0.828525i \(-0.689180\pi\)
0.683151 + 0.730277i \(0.260609\pi\)
\(282\) 0 0
\(283\) −1.60937 10.6775i −0.0956673 0.634711i −0.984355 0.176198i \(-0.943620\pi\)
0.888688 0.458513i \(-0.151618\pi\)
\(284\) −2.40789 3.53173i −0.142882 0.209570i
\(285\) 0 0
\(286\) −7.11391 14.7722i −0.420655 0.873498i
\(287\) 28.6773 2.04698i 1.69277 0.120829i
\(288\) 0 0
\(289\) −11.4677 7.81855i −0.674571 0.459915i
\(290\) −12.1478 11.2715i −0.713344 0.661887i
\(291\) 0 0
\(292\) −8.67775 3.40576i −0.507827 0.199307i
\(293\) −18.8598 −1.10180 −0.550901 0.834571i \(-0.685716\pi\)
−0.550901 + 0.834571i \(0.685716\pi\)
\(294\) 0 0
\(295\) −27.4559 −1.59854
\(296\) 0.268831 + 0.105508i 0.0156255 + 0.00613255i
\(297\) 0 0
\(298\) 1.35266 + 1.25508i 0.0783575 + 0.0727051i
\(299\) −15.9188 10.8532i −0.920605 0.627658i
\(300\) 0 0
\(301\) 17.8855 + 19.4134i 1.03090 + 1.11897i
\(302\) 10.1747 + 21.1280i 0.585490 + 1.21578i
\(303\) 0 0
\(304\) −4.09634 6.00823i −0.234941 0.344596i
\(305\) 1.67250 + 11.0963i 0.0957670 + 0.635373i
\(306\) 0 0
\(307\) −20.5527 + 16.3903i −1.17301 + 0.935442i −0.998786 0.0492650i \(-0.984312\pi\)
−0.174221 + 0.984707i \(0.555741\pi\)
\(308\) 12.3289 8.34188i 0.702502 0.475323i
\(309\) 0 0
\(310\) −0.579049 7.72687i −0.0328878 0.438857i
\(311\) 0.340692 + 0.105090i 0.0193189 + 0.00595908i 0.304400 0.952544i \(-0.401544\pi\)
−0.285081 + 0.958504i \(0.592020\pi\)
\(312\) 0 0
\(313\) −9.04486 + 5.22205i −0.511246 + 0.295168i −0.733346 0.679856i \(-0.762042\pi\)
0.222100 + 0.975024i \(0.428709\pi\)
\(314\) −1.26241 5.53100i −0.0712421 0.312132i
\(315\) 0 0
\(316\) 2.41346 10.5741i 0.135768 0.594837i
\(317\) −5.84383 18.9452i −0.328222 1.06407i −0.957873 0.287192i \(-0.907278\pi\)
0.629651 0.776878i \(-0.283198\pi\)
\(318\) 0 0
\(319\) 17.1917 + 43.8038i 0.962551 + 2.45254i
\(320\) 1.89335 0.584020i 0.105841 0.0326477i
\(321\) 0 0
\(322\) 7.64528 15.7328i 0.426055 0.876757i
\(323\) 12.5237 2.85845i 0.696836 0.159048i
\(324\) 0 0
\(325\) 2.71088 + 1.56513i 0.150373 + 0.0868178i
\(326\) 5.73657 18.5975i 0.317719 1.03002i
\(327\) 0 0
\(328\) −8.49583 6.77520i −0.469104 0.374098i
\(329\) 12.7794 13.6755i 0.704550 0.753953i
\(330\) 0 0
\(331\) −16.4376 + 15.2519i −0.903494 + 0.838320i −0.987415 0.158152i \(-0.949446\pi\)
0.0839203 + 0.996472i \(0.473256\pi\)
\(332\) 6.96164 1.04930i 0.382070 0.0575877i
\(333\) 0 0
\(334\) −2.76649 + 18.3545i −0.151376 + 1.00431i
\(335\) −10.9573 + 5.27677i −0.598663 + 0.288301i
\(336\) 0 0
\(337\) −2.10218 1.01236i −0.114513 0.0551465i 0.375750 0.926721i \(-0.377385\pi\)
−0.490263 + 0.871574i \(0.663099\pi\)
\(338\) −2.53931 + 3.72448i −0.138120 + 0.202585i
\(339\) 0 0
\(340\) −0.261565 + 3.49035i −0.0141854 + 0.189291i
\(341\) −8.03851 + 20.4818i −0.435310 + 1.10915i
\(342\) 0 0
\(343\) −7.85793 16.7706i −0.424289 0.905527i
\(344\) 9.97688i 0.537918i
\(345\) 0 0
\(346\) −0.150705 0.0112938i −0.00810196 0.000607158i
\(347\) 2.68029 2.88866i 0.143885 0.155072i −0.656997 0.753893i \(-0.728174\pi\)
0.800882 + 0.598822i \(0.204364\pi\)
\(348\) 0 0
\(349\) 0.427842 0.888422i 0.0229018 0.0475562i −0.889204 0.457511i \(-0.848741\pi\)
0.912106 + 0.409955i \(0.134455\pi\)
\(350\) −1.04765 + 2.64181i −0.0559990 + 0.141211i
\(351\) 0 0
\(352\) −5.56347 0.838558i −0.296534 0.0446953i
\(353\) −4.28346 + 2.92041i −0.227985 + 0.155438i −0.671926 0.740619i \(-0.734533\pi\)
0.443940 + 0.896056i \(0.353580\pi\)
\(354\) 0 0
\(355\) 5.76060 + 6.20845i 0.305741 + 0.329510i
\(356\) 6.99198 + 8.76767i 0.370574 + 0.464685i
\(357\) 0 0
\(358\) 3.39395 4.25588i 0.179376 0.224930i
\(359\) −23.2193 + 1.74004i −1.22547 + 0.0918360i −0.671692 0.740831i \(-0.734432\pi\)
−0.553774 + 0.832667i \(0.686813\pi\)
\(360\) 0 0
\(361\) 16.9394 29.3399i 0.891549 1.54421i
\(362\) 4.36002 + 7.55177i 0.229158 + 0.396912i
\(363\) 0 0
\(364\) 6.93468 + 3.36987i 0.363476 + 0.176629i
\(365\) 18.0076 + 4.11011i 0.942559 + 0.215133i
\(366\) 0 0
\(367\) 28.3620 11.1313i 1.48048 0.581048i 0.518725 0.854941i \(-0.326407\pi\)
0.961760 + 0.273894i \(0.0883116\pi\)
\(368\) −6.15436 + 2.41541i −0.320818 + 0.125912i
\(369\) 0 0
\(370\) −0.557863 0.127329i −0.0290019 0.00661950i
\(371\) 8.36829 3.99352i 0.434460 0.207333i
\(372\) 0 0
