Properties

Label 8800.2.a.be.1.1
Level $8800$
Weight $2$
Character 8800.1
Self dual yes
Analytic conductor $70.268$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8800,2,Mod(1,8800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8800.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8800 = 2^{5} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8800.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(70.2683537787\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 352)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.56155\) of defining polynomial
Character \(\chi\) \(=\) 8800.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.56155 q^{3} -0.561553 q^{9} -1.00000 q^{11} -2.00000 q^{13} +1.12311 q^{17} -7.12311 q^{19} +4.68466 q^{23} +5.56155 q^{27} -1.12311 q^{29} +9.56155 q^{31} +1.56155 q^{33} -6.68466 q^{37} +3.12311 q^{39} +8.24621 q^{41} +7.12311 q^{43} -4.00000 q^{47} -7.00000 q^{49} -1.75379 q^{51} +8.24621 q^{53} +11.1231 q^{57} +12.6847 q^{59} -15.3693 q^{61} -4.68466 q^{67} -7.31534 q^{69} -3.31534 q^{71} +6.00000 q^{73} +4.87689 q^{79} -7.00000 q^{81} +13.3693 q^{83} +1.75379 q^{87} -3.56155 q^{89} -14.9309 q^{93} +6.68466 q^{97} +0.561553 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{3} + 3 q^{9} - 2 q^{11} - 4 q^{13} - 6 q^{17} - 6 q^{19} - 3 q^{23} + 7 q^{27} + 6 q^{29} + 15 q^{31} - q^{33} - q^{37} - 2 q^{39} + 6 q^{43} - 8 q^{47} - 14 q^{49} - 20 q^{51} + 14 q^{57} + 13 q^{59}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.56155 −0.901563 −0.450781 0.892634i \(-0.648855\pi\)
−0.450781 + 0.892634i \(0.648855\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 0 0
\(9\) −0.561553 −0.187184
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.12311 0.272393 0.136197 0.990682i \(-0.456512\pi\)
0.136197 + 0.990682i \(0.456512\pi\)
\(18\) 0 0
\(19\) −7.12311 −1.63415 −0.817076 0.576530i \(-0.804407\pi\)
−0.817076 + 0.576530i \(0.804407\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.68466 0.976819 0.488409 0.872615i \(-0.337577\pi\)
0.488409 + 0.872615i \(0.337577\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 5.56155 1.07032
\(28\) 0 0
\(29\) −1.12311 −0.208555 −0.104278 0.994548i \(-0.533253\pi\)
−0.104278 + 0.994548i \(0.533253\pi\)
\(30\) 0 0
\(31\) 9.56155 1.71731 0.858653 0.512558i \(-0.171302\pi\)
0.858653 + 0.512558i \(0.171302\pi\)
\(32\) 0 0
\(33\) 1.56155 0.271831
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −6.68466 −1.09895 −0.549476 0.835510i \(-0.685172\pi\)
−0.549476 + 0.835510i \(0.685172\pi\)
\(38\) 0 0
\(39\) 3.12311 0.500097
\(40\) 0 0
\(41\) 8.24621 1.28784 0.643921 0.765092i \(-0.277307\pi\)
0.643921 + 0.765092i \(0.277307\pi\)
\(42\) 0 0
\(43\) 7.12311 1.08626 0.543132 0.839648i \(-0.317238\pi\)
0.543132 + 0.839648i \(0.317238\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.00000 −0.583460 −0.291730 0.956501i \(-0.594231\pi\)
−0.291730 + 0.956501i \(0.594231\pi\)
\(48\) 0 0
\(49\) −7.00000 −1.00000
\(50\) 0 0
\(51\) −1.75379 −0.245580
\(52\) 0 0
\(53\) 8.24621 1.13270 0.566352 0.824163i \(-0.308354\pi\)
0.566352 + 0.824163i \(0.308354\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 11.1231 1.47329
\(58\) 0 0
\(59\) 12.6847 1.65140 0.825701 0.564108i \(-0.190780\pi\)
0.825701 + 0.564108i \(0.190780\pi\)
\(60\) 0 0
\(61\) −15.3693 −1.96784 −0.983920 0.178611i \(-0.942839\pi\)
−0.983920 + 0.178611i \(0.942839\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −4.68466 −0.572322 −0.286161 0.958182i \(-0.592379\pi\)
−0.286161 + 0.958182i \(0.592379\pi\)
\(68\) 0 0
\(69\) −7.31534 −0.880664
\(70\) 0 0
\(71\) −3.31534 −0.393459 −0.196729 0.980458i \(-0.563032\pi\)
−0.196729 + 0.980458i \(0.563032\pi\)
\(72\) 0 0
\(73\) 6.00000 0.702247 0.351123 0.936329i \(-0.385800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 4.87689 0.548693 0.274347 0.961631i \(-0.411538\pi\)
0.274347 + 0.961631i \(0.411538\pi\)
\(80\) 0 0
\(81\) −7.00000 −0.777778
\(82\) 0 0
