Defining parameters
| Level: | \( N \) | \(=\) | \( 8800 = 2^{5} \cdot 5^{2} \cdot 11 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 8800.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 62 \) | ||
| Sturm bound: | \(2880\) | ||
| Trace bound: | \(13\) | ||
| Distinguishing \(T_p\): | \(3\), \(7\), \(13\), \(17\), \(19\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(8800))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 1488 | 190 | 1298 |
| Cusp forms | 1393 | 190 | 1203 |
| Eisenstein series | 95 | 0 | 95 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(5\) | \(11\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(180\) | \(21\) | \(159\) | \(169\) | \(21\) | \(148\) | \(11\) | \(0\) | \(11\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(186\) | \(24\) | \(162\) | \(174\) | \(24\) | \(150\) | \(12\) | \(0\) | \(12\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(192\) | \(26\) | \(166\) | \(180\) | \(26\) | \(154\) | \(12\) | \(0\) | \(12\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(186\) | \(24\) | \(162\) | \(174\) | \(24\) | \(150\) | \(12\) | \(0\) | \(12\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(192\) | \(24\) | \(168\) | \(180\) | \(24\) | \(156\) | \(12\) | \(0\) | \(12\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(186\) | \(21\) | \(165\) | \(174\) | \(21\) | \(153\) | \(12\) | \(0\) | \(12\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(180\) | \(24\) | \(156\) | \(168\) | \(24\) | \(144\) | \(12\) | \(0\) | \(12\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(186\) | \(26\) | \(160\) | \(174\) | \(26\) | \(148\) | \(12\) | \(0\) | \(12\) | |||
| Plus space | \(+\) | \(732\) | \(90\) | \(642\) | \(685\) | \(90\) | \(595\) | \(47\) | \(0\) | \(47\) | |||||
| Minus space | \(-\) | \(756\) | \(100\) | \(656\) | \(708\) | \(100\) | \(608\) | \(48\) | \(0\) | \(48\) | |||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(8800))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(8800))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(8800)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(55))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(80))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(88))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(100))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(110))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(160))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(176))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(200))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(220))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(275))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(352))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(400))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(440))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(550))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(800))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(880))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1100))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1760))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2200))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(4400))\)\(^{\oplus 2}\)