\(373\) −12.0734 20.9118i −0.625139 1.08277i −0.988514 0.151130i \(-0.951709\pi\)
0.363375 0.931643i \(-0.381624\pi\)
\(374\) 4.96949 8.60742i 0.256966 0.445079i
\(375\) 0 0
\(376\) −7.05463 + 0.528671i −0.363815 + 0.0272641i
\(377\) −15.1963 + 19.0556i −0.782649 + 0.981411i
\(378\) 0 0
\(379\) 13.6961 + 17.1744i 0.703523 + 0.882190i 0.997281 0.0736898i \(-0.0234775\pi\)
−0.293758 + 0.955880i \(0.594906\pi\)
\(380\) 9.80001 + 10.5619i 0.502730 + 0.541814i
\(381\) 0 0
\(382\) 8.04107 5.48231i 0.411417 0.280499i
\(383\) 7.14212 + 1.07650i 0.364945 + 0.0550066i 0.328955 0.944346i \(-0.393303\pi\)
0.0359899 + 0.999352i \(0.488542\pi\)
\(384\) 0 0
\(385\) −21.6918 + 19.9846i −1.10552 + 1.01851i
\(386\) −8.87328 + 18.4256i −0.451638 + 0.937836i
\(387\) 0 0
\(388\) 6.49991 7.00523i 0.329983 0.355637i
\(389\) −11.0566 0.828575i −0.560590 0.0420104i −0.208578 0.978006i \(-0.566883\pi\)
−0.352012 + 0.935995i \(0.614502\pi\)
\(390\) 0 0
\(391\) 11.6791i 0.590639i
\(392\) −2.11061 + 6.67423i −0.106602 + 0.337100i
\(393\) 0 0
\(394\) −2.98699 + 7.61072i −0.150482 + 0.383423i
\(395\) −1.60595 + 21.4299i −0.0808039 + 1.07825i
\(396\) 0 0
\(397\) −5.89844 + 8.65142i −0.296034 + 0.434202i −0.945223 0.326425i \(-0.894156\pi\)
0.649189 + 0.760627i \(0.275108\pi\)
\(398\) 24.6352 + 11.8637i 1.23485 + 0.594673i
\(399\) 0 0
\(400\) 0.967784 0.466060i 0.0483892 0.0233030i
\(401\) 0.211014 1.39999i 0.0105375 0.0699120i −0.982944 0.183905i \(-0.941126\pi\)
0.993482 + 0.113993i \(0.0363642\pi\)
\(402\) 0 0
\(403\) −11.2690 + 1.69853i −0.561351 + 0.0846100i
\(404\) 5.36044 4.97376i 0.266692 0.247454i
\(405\) 0 0
\(406\) −19.1243 11.1319i −0.949122 0.552466i
\(407\) 1.27036 + 1.01308i 0.0629692 + 0.0502163i
\(408\) 0 0
\(409\) −10.8256 + 35.0956i −0.535289 + 1.73537i 0.132662 + 0.991161i \(0.457647\pi\)
−0.667952 + 0.744205i \(0.732829\pi\)
\(410\) 18.6462 + 10.7654i 0.920869 + 0.531664i
\(411\) 0 0
\(412\) −1.16770 + 0.266520i −0.0575284 + 0.0131305i
\(413\) −35.7716 + 8.03148i −1.76021 + 0.395203i
\(414\) 0 0
\(415\) −13.3297 + 4.11166i −0.654328 + 0.201833i
\(416\) −1.06466 2.71270i −0.0521991 0.133001i
\(417\) 0 0
\(418\) −12.0594 39.0957i −0.589845 1.91223i
\(419\) −1.65829 + 7.26544i −0.0810128 + 0.354940i −0.999145 0.0413330i \(-0.986840\pi\)
0.918133 + 0.396273i \(0.129697\pi\)
\(420\) 0 0
\(421\) 0.407933 + 1.78727i 0.0198814 + 0.0871063i 0.983895 0.178746i \(-0.0572039\pi\)
−0.964014 + 0.265852i \(0.914347\pi\)
\(422\) 2.05853 1.18849i 0.100208 0.0578548i
\(423\) 0 0
\(424\) −3.34892 1.03300i −0.162638 0.0501672i
\(425\) 0.141802 + 1.89222i 0.00687841 + 0.0917860i
\(426\) 0 0
\(427\) 5.42499 + 13.9679i 0.262534 + 0.675953i
\(428\) −12.4457 + 9.92512i −0.601586 + 0.479749i
\(429\) 0 0
\(430\) 2.94626 + 19.5471i 0.142081 + 0.942647i
\(431\) 14.4572 + 21.2048i 0.696378 + 1.02140i 0.997694 + 0.0678744i \(0.0216217\pi\)
−0.301316 + 0.953524i \(0.597426\pi\)
\(432\) 0 0
\(433\) −3.04088 6.31445i −0.146135 0.303453i 0.815034 0.579414i \(-0.196718\pi\)
−0.961169 + 0.275961i \(0.911004\pi\)
\(434\) −3.01472 9.89777i −0.144711 0.475108i
\(435\) 0 0
\(436\) 5.04036 + 3.43646i 0.241389 + 0.164577i
\(437\) −35.2426 32.7003i −1.68588 1.56427i
\(438\) 0 0
\(439\) −5.86680 2.30255i −0.280007 0.109895i 0.221182 0.975233i \(-0.429009\pi\)
−0.501189 + 0.865338i \(0.667104\pi\)
\(440\) 11.1478 0.531452
\(441\) 0 0
\(442\) 5.14790 0.244860
\(443\) 25.3715 + 9.95758i 1.20544 + 0.473099i 0.881140 0.472856i \(-0.156777\pi\)
0.324297 + 0.945955i \(0.394872\pi\)
\(444\) 0 0
\(445\) −16.2882 15.1132i −0.772133 0.716434i
\(446\) −1.01527 0.692200i −0.0480745 0.0327766i
\(447\) 0 0
\(448\) 2.29596 1.31475i 0.108474 0.0621163i
\(449\) −3.16053 6.56292i −0.149155 0.309723i 0.812983 0.582288i \(-0.197842\pi\)
−0.962137 + 0.272565i \(0.912128\pi\)
\(450\) 0 0
\(451\) −34.4407 50.5152i −1.62175 2.37867i
\(452\) −1.13114 7.50462i −0.0532043 0.352988i
\(453\) 0 0
\(454\) 0.577794 0.460776i 0.0271172 0.0216253i
\(455\) −14.5819 4.55452i −0.683609 0.213519i
\(456\) 0 0
\(457\) −0.754952 10.0741i −0.0353152 0.471248i −0.986624 0.163010i \(-0.947880\pi\)
0.951309 0.308238i \(-0.0997394\pi\)
\(458\) 0.584092 + 0.180168i 0.0272928 + 0.00841872i
\(459\) 0 0
\(460\) 11.3446 6.54981i 0.528945 0.305386i