\(83\) 13.3693 1.46747 0.733737 0.679434i \(-0.237775\pi\)
0.733737 + 0.679434i \(0.237775\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 1.75379 0.188026
\(88\) 0 0
\(89\) −3.56155 −0.377524 −0.188762 0.982023i \(-0.560447\pi\)
−0.188762 + 0.982023i \(0.560447\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −14.9309 −1.54826
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 6.68466 0.678724 0.339362 0.940656i \(-0.389789\pi\)
0.339362 + 0.940656i \(0.389789\pi\)
\(98\) 0 0
\(99\) 0.561553 0.0564382
\(100\) 0 0
\(101\) 13.1231 1.30580 0.652899 0.757445i \(-0.273553\pi\)
0.652899 + 0.757445i \(0.273553\pi\)
\(102\) 0 0
\(103\) 2.24621 0.221326 0.110663 0.993858i \(-0.464703\pi\)
0.110663 + 0.993858i \(0.464703\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 0 0
\(109\) −14.0000 −1.34096 −0.670478 0.741929i \(-0.733911\pi\)
−0.670478 + 0.741929i \(0.733911\pi\)
\(110\) 0 0
\(111\) 10.4384 0.990774
\(112\) 0 0
\(113\) −15.5616 −1.46391 −0.731954 0.681354i \(-0.761391\pi\)
−0.731954 + 0.681354i \(0.761391\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 1.12311 0.103831
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) −12.8769 −1.16107
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −9.36932 −0.831392 −0.415696 0.909504i \(-0.636462\pi\)
−0.415696 + 0.909504i \(0.636462\pi\)
\(128\) 0 0
\(129\) −11.1231 −0.979335
\(130\) 0 0
\(131\) −4.00000 −0.349482 −0.174741 0.984614i \(-0.555909\pi\)
−0.174741 + 0.984614i \(0.555909\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1.31534 −0.112377 −0.0561886 0.998420i \(-0.517895\pi\)
−0.0561886 + 0.998420i \(0.517895\pi\)
\(138\) 0 0
\(139\) −12.0000 −1.01783 −0.508913 0.860818i \(-0.669953\pi\)
−0.508913 + 0.860818i \(0.669953\pi\)
\(140\) 0 0
\(141\) 6.24621 0.526026
\(142\) 0 0
\(143\) 2.00000 0.167248
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 10.9309 0.901563
\(148\) 0 0
\(149\) 13.1231 1.07509 0.537543 0.843236i \(-0.319352\pi\)
0.537543 + 0.843236i \(0.319352\pi\)
\(150\) 0 0
\(151\) 9.36932 0.762464 0.381232 0.924479i \(-0.375500\pi\)
0.381232 + 0.924479i \(0.375500\pi\)
\(152\) 0 0
\(153\) −0.630683 −0.0509877
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 10.6847 0.852729 0.426364 0.904552i \(-0.359794\pi\)
0.426364 + 0.904552i \(0.359794\pi\)
\(158\) 0 0
\(159\) −12.8769 −1.02120
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −12.0000 −0.939913 −0.469956 0.882690i \(-0.655730\pi\)
−0.469956 + 0.882690i \(0.655730\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −17.3693 −1.34408 −0.672039 0.740516i \(-0.734581\pi\)
−0.672039 + 0.740516i \(0.734581\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 4.00000 0.305888
\(172\) 0 0
\(173\) −18.0000 −1.36851 −0.684257 0.729241i \(-0.739873\pi\)
−0.684257 + 0.729241i \(0.739873\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −19.8078 −1.48884
\(178\) 0 0
\(179\) 4.68466 0.350148 0.175074 0.984555i \(-0.443984\pi\)
0.175074 + 0.984555i \(0.443984\pi\)
\(180\) 0 0
\(181\) −12.0540 −0.895965 −0.447982 0.894042i \(-0.647857\pi\)
−0.447982 + 0.894042i \(0.647857\pi\)
\(182\) 0 0
\(183\) 24.0000 1.77413
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −1.12311 −0.0821296
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4.68466 0.338970 0.169485 0.985533i \(-0.445790\pi\)
0.169485 + 0.985533i \(0.445790\pi\)
\(192\) 0 0
\(193\) −11.3693 −0.818381 −0.409191 0.912449i \(-0.634189\pi\)
−0.409191 + 0.912449i \(0.634189\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −8.24621 −0.587518 −0.293759 0.955879i \(-0.594906\pi\)
−0.293759 + 0.955879i \(0.594906\pi\)
\(198\) 0 0
\(199\) −2.24621 −0.159230 −0.0796148 0.996826i \(-0.525369\pi\)
−0.0796148 + 0.996826i \(0.525369\pi\)
\(200\) 0 0
\(201\) 7.31534 0.515984
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −2.63068 −0.182845
\(208\) 0 0
\(209\) 7.12311 0.492716
\(210\) 0 0
\(211\) 16.4924 1.13539 0.567693 0.823241i \(-0.307836\pi\)