\(461\) −5.23058 22.9167i −0.243613 1.06734i −0.937700 0.347446i \(-0.887049\pi\)
0.694087 0.719891i \(-0.255808\pi\)
\(462\) 0 0
\(463\) 0.164749 0.721811i 0.00765652 0.0335454i −0.970955 0.239261i \(-0.923095\pi\)
0.978612 + 0.205715i \(0.0659521\pi\)
\(464\) 2.46524 + 7.99210i 0.114446 + 0.371024i
\(465\) 0 0
\(466\) −1.25096 3.18739i −0.0579495 0.147653i
\(467\) 10.5022 3.23950i 0.485984 0.149906i −0.0420739 0.999115i \(-0.513396\pi\)
0.528058 + 0.849208i \(0.322920\pi\)
\(468\) 0 0
\(469\) −12.7325 + 10.0803i −0.587931 + 0.465463i
\(470\) 13.6656 3.11909i 0.630348 0.143873i
\(471\) 0 0
\(472\) 12.0005 + 6.92849i 0.552368 + 0.318910i
\(473\) 16.5455 53.6392i 0.760763 2.46633i
\(474\) 0 0
\(475\) 6.10693 + 4.87011i 0.280205 + 0.223456i
\(476\) 0.680220 + 4.62401i 0.0311778 + 0.211941i
\(477\) 0 0
\(478\) −5.09068 + 4.72346i −0.232842 + 0.216046i
\(479\) 21.6663 3.26567i 0.989957 0.149212i 0.365953 0.930633i \(-0.380743\pi\)
0.624004 + 0.781421i \(0.285505\pi\)
\(480\) 0 0
\(481\) −0.125432 + 0.832189i −0.00571922 + 0.0379446i
\(482\) 19.8416 9.55519i 0.903758 0.435227i
\(483\) 0 0
\(484\) −18.6099 8.96204i −0.845903 0.407365i
\(485\) −10.6662 + 15.6444i −0.484327 + 0.710377i
\(486\) 0 0
\(487\) −0.806541 + 10.7625i −0.0365479 + 0.487697i 0.948656 + 0.316310i \(0.102444\pi\)
−0.985204 + 0.171387i \(0.945175\pi\)
\(488\) 2.06913 5.27207i 0.0936653 0.238655i
\(489\) 0 0
\(490\) 2.16423 13.6997i 0.0977701 0.618890i
\(491\) 11.4957i 0.518794i 0.965771 + 0.259397i \(0.0835239\pi\)
−0.965771 + 0.259397i \(0.916476\pi\)
\(492\) 0 0
\(493\) −14.7333 1.10411i −0.663553 0.0497264i
\(494\) 14.4136 15.5341i 0.648497 0.698914i
\(495\) 0 0
\(496\) −1.69678 + 3.52341i −0.0761879 + 0.158206i
\(497\) 9.32147 + 6.40374i 0.418125 + 0.287247i
\(498\) 0 0
\(499\) −40.6067 6.12048i −1.81781 0.273990i −0.850202 0.526457i \(-0.823520\pi\)
−0.967606 + 0.252467i \(0.918758\pi\)
\(500\) −9.94393 + 6.77966i −0.444706 + 0.303195i
\(501\) 0 0
\(502\) −7.98658 8.60748i −0.356458 0.384171i
\(503\) 19.1535 + 24.0177i 0.854012 + 1.07090i 0.996704 + 0.0811302i \(0.0258530\pi\)
−0.142691 + 0.989767i \(0.545576\pi\)
\(504\) 0 0
\(505\) −9.03361 + 11.3278i −0.401990 + 0.504080i
\(506\) −37.0937 + 2.77979i −1.64901 + 0.123577i
\(507\) 0 0
\(508\) −10.2086 + 17.6817i −0.452932 + 0.784501i
\(509\) 14.2939 + 24.7578i 0.633567 + 1.09737i 0.986817 + 0.161842i \(0.0517433\pi\)
−0.353249 + 0.935529i \(0.614923\pi\)
\(510\) 0 0
\(511\) 24.6639 + 0.0873346i 1.09107 + 0.00386345i
\(512\) −0.974928 0.222521i −0.0430861 0.00983413i
\(513\) 0 0
\(514\) −9.86711 + 3.87256i −0.435220 + 0.170811i
\(515\) 2.20910 0.867008i 0.0973446 0.0382049i
\(516\) 0 0
\(517\) −38.8049 8.85697i −1.70664 0.389529i
\(518\) −0.764073 0.00270557i −0.0335714 0.000118876i
\(519\) 0 0
\(520\) 2.88701 + 5.00044i 0.126604 + 0.219284i
\(521\) 9.56740 16.5712i 0.419156 0.725999i −0.576699 0.816957i \(-0.695660\pi\)
0.995855 + 0.0909579i \(0.0289929\pi\)
\(522\) 0 0
\(523\) 5.28333 0.395931i 0.231024 0.0173128i 0.0412849 0.999147i \(-0.486855\pi\)
0.189739 + 0.981835i \(0.439236\pi\)
\(524\) −0.539182 + 0.676113i −0.0235543 + 0.0295362i
\(525\) 0 0
\(526\) 0.555699 + 0.696825i 0.0242296 + 0.0303830i
\(527\) −4.69884 5.06415i −0.204685 0.220598i
\(528\) 0 0
\(529\) −17.1117 + 11.6665i −0.743986 + 0.507241i
\(530\) 6.86640 + 1.03494i 0.298257 + 0.0449551i
\(531\) 0 0
\(532\) 15.8578 + 10.8941i 0.687523 + 0.472320i
\(533\) 13.7397 28.5308i 0.595133 1.23581i
\(534\) 0 0
\(535\) 21.4532 23.1210i 0.927503 0.999610i
\(536\) 6.12086 + 0.458695i 0.264381 + 0.0198126i
\(537\) 0 0
\(538\) 14.5990i 0.629409i
\(539\) −22.4158 + 32.3828i −0.965517 + 1.39483i
\(540\) 0 0
\(541\) −5.20396 + 13.2595i −0.223736 + 0.570069i −0.998029 0.0627579i \(-0.980010\pi\)
0.774293 + 0.632827i \(0.218106\pi\)
\(542\) −1.17314 + 15.6544i −0.0503905 + 0.672414i
\(543\) 0 0
\(544\) 0.995116 1.45957i 0.0426652 0.0625784i
\(545\) −10.8901 5.24440i −0.466481 0.224645i
\(546\) 0 0
\(547\) 28.1280 13.5457i 1.20267 0.579173i 0.278231 0.960514i \(-0.410252\pi\)
0.924434 + 0.381341i \(0.124538\pi\)
\(548\) −0.474232 + 3.14633i −0.0202582 + 0.134404i
\(549\) 0 0
\(550\) 5.97606 0.900745i 0.254820 0.0384079i
\(551\) −44.5834 + 41.3673i −1.89931 + 1.76231i
\(552\) 0 0
\(553\) 4.17638 + 28.3902i 0.177598 + 1.20728i
\(554\) −3.19951 2.55152i −0.135934 0.108404i
\(555\) 0 0
\(556\) −3.14193 + 10.1859i −0.133248 + 0.431978i
\(557\) 33.6391 + 19.4216i 1.42534 + 0.822918i 0.996748 0.0805817i \(-0.0256778\pi\)
0.428588 + 0.903500i \(0.359011\pi\)
\(558\) 0 0
\(559\) 28.3452 6.46960i 1.19887 0.273635i
\(560\) −4.11008 + 3.25394i −0.173683 + 0.137504i
\(561\) 0 0
\(562\) 2.52413 0.778591i 0.106474 0.0328429i
\(563\) 4.10832 + 10.4678i 0.173145 + 0.441167i 0.990934 0.134352i \(-0.0428954\pi\)
−0.817788 + 0.575519i \(0.804800\pi\)
\(564\) 0 0
\(565\) 4.43235 + 14.3693i 0.186471 + 0.604523i
\(566\) 2.40280 10.5274i 0.100997 0.442498i
\(567\) 0 0
\(568\) −0.951159 4.16730i −0.0399097 0.174856i
\(569\) −14.4407 + 8.33737i −0.605388 + 0.349521i −0.771158 0.636644i \(-0.780322\pi\)
0.165770 + 0.986164i \(0.446989\pi\)
\(570\) 0 0
\(571\) −19.3279 5.96187i −0.808848 0.249496i −0.137369 0.990520i \(-0.543864\pi\)
−0.671479 + 0.741024i \(0.734341\pi\)
\(572\) −1.22527 16.3501i −0.0512310 0.683630i
\(573\) 0 0
\(574\) 27.4428 + 8.57151i 1.14544 + 0.357768i
\(575\) 5.55231 4.42782i 0.231548 0.184653i
\(576\) 0 0
\(577\) 0.633669 + 4.20412i 0.0263800 + 0.175020i 0.998141 0.0609475i \(-0.0194122\pi\)
−0.971761 + 0.235967i \(0.924174\pi\)
\(578\) −7.81855 11.4677i −0.325209 0.476994i
\(579\) 0 0
\(580\) −7.19013 14.9305i −0.298554 0.619954i
\(581\) −16.1642 + 9.25623i −0.670603 + 0.384013i
\(582\) 0 0
\(583\) −16.2918 11.1076i −0.674739 0.460030i
\(584\) −6.83362 6.34067i −0.282777 0.262379i
\(585\) 0 0
\(586\) −17.5561 6.89026i −0.725236 0.284634i
\(587\) 7.73865 0.319408 0.159704 0.987165i \(-0.448946\pi\)
0.159704 + 0.987165i \(0.448946\pi\)
\(588\) 0 0
\(589\) −28.4377 −1.17175
\(590\) −25.5579 10.0308i −1.05220 0.412959i
\(591\) 0 0
\(592\) 0.211701 + 0.196430i 0.00870087 + 0.00807322i
\(593\) 10.4169 + 7.10212i 0.427771 + 0.291649i 0.758004 0.652250i \(-0.226175\pi\)
−0.330233 + 0.943900i \(0.607127\pi\)
\(594\) 0 0
\(595\) −2.69822 8.85868i −0.110616 0.363170i
\(596\) 0.800621 + 1.66251i 0.0327947 + 0.0680989i
\(597\) 0 0
\(598\) −10.8532 15.9188i −0.443821 0.650966i
\(599\) 5.00581 + 33.2114i 0.204532 + 1.35698i 0.821598 + 0.570068i \(0.193083\pi\)
−0.617066 + 0.786912i \(0.711679\pi\)
\(600\) 0 0
\(601\) 23.8851 19.0477i 0.974293 0.776973i −0.000518858 1.00000i \(-0.500165\pi\)
0.974812 + 0.223027i \(0.0715937\pi\)
\(602\) 9.55660 + 24.6057i 0.389498 + 1.00285i
\(603\) 0 0
\(604\) 1.75245 + 23.3848i 0.0713061 + 0.951513i
\(605\) 39.1078 + 12.0632i 1.58996 + 0.490437i
\(606\) 0 0
\(607\) −6.91922 + 3.99481i −0.280842 + 0.162144i −0.633805 0.773493i \(-0.718508\pi\)
0.352962 + 0.935638i \(0.385174\pi\)
\(608\) −1.61812 7.08947i −0.0656236 0.287516i
\(609\) 0 0
\(610\) −2.49705 + 10.9403i −0.101103 + 0.442959i
\(611\) −6.07663 19.7000i −0.245834 0.796975i
\(612\) 0 0
\(613\) 6.20205 + 15.8026i 0.250499 + 0.638260i 0.999710 0.0240708i \(-0.00766270\pi\)
−0.749212 + 0.662331i \(0.769567\pi\)
\(614\) −25.1200 + 7.74851i −1.01376 + 0.312704i
\(615\) 0 0
\(616\) 14.5242 3.26100i 0.585198 0.131389i
\(617\) 10.6630 2.43375i 0.429275 0.0979792i −0.00242379 0.999997i \(-0.500772\pi\)
0.431699 + 0.902018i \(0.357914\pi\)
\(618\) 0 0
\(619\) 21.9193 + 12.6551i 0.881012 + 0.508653i 0.870992 0.491297i \(-0.163477\pi\)
0.0100204 + 0.999950i \(0.496810\pi\)
\(620\) 2.28392 7.40429i 0.0917245 0.297363i
\(621\) 0 0
\(622\) 0.278748 + 0.222294i 0.0111768 + 0.00891317i
\(623\) −25.6424 14.9260i −1.02734 0.597997i
\(624\) 0 0
\(625\) 13.5434 12.5665i 0.541737 0.502658i
\(626\) −10.3275 + 1.55661i −0.412768 + 0.0622148i
\(627\) 0 0
\(628\) 0.845552 5.60987i 0.0337412 0.223858i
\(629\) −0.459639 + 0.221350i −0.0183270 + 0.00882582i
\(630\) 0 0
\(631\) −3.70871 1.78602i −0.147641 0.0711003i 0.358604 0.933490i \(-0.383253\pi\)
−0.506246 + 0.862389i \(0.668967\pi\)
\(632\) 6.10976 8.96137i 0.243033 0.356464i
\(633\) 0 0
\(634\) 1.48160 19.7706i 0.0588420 0.785192i
\(635\) 14.7795 37.6575i 0.586506 1.49439i
\(636\) 0 0
\(637\) −20.3307 1.66844i −0.805531 0.0661061i
\(638\) 47.0566i 1.86299i
\(639\) 0 0
\(640\) 1.97583 + 0.148068i 0.0781017 + 0.00585291i
\(641\) −8.77051 + 9.45237i −0.346414 + 0.373346i −0.882092 0.471076i \(-0.843866\pi\)