0.567693 + 0.823241i \(0.307836\pi\)
\(212\) 0 0
\(213\) 5.17708 0.354728
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −9.36932 −0.633120
\(220\) 0 0
\(221\) −2.24621 −0.151097
\(222\) 0 0
\(223\) 4.68466 0.313708 0.156854 0.987622i \(-0.449865\pi\)
0.156854 + 0.987622i \(0.449865\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 20.0000 1.32745 0.663723 0.747978i \(-0.268975\pi\)
0.663723 + 0.747978i \(0.268975\pi\)
\(228\) 0 0
\(229\) −9.31534 −0.615575 −0.307788 0.951455i \(-0.599589\pi\)
−0.307788 + 0.951455i \(0.599589\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.12311 0.0735771 0.0367885 0.999323i \(-0.488287\pi\)
0.0367885 + 0.999323i \(0.488287\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −7.61553 −0.494682
\(238\) 0 0
\(239\) 25.3693 1.64100 0.820502 0.571643i \(-0.193694\pi\)
0.820502 + 0.571643i \(0.193694\pi\)
\(240\) 0 0
\(241\) 27.3693 1.76301 0.881506 0.472172i \(-0.156530\pi\)
0.881506 + 0.472172i \(0.156530\pi\)
\(242\) 0 0
\(243\) −5.75379 −0.369106
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 14.2462 0.906465
\(248\) 0 0
\(249\) −20.8769 −1.32302
\(250\) 0 0
\(251\) −14.0540 −0.887079 −0.443540 0.896255i \(-0.646277\pi\)
−0.443540 + 0.896255i \(0.646277\pi\)
\(252\) 0 0
\(253\) −4.68466 −0.294522
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −8.24621 −0.514385 −0.257192 0.966360i \(-0.582797\pi\)
−0.257192 + 0.966360i \(0.582797\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0.630683 0.0390383
\(262\) 0 0
\(263\) 8.00000 0.493301 0.246651 0.969104i \(-0.420670\pi\)
0.246651 + 0.969104i \(0.420670\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 5.56155 0.340362
\(268\) 0 0
\(269\) −22.4924 −1.37139 −0.685694 0.727890i \(-0.740501\pi\)
−0.685694 + 0.727890i \(0.740501\pi\)
\(270\) 0 0
\(271\) 4.87689 0.296250 0.148125 0.988969i \(-0.452676\pi\)
0.148125 + 0.988969i \(0.452676\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −2.00000 −0.120168 −0.0600842 0.998193i \(-0.519137\pi\)
−0.0600842 + 0.998193i \(0.519137\pi\)
\(278\) 0 0
\(279\) −5.36932 −0.321453
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) 26.2462 1.56018 0.780088 0.625670i \(-0.215174\pi\)
0.780088 + 0.625670i \(0.215174\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −15.7386 −0.925802
\(290\) 0 0
\(291\) −10.4384 −0.611913
\(292\) 0 0
\(293\) −22.4924 −1.31402 −0.657011 0.753881i \(-0.728179\pi\)
−0.657011 + 0.753881i \(0.728179\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −5.56155 −0.322714
\(298\) 0 0
\(299\) −9.36932 −0.541842
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −20.4924 −1.17726
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 2.63068 0.150141 0.0750705 0.997178i \(-0.476082\pi\)
0.0750705 + 0.997178i \(0.476082\pi\)
\(308\) 0 0
\(309\) −3.50758 −0.199539
\(310\) 0 0
\(311\) 30.7386 1.74303 0.871514 0.490371i \(-0.163139\pi\)
0.871514 + 0.490371i \(0.163139\pi\)
\(312\) 0 0
\(313\) −18.6847 −1.05612 −0.528060 0.849207i \(-0.677080\pi\)
−0.528060 + 0.849207i \(0.677080\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −8.05398 −0.452356 −0.226178 0.974086i \(-0.572623\pi\)
−0.226178 + 0.974086i \(0.572623\pi\)
\(318\) 0 0
\(319\) 1.12311 0.0628818
\(320\) 0 0
\(321\) 18.7386 1.04589
\(322\) 0 0
\(323\) −8.00000 −0.445132
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 21.8617 1.20896
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −28.6847 −1.57665 −0.788326 0.615258i \(-0.789052\pi\)
−0.788326 + 0.615258i \(0.789052\pi\)
\(332\) 0 0
\(333\) 3.75379 0.205706
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 31.3693 1.70880 0.854398 0.519619i \(-0.173926\pi\)
0.854398 + 0.519619i \(0.173926\pi\)
\(338\) 0 0
\(339\) 24.3002 1.31980
\(340\) 0 0
\(341\) −9.56155 −0.517787
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.63068 0.141222 0.0706112 0.997504i \(-0.477505\pi\)
0.0706112 + 0.997504i \(0.477505\pi\)
\(348\) 0 0
\(349\) 11.3693 0.608586 0.304293 0.952579i \(-0.401580\pi\)
0.304293 + 0.952579i \(0.401580\pi\)
\(350\) 0 0
\(351\) −11.1231 −0.593707
\(352\) 0 0
\(353\) −20.4384 −1.08783 −0.543914 0.839141i \(-0.683058\pi\)
−0.543914 + 0.839141i \(0.683058\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 9.36932 0.494494 0.247247 0.968953i \(-0.420474\pi\)
0.247247 + 0.968953i \(0.420474\pi\)
\(360\) 0 0
\(361\) 31.7386 1.67045
\(362\) 0 0
\(363\) −1.56155 −0.0819603
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −38.0540 −1.98640 −0.993201 0.116415i \(-0.962860\pi\)
−0.993201 + 0.116415i \(0.962860\pi\)
\(368\) 0 0
\(369\) −4.63068 −0.241064
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −3.36932 −0.174457 −0.0872283 0.996188i \(-0.527801\pi\)
−0.0872283 + 0.996188i \(0.527801\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2.24621 0.115686
\(378\) 0 0
\(379\) −14.4384 −0.741653 −0.370827 0.928702i \(-0.620926\pi\)
−0.370827 + 0.928702i \(0.620926\pi\)
\(380\) 0 0
\(381\) 14.6307 0.749553
\(382\) 0 0
\(383\) 20.6847 1.05694 0.528468 0.848953i \(-0.322767\pi\)
0.528468 + 0.848953i \(0.322767\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −4.00000 −0.203331
\(388\) 0 0
\(389\) −6.19224 −0.313959 −0.156979 0.987602i \(-0.550176\pi\)
−0.156979 + 0.987602i \(0.550176\pi\)
\(390\) 0 0
\(391\) 5.26137 0.266079
\(392\) 0 0
\(393\) 6.24621 0.315080
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −14.0000 −0.702640 −0.351320 0.936255i \(-0.614267\pi\)
−0.351320 + 0.936255i \(0.614267\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −10.4924 −0.523967 −0.261983 0.965072i \(-0.584377\pi\)
−0.261983 + 0.965072i \(0.584377\pi\)
\(402\) 0 0
\(403\) −19.1231 −0.952590
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 6.68466 0.331346
\(408\) 0 0
\(409\) −14.0000 −0.692255 −0.346128 0.938187i \(-0.612504\pi\)
−0.346128 + 0.938187i \(0.612504\pi\)
\(410\) 0 0
\(411\) 2.05398 0.101315
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 18.7386 0.917635
\(418\) 0 0
\(419\) −30.7386 −1.50168 −0.750840 0.660484i \(-0.770351\pi\)
−0.750840 + 0.660484i \(0.770351\pi\)
\(420\) 0 0
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) 0 0
\(423\) 2.24621 0.109215
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −3.12311 −0.150785
\(430\) 0 0
\(431\) −10.7386 −0.517262 −0.258631 0.965976i \(-0.583271\pi\)
−0.258631 + 0.965976i \(0.583271\pi\)
\(432\) 0 0
\(433\) 6.68466 0.321244 0.160622 0.987016i \(-0.448650\pi\)
0.160622 + 0.987016i \(0.448650\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −33.3693 −1.59627
\(438\) 0 0
\(439\) 9.75379 0.465523 0.232761 0.972534i \(-0.425224\pi\)
0.232761 + 0.972534i \(0.425224\pi\)
\(440\) 0 0
\(441\) 3.93087 0.187184
\(442\) 0 0
\(443\) −20.6847 −0.982758 −0.491379 0.870946i \(-0.663507\pi\)
−0.491379 + 0.870946i \(0.663507\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −20.4924 −0.969258
\(448\) 0 0
\(449\) −17.8078 −0.840400 −0.420200 0.907431i \(-0.638040\pi\)
−0.420200 + 0.907431i \(0.638040\pi\)
\(450\) 0 0
\(451\) −8.24621 −0.388299
\(452\) 0 0
\(453\) −14.6307 −0.687409
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −16.6307 −0.777951 −0.388975 0.921248i \(-0.627171\pi\)
−0.388975 + 0.921248i \(0.627171\pi\)
\(458\) 0 0
\(459\) 6.24621 0.291548
\(460\) 0 0
\(461\) −10.8769 −0.506587 −0.253294 0.967389i \(-0.581514\pi\)
−0.253294 + 0.967389i \(0.581514\pi\)
\(462\) 0 0
\(463\) 5.06913 0.235582 0.117791 0.993038i \(-0.462419\pi\)
0.117791 + 0.993038i \(0.462419\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −20.6847 −0.957172 −0.478586 0.878041i \(-0.658850\pi\)
−0.478586 + 0.878041i \(0.658850\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −16.6847 −0.768788
\(472\) 0 0
\(473\) −7.12311 −0.327521
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −4.63068 −0.212024
\(478\) 0 0
\(479\) −25.3693 −1.15915 −0.579577 0.814918i \(-0.696782\pi\)
−0.579577 + 0.814918i \(0.696782\pi\)
\(480\) 0 0