0.535678 + 0.844422i \(0.320056\pi\)
\(642\) 0 0
\(643\) 14.4593 30.0251i 0.570219 1.18407i −0.394035 0.919095i \(-0.628921\pi\)
0.964255 0.264977i \(-0.0853644\pi\)
\(644\) 12.8646 11.8521i 0.506938 0.467040i
\(645\) 0 0
\(646\) 12.7023 + 1.91456i 0.499764 + 0.0753273i
\(647\) 20.7937 14.1769i 0.817484 0.557351i −0.0808181 0.996729i \(-0.525753\pi\)
0.898303 + 0.439377i \(0.144801\pi\)
\(648\) 0 0
\(649\) 53.0288 + 57.1514i 2.08156 + 2.24339i
\(650\) 1.95168 + 2.44733i 0.0765514 + 0.0959924i
\(651\) 0 0
\(652\) 12.1345 15.2161i 0.475222 0.595909i
\(653\) −27.9643 + 2.09564i −1.09433 + 0.0820085i −0.609640 0.792678i \(-0.708686\pi\)
−0.484688 + 0.874687i \(0.661067\pi\)
\(654\) 0 0
\(655\) 0.856727 1.48390i 0.0334751 0.0579806i
\(656\) −5.43329 9.41073i −0.212134 0.367427i
\(657\) 0 0
\(658\) 16.8922 8.06129i 0.658527 0.314262i
\(659\) −13.9774 3.19024i −0.544481 0.124274i −0.0585713 0.998283i \(-0.518654\pi\)
−0.485910 + 0.874009i \(0.661512\pi\)
\(660\) 0 0
\(661\) −19.0215 + 7.46539i −0.739851 + 0.290370i −0.705180 0.709029i \(-0.749134\pi\)
−0.0346715 + 0.999399i \(0.511038\pi\)
\(662\) −20.8735 + 8.19225i −0.811272 + 0.318401i
\(663\) 0 0
\(664\) 6.86376 + 1.56661i 0.266365 + 0.0607962i
\(665\) −34.2864 16.6613i −1.32957 0.646097i
\(666\) 0 0
\(667\) 27.6477 + 47.8872i 1.07052 + 1.85420i
\(668\) −9.28089 + 16.0750i −0.359088 + 0.621959i
\(669\) 0 0
\(670\) −12.1277 + 0.908847i −0.468535 + 0.0351118i
\(671\) 19.8675 24.9131i 0.766976 0.961758i
\(672\) 0 0
\(673\) −10.3675 13.0004i −0.399638 0.501130i 0.540774 0.841168i \(-0.318132\pi\)
−0.940412 + 0.340038i \(0.889560\pi\)
\(674\) −1.58701 1.71039i −0.0611292 0.0658816i
\(675\) 0 0
\(676\) −3.72448 + 2.53931i −0.143249 + 0.0976656i
\(677\) −16.0518 2.41941i −0.616919 0.0929856i −0.166855 0.985982i \(-0.553361\pi\)
−0.450065 + 0.892996i \(0.648599\pi\)
\(678\) 0 0
\(679\) −9.32037 + 23.5029i −0.357683 + 0.901957i
\(680\) −1.51865 + 3.15351i −0.0582376 + 0.120932i
\(681\) 0 0
\(682\) −14.9657 + 16.1292i −0.573066 + 0.617618i
\(683\) −29.6324 2.22064i −1.13385 0.0849704i −0.505447 0.862857i \(-0.668672\pi\)
−0.628404 + 0.777887i \(0.716292\pi\)
\(684\) 0 0
\(685\) 6.30446i 0.240881i
\(686\) −1.18776 18.4821i −0.0453488 0.705651i
\(687\) 0 0
\(688\) 3.64497 9.28722i 0.138963 0.354072i
\(689\) 0.763217 10.1844i 0.0290762 0.387995i
\(690\) 0 0
\(691\) −0.902761 + 1.32411i −0.0343426 + 0.0503714i −0.843026 0.537873i \(-0.819228\pi\)
0.808684 + 0.588244i \(0.200181\pi\)
\(692\) −0.136161 0.0655719i −0.00517608 0.00249267i
\(693\) 0 0
\(694\) 3.55036 1.70976i 0.134770 0.0649016i
\(695\) 3.14783 20.8845i 0.119404 0.792193i
\(696\) 0 0
\(697\) 18.9816 2.86102i 0.718980 0.108369i
\(698\) 0.722844 0.670701i 0.0273600 0.0253864i
\(699\) 0 0
\(700\) −1.94039 + 2.07645i −0.0733398 + 0.0784823i
\(701\) −11.9122 9.49964i −0.449917 0.358796i 0.372165 0.928167i \(-0.378616\pi\)
−0.822081 + 0.569370i \(0.807187\pi\)
\(702\) 0 0
\(703\) −0.619001 + 2.00675i −0.0233460 + 0.0756860i
\(704\) −4.87253 2.81316i −0.183640 0.106025i
\(705\) 0 0
\(706\) −5.05430 + 1.15361i −0.190221 + 0.0434167i
\(707\) −8.45604 + 17.4013i −0.318022 + 0.654441i
\(708\) 0 0
\(709\) 31.8469 9.82347i 1.19604 0.368928i 0.368119 0.929779i \(-0.380002\pi\)
0.827917 + 0.560850i \(0.189526\pi\)
\(710\) 3.09419 + 7.88387i 0.116123 + 0.295876i
\(711\) 0 0
\(712\) 3.30546 + 10.7160i 0.123877 + 0.401601i
\(713\) −5.75329 + 25.2068i −0.215462 + 0.944003i
\(714\) 0 0
\(715\) 7.22890 + 31.6719i 0.270346 + 1.18446i
\(716\) 4.71419 2.72174i 0.176178 0.101716i
\(717\) 0 0
\(718\) −22.2499 6.86319i −0.830359 0.256132i
\(719\) 2.90974 + 38.8278i 0.108515 + 1.44803i 0.739981 + 0.672628i \(0.234835\pi\)
−0.631466 + 0.775404i \(0.717546\pi\)
\(720\) 0 0
\(721\) 2.62457 1.77582i 0.0977439 0.0661349i
\(722\) 26.4875 21.1231i 0.985765 0.786121i
\(723\) 0 0
\(724\) 1.29965 + 8.62264i 0.0483013 + 0.320458i
\(725\) −5.06082 7.42286i −0.187954 0.275678i
\(726\) 0 0
\(727\) −2.88592 5.99266i −0.107033 0.222256i 0.840573 0.541698i \(-0.182219\pi\)
−0.947606 + 0.319443i \(0.896504\pi\)
\(728\) 5.22416 + 5.67044i 0.193620 + 0.210161i
\(729\) 0 0
\(730\) 15.2612 + 10.4049i 0.564841 + 0.385102i
\(731\) 12.9196 + 11.9876i 0.477848 + 0.443378i
\(732\) 0 0
\(733\) −17.5582 6.89110i −0.648528 0.254529i 0.0181945 0.999834i \(-0.494208\pi\)
−0.666723 + 0.745306i \(0.732303\pi\)
\(734\) 30.4682 1.12460
\(735\) 0 0
\(736\) −6.61138 −0.243699
\(737\) 32.1472 + 12.6169i 1.18416 + 0.464748i
\(738\) 0 0
\(739\) −5.78907 5.37147i −0.212954 0.197593i 0.566482 0.824074i \(-0.308304\pi\)
−0.779436 + 0.626481i \(0.784494\pi\)
\(740\) −0.472781 0.322337i −0.0173798 0.0118493i
\(741\) 0 0
\(742\) 9.24882 0.660178i 0.339535 0.0242359i
\(743\) 0.829980 + 1.72347i 0.0304490 + 0.0632280i 0.915639 0.402003i \(-0.131686\pi\)
−0.885190 + 0.465231i \(0.845971\pi\)
\(744\) 0 0
\(745\) −2.05956 3.02083i −0.0754566 0.110674i
\(746\) −3.59891 23.8772i −0.131765 0.874206i
\(747\) 0 0
\(748\) 7.77061 6.19686i 0.284122 0.226580i
\(749\) 21.1874 36.3994i 0.774172 1.33001i
\(750\) 0 0
\(751\) 0.210852 + 2.81363i 0.00769412 + 0.102671i 0.999729 0.0232956i \(-0.00741588\pi\)
−0.992035 + 0.125966i \(0.959797\pi\)
\(752\) −6.76011 2.08522i −0.246516 0.0760401i
\(753\) 0 0
\(754\) −21.1076 + 12.1865i −0.768694 + 0.443806i
\(755\) −10.3392 45.2990i −0.376282 1.64860i
\(756\) 0 0
\(757\) 12.1166 53.0861i 0.440384 1.92945i 0.0795103 0.996834i \(-0.474664\pi\)
0.360874 0.932615i \(-0.382479\pi\)
\(758\) 6.47485 + 20.9910i 0.235177 + 0.762426i
\(759\) 0 0
\(760\) 5.26388 + 13.4121i 0.190941 + 0.486509i
\(761\) −21.4005 + 6.60119i −0.775769 + 0.239293i −0.657264 0.753661i \(-0.728286\pi\)
−0.118505 + 0.992953i \(0.537810\pi\)
\(762\) 0 0
\(763\) −15.7226 3.64720i −0.569195 0.132037i
\(764\) 9.48814 2.16561i 0.343269 0.0783488i
\(765\) 0 0
\(766\) 6.25512 + 3.61140i 0.226007 + 0.130485i
\(767\) −11.9026 + 38.5873i −0.429778 + 1.39331i
\(768\) 0 0
\(769\) 19.3456 + 15.4276i 0.697619 + 0.556333i 0.906809 0.421542i \(-0.138511\pi\)
−0.209190 + 0.977875i \(0.567083\pi\)
\(770\) −27.4935 + 10.6782i −0.990798 + 0.384816i
\(771\) 0 0
\(772\) −14.9915 + 13.9101i −0.539556 + 0.500635i
\(773\) −34.9311 + 5.26502i −1.25639 + 0.189370i −0.743294 0.668964i \(-0.766738\pi\)
−0.513091 + 0.858334i \(0.671500\pi\)
\(774\) 0 0
\(775\) 0.626083 4.15379i 0.0224896 0.149208i
\(776\) 8.60989 4.14630i 0.309077 0.148844i
\(777\) 0 0
\(778\) −9.98955 4.81071i −0.358143 0.172472i
\(779\) 44.5132 65.2889i 1.59485 2.33922i
\(780\) 0 0
\(781\) 1.79722 23.9822i 0.0643096 0.858152i
\(782\) 4.26686 10.8718i 0.152583 0.388775i
\(783\) 0 0
\(784\) −4.40308 + 5.44177i −0.157253 + 0.194349i
\(785\) 11.2408i 0.401201i
\(786\) 0 0
\(787\) 3.76163 + 0.281895i 0.134088 + 0.0100485i 0.141605 0.989923i \(-0.454774\pi\)
−0.00751722 + 0.999972i \(0.502393\pi\)
\(788\) −5.56102 + 5.99335i −0.198103 + 0.213504i
\(789\) 0 0
\(790\) −9.32414 + 19.3618i −0.331738 + 0.688861i
\(791\) 9.97818 + 17.4249i 0.354783 + 0.619558i
\(792\) 0 0
\(793\) 16.3201 + 2.45986i 0.579545 + 0.0873523i
\(794\) −8.65142 + 5.89844i −0.307028 + 0.209328i
\(795\) 0 0
\(796\) 18.5980 + 20.0439i 0.659188 + 0.710436i
\(797\) 20.0207 + 25.1051i 0.709169 + 0.889270i 0.997671 0.0682095i \(-0.0217286\pi\)
−0.288502 + 0.957479i \(0.593157\pi\)
\(798\) 0 0
\(799\) 7.79180 9.77061i 0.275654 0.345659i
\(800\) 1.07116 0.0802720i 0.0378711 0.00283805i
\(801\) 0 0
\(802\) 0.707900 1.22612i 0.0249968 0.0432958i
\(803\) −26.2247 45.4225i −0.925448 1.60292i
\(804\) 0 0
\(805\) −21.7049 + 27.0203i −0.764998 + 0.952339i
\(806\) −11.1106 2.53592i −0.391354 0.0893240i
\(807\) 0 0
\(808\) 6.80701 2.67155i 0.239470 0.0939850i
\(809\) 16.0827 6.31201i 0.565439 0.221919i −0.0653638 0.997862i \(-0.520821\pi\)
0.630803 + 0.775943i \(0.282726\pi\)
\(810\) 0 0
\(811\) −35.1930 8.03258i −1.23579 0.282062i −0.445775 0.895145i \(-0.647072\pi\)
−0.790019 + 0.613083i \(0.789929\pi\)
\(812\) −13.7354 17.3493i −0.482017 0.608840i
\(813\) 0 0
\(814\) 0.812423 + 1.40716i 0.0284754 + 0.0493209i
\(815\) −19.2809 + 33.3955i −0.675380 + 1.16979i
\(816\) 0 0
\(817\) 72.3469 5.42165i 2.53110 0.189680i
\(818\) −22.8991 + 28.7146i −0.800648 + 1.00398i
\(819\) 0 0
\(820\) 13.4242 + 16.8334i 0.468793 + 0.587848i
\(821\) 38.7720 + 41.7863i 1.35315 + 1.45835i 0.751862 + 0.659320i \(0.229156\pi\)
0.601290 + 0.799031i \(0.294654\pi\)
\(822\) 0 0
\(823\) 27.0529 18.4443i 0.943004 0.642929i 0.00891113 0.999960i \(-0.497163\pi\)
0.934092 + 0.357031i \(0.116211\pi\)