\(481\) 13.3693 0.609588
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −19.3153 −0.875262 −0.437631 0.899155i \(-0.644182\pi\)
−0.437631 + 0.899155i \(0.644182\pi\)
\(488\) 0 0
\(489\) 18.7386 0.847390
\(490\) 0 0
\(491\) −22.7386 −1.02618 −0.513090 0.858335i \(-0.671499\pi\)
−0.513090 + 0.858335i \(0.671499\pi\)
\(492\) 0 0
\(493\) −1.26137 −0.0568091
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 7.50758 0.336085 0.168043 0.985780i \(-0.446255\pi\)
0.168043 + 0.985780i \(0.446255\pi\)
\(500\) 0 0
\(501\) 27.1231 1.21177
\(502\) 0 0
\(503\) −9.36932 −0.417757 −0.208879 0.977942i \(-0.566981\pi\)
−0.208879 + 0.977942i \(0.566981\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 14.0540 0.624159
\(508\) 0 0
\(509\) −1.31534 −0.0583015 −0.0291507 0.999575i \(-0.509280\pi\)
−0.0291507 + 0.999575i \(0.509280\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −39.6155 −1.74907
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 4.00000 0.175920
\(518\) 0 0
\(519\) 28.1080 1.23380
\(520\) 0 0
\(521\) 20.0540 0.878581 0.439290 0.898345i \(-0.355230\pi\)
0.439290 + 0.898345i \(0.355230\pi\)
\(522\) 0 0
\(523\) −40.1080 −1.75380 −0.876899 0.480674i \(-0.840392\pi\)
−0.876899 + 0.480674i \(0.840392\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 10.7386 0.467782
\(528\) 0 0
\(529\) −1.05398 −0.0458250
\(530\) 0 0
\(531\) −7.12311 −0.309116
\(532\) 0 0
\(533\) −16.4924 −0.714366
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −7.31534 −0.315680
\(538\) 0 0
\(539\) 7.00000 0.301511
\(540\) 0 0
\(541\) 18.0000 0.773880 0.386940 0.922105i \(-0.373532\pi\)
0.386940 + 0.922105i \(0.373532\pi\)
\(542\) 0 0
\(543\) 18.8229 0.807769
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 12.0000 0.513083 0.256541 0.966533i \(-0.417417\pi\)
0.256541 + 0.966533i \(0.417417\pi\)
\(548\) 0 0
\(549\) 8.63068 0.368349
\(550\) 0 0
\(551\) 8.00000 0.340811
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −8.63068 −0.365694 −0.182847 0.983141i \(-0.558531\pi\)
−0.182847 + 0.983141i \(0.558531\pi\)
\(558\) 0 0
\(559\) −14.2462 −0.602551
\(560\) 0 0
\(561\) 1.75379 0.0740450
\(562\) 0 0
\(563\) −30.7386 −1.29548 −0.647739 0.761862i \(-0.724285\pi\)
−0.647739 + 0.761862i \(0.724285\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 3.36932 0.141249 0.0706246 0.997503i \(-0.477501\pi\)
0.0706246 + 0.997503i \(0.477501\pi\)
\(570\) 0 0
\(571\) −12.0000 −0.502184 −0.251092 0.967963i \(-0.580790\pi\)
−0.251092 + 0.967963i \(0.580790\pi\)
\(572\) 0 0
\(573\) −7.31534 −0.305603
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 6.68466 0.278286 0.139143 0.990272i \(-0.455565\pi\)
0.139143 + 0.990272i \(0.455565\pi\)
\(578\) 0 0
\(579\) 17.7538 0.737822
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −8.24621 −0.341523
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 28.0000 1.15568 0.577842 0.816149i \(-0.303895\pi\)
0.577842 + 0.816149i \(0.303895\pi\)
\(588\) 0 0
\(589\) −68.1080 −2.80634
\(590\) 0 0
\(591\) 12.8769 0.529685
\(592\) 0 0
\(593\) −31.8617 −1.30840 −0.654202 0.756320i \(-0.726996\pi\)
−0.654202 + 0.756320i \(0.726996\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 3.50758 0.143556
\(598\) 0 0
\(599\) −14.7386 −0.602204 −0.301102 0.953592i \(-0.597355\pi\)
−0.301102 + 0.953592i \(0.597355\pi\)
\(600\) 0 0
\(601\) −42.1080 −1.71762 −0.858810 0.512295i \(-0.828795\pi\)
−0.858810 + 0.512295i \(0.828795\pi\)
\(602\) 0 0
\(603\) 2.63068 0.107130
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 28.8769 1.17208 0.586038 0.810283i \(-0.300687\pi\)
0.586038 + 0.810283i \(0.300687\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 8.00000 0.323645
\(612\) 0 0
\(613\) 7.36932 0.297644 0.148822 0.988864i \(-0.452452\pi\)
0.148822 + 0.988864i \(0.452452\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 15.7538 0.634224 0.317112 0.948388i \(-0.397287\pi\)
0.317112 + 0.948388i \(0.397287\pi\)
\(618\) 0 0
\(619\) −4.68466 −0.188292 −0.0941462 0.995558i \(-0.530012\pi\)
−0.0941462 + 0.995558i \(0.530012\pi\)
\(620\) 0 0
\(621\) 26.0540 1.04551
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −11.1231 −0.444214
\(628\) 0 0
\(629\) −7.50758 −0.299347
\(630\) 0 0
\(631\) −23.4233 −0.932467 −0.466233 0.884662i \(-0.654389\pi\)
−0.466233 + 0.884662i \(0.654389\pi\)
\(632\) 0 0
\(633\) −25.7538 −1.02362
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 14.0000 0.554700
\(638\) 0 0
\(639\) 1.86174 0.0736493
\(640\) 0 0
\(641\) 0.930870 0.0367671 0.0183836 0.999831i \(-0.494148\pi\)
0.0183836 + 0.999831i \(0.494148\pi\)
\(642\) 0 0
\(643\) −38.4384 −1.51586 −0.757932 0.652333i \(-0.773790\pi\)
−0.757932 + 0.652333i \(0.773790\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 19.3153 0.759364 0.379682 0.925117i \(-0.376033\pi\)
0.379682 + 0.925117i \(0.376033\pi\)
\(648\) 0 0
\(649\) −12.6847 −0.497916
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.31534 0.0514733 0.0257366 0.999669i \(-0.491807\pi\)
0.0257366 + 0.999669i \(0.491807\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −3.36932 −0.131450
\(658\) 0 0
\(659\) 37.3693 1.45570 0.727851 0.685735i \(-0.240519\pi\)
0.727851 + 0.685735i \(0.240519\pi\)
\(660\) 0 0
\(661\) 16.0540 0.624427 0.312214 0.950012i \(-0.398930\pi\)
0.312214 + 0.950012i \(0.398930\pi\)
\(662\) 0 0
\(663\) 3.50758 0.136223
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −5.26137 −0.203721
\(668\) 0 0
\(669\) −7.31534 −0.282827
\(670\) 0 0
\(671\) 15.3693 0.593326
\(672\) 0 0
\(673\) 24.7386 0.953604 0.476802 0.879011i \(-0.341796\pi\)
0.476802 + 0.879011i \(0.341796\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 19.8617 0.763349 0.381674 0.924297i \(-0.375348\pi\)
0.381674 + 0.924297i \(0.375348\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −31.2311 −1.19678
\(682\) 0 0
\(683\) −12.0000 −0.459167 −0.229584 0.973289i \(-0.573736\pi\)
−0.229584 + 0.973289i \(0.573736\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 14.5464 0.554980
\(688\) 0 0
\(689\) −16.4924 −0.628311
\(690\) 0 0
\(691\) −28.3002 −1.07659 −0.538295 0.842757i \(-0.680931\pi\)
−0.538295 + 0.842757i \(0.680931\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 9.26137 0.350799
\(698\) 0 0
\(699\) −1.75379 −0.0663344
\(700\) 0 0
\(701\) −6.38447 −0.241138 −0.120569 0.992705i \(-0.538472\pi\)
−0.120569 + 0.992705i \(0.538472\pi\)
\(702\) 0 0
\(703\) 47.6155 1.79585
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 22.6847 0.851940 0.425970 0.904737i \(-0.359933\pi\)
0.425970 + 0.904737i \(0.359933\pi\)
\(710\) 0 0
\(711\) −2.73863 −0.102707
\(712\) 0 0
\(713\) 44.7926 1.67750
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −39.6155 −1.47947
\(718\) 0 0
\(719\) −28.6847 −1.06976 −0.534879 0.844929i \(-0.679643\pi\)
−0.534879 + 0.844929i \(0.679643\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −42.7386 −1.58947
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 28.6847 1.06386 0.531928 0.846790i \(-0.321468\pi\)
0.531928 + 0.846790i \(0.321468\pi\)
\(728\) 0 0
\(729\) 29.9848 1.11055
\(730\) 0 0
\(731\) 8.00000 0.295891
\(732\) 0 0
\(733\) −38.1080 −1.40755 −0.703775 0.710423i \(-0.748504\pi\)
−0.703775 + 0.710423i \(0.748504\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4.68466 0.172562
\(738\) 0 0
\(739\) 11.6155 0.427284 0.213642 0.976912i \(-0.431467\pi\)
0.213642 + 0.976912i \(0.431467\pi\)
\(740\) 0 0
\(741\) −22.2462 −0.817235
\(742\) 0 0
\(743\) 18.7386 0.687454 0.343727 0.939070i \(-0.388311\pi\)
0.343727 + 0.939070i \(0.388311\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −7.50758 −0.274688
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 33.1771 1.21065 0.605324 0.795979i \(-0.293043\pi\)
0.605324 + 0.795979i \(0.293043\pi\)
\(752\) 0 0
\(753\) 21.9460 0.799758
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 10.0000 0.363456 0.181728 0.983349i \(-0.441831\pi\)
0.181728 + 0.983349i \(0.441831\pi\)