\(824\) −1.18435 0.178512i −0.0412588 0.00621877i
\(825\) 0 0
\(826\) −36.2331 5.59254i −1.26071 0.194589i
\(827\) 13.7215 28.4931i 0.477144 0.990801i −0.513972 0.857807i \(-0.671827\pi\)
0.991117 0.132994i \(-0.0424591\pi\)
\(828\) 0 0
\(829\) 20.0032 21.5583i 0.694739 0.748751i −0.282875 0.959157i \(-0.591288\pi\)
0.977614 + 0.210406i \(0.0674786\pi\)
\(830\) −13.9104 1.04244i −0.482837 0.0361836i
\(831\) 0 0
\(832\) 2.91415i 0.101030i
\(833\) −6.10682 10.7525i −0.211589 0.372551i
\(834\) 0 0
\(835\) 13.4364 34.2355i 0.464987 1.18477i
\(836\) 3.05746 40.7989i 0.105744 1.41106i
\(837\) 0 0
\(838\) −4.19802 + 6.15737i −0.145018 + 0.212703i
\(839\) −31.7433 15.2868i −1.09590 0.527758i −0.203534 0.979068i \(-0.565243\pi\)
−0.892368 + 0.451309i \(0.850957\pi\)
\(840\) 0 0
\(841\) 36.8956 17.7680i 1.27226 0.612689i
\(842\) −0.273229 + 1.81276i −0.00941611 + 0.0624718i
\(843\) 0 0
\(844\) 2.35043 0.354271i 0.0809052 0.0121945i
\(845\) 6.54728 6.07498i 0.225233 0.208986i
\(846\) 0 0
\(847\) 54.4814 + 4.27687i 1.87200 + 0.146955i
\(848\) −2.74002 2.18509i −0.0940928 0.0750365i
\(849\) 0 0
\(850\) −0.559305 + 1.81322i −0.0191840 + 0.0621930i
\(851\) 1.65353 + 0.954664i 0.0566822 + 0.0327255i
\(852\) 0 0
\(853\) 19.6655 4.48853i 0.673335 0.153684i 0.127835 0.991795i \(-0.459197\pi\)
0.545500 + 0.838111i \(0.316340\pi\)
\(854\) −0.0530591 + 14.9843i −0.00181565 + 0.512752i
\(855\) 0 0
\(856\) −15.2114 + 4.69211i −0.519916 + 0.160373i
\(857\) 18.1445 + 46.2313i 0.619803 + 1.57923i 0.802885 + 0.596134i \(0.203297\pi\)
−0.183082 + 0.983098i \(0.558607\pi\)
\(858\) 0 0
\(859\) −10.0383 32.5433i −0.342502 1.11036i −0.948999 0.315278i \(-0.897902\pi\)
0.606498 0.795085i \(-0.292574\pi\)
\(860\) −4.39878 + 19.2723i −0.149997 + 0.657180i
\(861\) 0 0
\(862\) 5.71083 + 25.0208i 0.194512 + 0.852211i
\(863\) −16.5561 + 9.55865i −0.563575 + 0.325380i −0.754579 0.656209i \(-0.772159\pi\)
0.191004 + 0.981589i \(0.438826\pi\)
\(864\) 0 0
\(865\) 0.286137 + 0.0882617i 0.00972896 + 0.00300099i
\(866\) −0.523747 6.98891i −0.0177976 0.237493i
\(867\) 0 0
\(868\) 0.809741 10.3150i 0.0274844 0.350113i
\(869\) 47.7096 38.0472i 1.61844 1.29066i
\(870\) 0 0
\(871\) 2.66594 + 17.6873i 0.0903318 + 0.599312i
\(872\) 3.43646 + 5.04036i 0.116373 + 0.170688i
\(873\) 0 0
\(874\) −20.8596 43.3155i −0.705587 1.46517i
\(875\) 18.0303 26.2455i 0.609537 0.887259i
\(876\) 0 0
\(877\) 19.4384 + 13.2529i 0.656387 + 0.447517i 0.845167 0.534502i \(-0.179501\pi\)
−0.188780 + 0.982019i \(0.560453\pi\)
\(878\) −4.62003 4.28676i −0.155919 0.144671i
\(879\) 0 0
\(880\) 10.3772 + 4.07276i 0.349816 + 0.137293i
\(881\) 14.1123 0.475456 0.237728 0.971332i \(-0.423597\pi\)
0.237728 + 0.971332i \(0.423597\pi\)
\(882\) 0 0
\(883\) −8.10242 −0.272668 −0.136334 0.990663i \(-0.543532\pi\)
−0.136334 + 0.990663i \(0.543532\pi\)
\(884\) 4.79204 + 1.88074i 0.161174 + 0.0632561i
\(885\) 0 0
\(886\) 19.9798 + 18.5385i 0.671233 + 0.622813i
\(887\) −3.20876 2.18770i −0.107740 0.0734557i 0.508252 0.861209i \(-0.330292\pi\)
−0.615991 + 0.787753i \(0.711244\pi\)
\(888\) 0 0
\(889\) 8.24015 53.3864i 0.276366 1.79052i
\(890\) −9.64075 20.0192i −0.323159 0.671046i
\(891\) 0 0
\(892\) −0.692200 1.01527i −0.0231766 0.0339938i
\(893\) −7.66727 50.8690i −0.256575 1.70227i
\(894\) 0 0
\(895\) −8.43249 + 6.72469i −0.281867 + 0.224782i
\(896\) 2.61758 0.385062i 0.0874472 0.0128640i
\(897\) 0 0
\(898\) −0.544355 7.26392i −0.0181654 0.242400i
\(899\) 31.2546 + 9.64077i 1.04240 + 0.321538i
\(900\) 0 0
\(901\) 5.36154 3.09549i 0.178619 0.103126i
\(902\) −13.6046 59.6059i −0.452985 1.98466i
\(903\) 0 0
\(904\) 1.68880 7.39910i 0.0561686 0.246091i
\(905\) −5.09268 16.5101i −0.169286 0.548813i
\(906\) 0 0
\(907\) −13.0050 33.1361i −0.431823 1.10027i −0.966830 0.255420i \(-0.917786\pi\)
0.535007 0.844848i \(-0.320309\pi\)
\(908\) 0.706194 0.217832i 0.0234359 0.00722901i
\(909\) 0 0
\(910\) −11.9099 9.56704i −0.394810 0.317144i
\(911\) 39.7485 9.07235i 1.31693 0.300580i 0.494365 0.869254i \(-0.335401\pi\)
0.822563 + 0.568674i \(0.192543\pi\)
\(912\) 0 0
\(913\) 34.3039 + 19.8054i 1.13529 + 0.655463i
\(914\) 2.97773 9.65357i 0.0984946 0.319312i
\(915\) 0 0
\(916\) 0.477893 + 0.381107i 0.0157900 + 0.0125921i
\(917\) 0.682136 2.18395i 0.0225261 0.0721202i
\(918\) 0 0
\(919\) −9.32442 + 8.65180i −0.307584 + 0.285397i −0.818828 0.574040i \(-0.805376\pi\)
0.511243 + 0.859436i \(0.329185\pi\)
\(920\) 12.9533 1.95240i 0.427058 0.0643686i
\(921\) 0 0
\(922\) 3.50339 23.2435i 0.115378 0.765484i
\(923\) 11.2229 5.40464i 0.369405 0.177896i
\(924\) 0 0
\(925\) −0.279491 0.134596i −0.00918959 0.00442548i
\(926\) 0.417067 0.611725i 0.0137057 0.0201025i
\(927\) 0 0
\(928\) −0.625018 + 8.34029i −0.0205172 + 0.273783i
\(929\) 14.5832 37.1574i 0.478460 1.21910i −0.464316 0.885669i \(-0.653700\pi\)
0.942776 0.333426i \(-0.108205\pi\)
\(930\) 0 0
\(931\) −49.5448 11.6780i −1.62377 0.382732i
\(932\) 3.42408i 0.112160i
\(933\) 0 0
\(934\) 10.9598 + 0.821320i 0.358614 + 0.0268744i
\(935\) −13.3945 + 14.4359i −0.438048 + 0.472104i
\(936\) 0 0
\(937\) −24.0486 + 49.9374i −0.785633 + 1.63138i −0.0102039 + 0.999948i \(0.503248\pi\)
−0.775429 + 0.631435i \(0.782466\pi\)
\(938\) −15.5351 + 4.73175i −0.507238 + 0.154497i
\(939\) 0 0
\(940\) 13.8605 + 2.08913i 0.452079 + 0.0681400i
\(941\) −4.13694 + 2.82052i −0.134861 + 0.0919464i −0.628871 0.777509i \(-0.716483\pi\)
0.494011 + 0.869456i \(0.335530\pi\)
\(942\) 0 0
\(943\) −48.8657 52.6647i −1.59129 1.71500i
\(944\) 8.63969 + 10.8338i 0.281198 + 0.352611i
\(945\) 0 0
\(946\) 34.9984 43.8866i 1.13790 1.42688i
\(947\) 22.0818 1.65480i 0.717561 0.0537738i 0.289055 0.957313i \(-0.406659\pi\)
0.428506 + 0.903539i \(0.359040\pi\)
\(948\) 0 0
\(949\) 13.5831 23.5265i 0.440925 0.763704i
\(950\) 3.90553 + 6.76457i 0.126712 + 0.219472i
\(951\) 0 0
\(952\) −1.05614 + 4.55288i −0.0342297 + 0.147560i
\(953\) −10.5072 2.39819i −0.340360 0.0776851i 0.0489244 0.998802i \(-0.484421\pi\)
−0.389285 + 0.921117i \(0.627278\pi\)
\(954\) 0 0
\(955\) −17.9500 + 7.04487i −0.580850 + 0.227967i
\(956\) −6.46445 + 2.53711i −0.209075 + 0.0820560i
\(957\) 0 0
\(958\) 21.3616 + 4.87566i 0.690164 + 0.157525i
\(959\) −1.84420 8.21394i −0.0595524 0.265242i
\(960\) 0 0
\(961\) −7.85325 13.6022i −0.253331 0.438782i
\(962\) −0.420794 + 0.728837i −0.0135670 + 0.0234987i
\(963\) 0 0
\(964\) 21.9609 1.64574i 0.707312 0.0530057i
\(965\) 25.2643 31.6804i 0.813285 1.01983i
\(966\) 0 0
\(967\) 0.554989 + 0.695934i 0.0178472 + 0.0223797i 0.790675 0.612236i \(-0.209730\pi\)
−0.772828 + 0.634616i \(0.781158\pi\)
\(968\) −14.0492 15.1415i −0.451559 0.486665i
\(969\) 0 0
\(970\) −15.6444 + 10.6662i −0.502312 + 0.342471i
\(971\) −19.1361 2.88431i −0.614107 0.0925618i −0.165379 0.986230i \(-0.552885\pi\)
−0.448728 + 0.893668i \(0.648123\pi\)
\(972\) 0 0
\(973\) −2.00796 28.1307i −0.0643723 0.901829i
\(974\) −4.68279 + 9.72390i −0.150046 + 0.311574i
\(975\) 0 0
\(976\) 3.85220 4.15169i 0.123306 0.132892i
\(977\) 16.9361 + 1.26918i 0.541832 + 0.0406047i 0.342836 0.939395i \(-0.388613\pi\)
0.198997 + 0.980000i \(0.436232\pi\)
\(978\) 0 0
\(979\) 63.0950i 2.01652i
\(980\) 7.01970 11.9620i 0.224236 0.382113i
\(981\) 0 0
\(982\) −4.19986 + 10.7011i −0.134023 + 0.341484i
\(983\) −0.810211 + 10.8115i −0.0258417 + 0.344834i 0.969264 + 0.246021i \(0.0791234\pi\)
−0.995106 + 0.0988123i \(0.968496\pi\)
\(984\) 0 0
\(985\) 9.12550 13.3847i 0.290763 0.426470i
\(986\) −13.3114 6.41045i −0.423923 0.204150i
\(987\) 0 0
\(988\) 19.0925 9.19445i 0.607413 0.292514i
\(989\) 9.83097 65.2242i 0.312607 2.07401i
\(990\) 0 0
\(991\) −43.7668 + 6.59678i −1.39030 + 0.209554i −0.801146 0.598469i \(-0.795776\pi\)
−0.589151 + 0.808023i \(0.700538\pi\)
\(992\) −2.86674 + 2.65994i −0.0910190 + 0.0844533i
\(993\) 0 0
\(994\) 6.33756 + 9.36658i 0.201015 + 0.297090i
\(995\) −42.3571 33.7787i −1.34281 1.07086i
\(996\) 0 0
\(997\) 13.9535 45.2361i 0.441911 1.43264i −0.411503 0.911408i \(-0.634996\pi\)
0.853414 0.521233i \(-0.174528\pi\)
\(998\) −35.5637 20.5327i −1.12575 0.649951i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.2.bl.a.395.13 yes 240
3.2 odd 2 inner 882.2.bl.a.395.8 240
49.33 odd 42 inner 882.2.bl.a.719.8 yes 240
147.131 even 42 inner 882.2.bl.a.719.13 yes 240
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
882.2.bl.a.395.8 240 3.2 odd 2 inner
882.2.bl.a.395.13 yes 240 1.1 even 1 trivial
882.2.bl.a.719.8 yes 240 49.33 odd 42 inner
882.2.bl.a.719.13 yes 240 147.131 even 42 inner