\(758\) 0 0
\(759\) 7.31534 0.265530
\(760\) 0 0
\(761\) −20.2462 −0.733925 −0.366962 0.930236i \(-0.619602\pi\)
−0.366962 + 0.930236i \(0.619602\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −25.3693 −0.916033
\(768\) 0 0
\(769\) −38.0000 −1.37032 −0.685158 0.728395i \(-0.740267\pi\)
−0.685158 + 0.728395i \(0.740267\pi\)
\(770\) 0 0
\(771\) 12.8769 0.463750
\(772\) 0 0
\(773\) 8.24621 0.296596 0.148298 0.988943i \(-0.452621\pi\)
0.148298 + 0.988943i \(0.452621\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −58.7386 −2.10453
\(780\) 0 0
\(781\) 3.31534 0.118632
\(782\) 0 0
\(783\) −6.24621 −0.223221
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −12.0000 −0.427754 −0.213877 0.976861i \(-0.568609\pi\)
−0.213877 + 0.976861i \(0.568609\pi\)
\(788\) 0 0
\(789\) −12.4924 −0.444742
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 30.7386 1.09156
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 20.4384 0.723967 0.361983 0.932185i \(-0.382100\pi\)
0.361983 + 0.932185i \(0.382100\pi\)
\(798\) 0 0
\(799\) −4.49242 −0.158930
\(800\) 0 0
\(801\) 2.00000 0.0706665
\(802\) 0 0
\(803\) −6.00000 −0.211735
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 35.1231 1.23639
\(808\) 0 0
\(809\) 8.24621 0.289921 0.144961 0.989437i \(-0.453694\pi\)
0.144961 + 0.989437i \(0.453694\pi\)
\(810\) 0 0
\(811\) −26.6307 −0.935130 −0.467565 0.883959i \(-0.654869\pi\)
−0.467565 + 0.883959i \(0.654869\pi\)
\(812\) 0 0
\(813\) −7.61553 −0.267088
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −50.7386 −1.77512
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −48.7386 −1.70099 −0.850495 0.525983i \(-0.823698\pi\)
−0.850495 + 0.525983i \(0.823698\pi\)
\(822\) 0 0
\(823\) 14.4384 0.503293 0.251646 0.967819i \(-0.419028\pi\)
0.251646 + 0.967819i \(0.419028\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −21.3693 −0.743084 −0.371542 0.928416i \(-0.621171\pi\)
−0.371542 + 0.928416i \(0.621171\pi\)
\(828\) 0 0
\(829\) 5.31534 0.184609 0.0923047 0.995731i \(-0.470577\pi\)
0.0923047 + 0.995731i \(0.470577\pi\)
\(830\) 0 0
\(831\) 3.12311 0.108339
\(832\) 0 0
\(833\) −7.86174 −0.272393
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 53.1771 1.83807
\(838\) 0 0
\(839\) −31.4233 −1.08485 −0.542426 0.840103i \(-0.682494\pi\)
−0.542426 + 0.840103i \(0.682494\pi\)
\(840\) 0 0
\(841\) −27.7386 −0.956505
\(842\) 0 0
\(843\) 9.36932 0.322696
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −40.9848 −1.40660
\(850\) 0 0
\(851\) −31.3153 −1.07348
\(852\) 0 0
\(853\) 8.73863 0.299205 0.149603 0.988746i \(-0.452201\pi\)
0.149603 + 0.988746i \(0.452201\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −13.1231 −0.448277 −0.224138 0.974557i \(-0.571957\pi\)
−0.224138 + 0.974557i \(0.571957\pi\)
\(858\) 0 0
\(859\) −29.0691 −0.991826 −0.495913 0.868372i \(-0.665167\pi\)
−0.495913 + 0.868372i \(0.665167\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −30.7386 −1.04636 −0.523178 0.852224i \(-0.675254\pi\)
−0.523178 + 0.852224i \(0.675254\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 24.5767 0.834669
\(868\) 0 0
\(869\) −4.87689 −0.165437
\(870\) 0 0
\(871\) 9.36932 0.317467
\(872\) 0 0
\(873\) −3.75379 −0.127047
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 56.7386 1.91593 0.957964 0.286889i \(-0.0926212\pi\)
0.957964 + 0.286889i \(0.0926212\pi\)
\(878\) 0 0
\(879\) 35.1231 1.18467
\(880\) 0 0
\(881\) 34.3002 1.15560 0.577801 0.816177i \(-0.303911\pi\)
0.577801 + 0.816177i \(0.303911\pi\)
\(882\) 0 0
\(883\) −36.0000 −1.21150 −0.605748 0.795656i \(-0.707126\pi\)
−0.605748 + 0.795656i \(0.707126\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −52.1080 −1.74961 −0.874807 0.484472i \(-0.839012\pi\)
−0.874807 + 0.484472i \(0.839012\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 7.00000 0.234509
\(892\) 0 0
\(893\) 28.4924 0.953463
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 14.6307 0.488504
\(898\) 0 0
\(899\) −10.7386 −0.358153
\(900\) 0 0
\(901\) 9.26137 0.308541
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 16.4924 0.547622 0.273811 0.961784i \(-0.411716\pi\)
0.273811 + 0.961784i \(0.411716\pi\)
\(908\) 0 0
\(909\) −7.36932 −0.244425
\(910\) 0 0
\(911\) 22.7386 0.753365 0.376682 0.926343i \(-0.377065\pi\)
0.376682 + 0.926343i \(0.377065\pi\)
\(912\) 0 0
\(913\) −13.3693 −0.442460
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 23.6155 0.779004 0.389502 0.921026i \(-0.372647\pi\)
0.389502 + 0.921026i \(0.372647\pi\)
\(920\) 0 0
\(921\) −4.10795 −0.135362
\(922\) 0 0
\(923\) 6.63068 0.218252
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −1.26137 −0.0414287
\(928\) 0 0
\(929\) −10.4924 −0.344245 −0.172123 0.985076i \(-0.555063\pi\)
−0.172123 + 0.985076i \(0.555063\pi\)
\(930\) 0 0
\(931\) 49.8617 1.63415
\(932\) 0 0
\(933\) −48.0000 −1.57145
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −28.7386 −0.938850 −0.469425 0.882972i \(-0.655539\pi\)
−0.469425 + 0.882972i \(0.655539\pi\)
\(938\) 0 0
\(939\) 29.1771 0.952158
\(940\) 0 0
\(941\) 8.24621 0.268819 0.134409 0.990926i \(-0.457086\pi\)
0.134409 + 0.990926i \(0.457086\pi\)
\(942\) 0 0
\(943\) 38.6307 1.25799
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 19.3153 0.627664 0.313832 0.949478i \(-0.398387\pi\)
0.313832 + 0.949478i \(0.398387\pi\)
\(948\) 0 0
\(949\) −12.0000 −0.389536
\(950\) 0 0
\(951\) 12.5767 0.407828
\(952\) 0 0
\(953\) 6.38447 0.206813 0.103407 0.994639i \(-0.467026\pi\)
0.103407 + 0.994639i \(0.467026\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −1.75379 −0.0566919
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 60.4233 1.94914
\(962\) 0 0
\(963\) 6.73863 0.217149
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 18.7386 0.602594 0.301297 0.953530i \(-0.402580\pi\)
0.301297 + 0.953530i \(0.402580\pi\)
\(968\) 0 0
\(969\) 12.4924 0.401314
\(970\) 0 0
\(971\) −28.6847 −0.920534 −0.460267 0.887780i \(-0.652246\pi\)
−0.460267 + 0.887780i \(0.652246\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −53.0388 −1.69686 −0.848431 0.529306i \(-0.822452\pi\)
−0.848431 + 0.529306i \(0.822452\pi\)
\(978\) 0 0
\(979\) 3.56155 0.113828
\(980\) 0 0
\(981\) 7.86174 0.251006
\(982\) 0 0
\(983\) 28.6847 0.914899 0.457449 0.889236i \(-0.348763\pi\)
0.457449 + 0.889236i \(0.348763\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 33.3693 1.06108
\(990\) 0 0
\(991\) −54.7386 −1.73883 −0.869415 0.494083i \(-0.835504\pi\)
−0.869415 + 0.494083i \(0.835504\pi\)
\(992\) 0 0
\(993\) 44.7926 1.42145
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −0.630683 −0.0199739 −0.00998697 0.999950i \(-0.503179\pi\)
−0.00998697 + 0.999950i \(0.503179\pi\)
\(998\) 0 0
\(999\) −37.1771 −1.17623
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8800.2.a.be.1.1 2
4.3 odd 2 8800.2.a.bd.1.2 2
5.4 even 2 352.2.a.g.1.2 2
15.14 odd 2 3168.2.a.bd.1.1 2
20.19 odd 2 352.2.a.h.1.1 yes 2
40.19 odd 2 704.2.a.n.1.2 2
40.29 even 2 704.2.a.o.1.1 2
55.54 odd 2 3872.2.a.p.1.2 2
60.59 even 2 3168.2.a.bc.1.1 2
80.19 odd 4 2816.2.c.s.1409.2 4
80.29 even 4 2816.2.c.t.1409.3 4
80.59 odd 4 2816.2.c.s.1409.3 4
80.69 even 4 2816.2.c.t.1409.2 4
120.29 odd 2 6336.2.a.cv.1.2 2
120.59 even 2 6336.2.a.cw.1.2 2
220.219 even 2 3872.2.a.ba.1.1 2
440.109 odd 2 7744.2.a.cm.1.1 2
440.219 even 2 7744.2.a.bw.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
352.2.a.g.1.2 2 5.4 even 2
352.2.a.h.1.1 yes 2 20.19 odd 2
704.2.a.n.1.2 2 40.19 odd 2
704.2.a.o.1.1 2 40.29 even 2
2816.2.c.s.1409.2 4 80.19 odd 4
2816.2.c.s.1409.3 4 80.59 odd 4
2816.2.c.t.1409.2 4 80.69 even 4
2816.2.c.t.1409.3 4 80.29 even 4
3168.2.a.bc.1.1 2 60.59 even 2
3168.2.a.bd.1.1 2 15.14 odd 2
3872.2.a.p.1.2 2 55.54 odd 2
3872.2.a.ba.1.1 2 220.219 even 2
6336.2.a.cv.1.2 2 120.29 odd 2
6336.2.a.cw.1.2 2 120.59 even 2
7744.2.a.bw.1.2 2 440.219 even 2
7744.2.a.cm.1.1 2 440.109 odd 2
8800.2.a.bd.1.2 2 4.3 odd 2
8800.2.a.be.1.1 2 1.1 even 1 trivial