Properties

Label 880.4.a.r
Level $880$
Weight $4$
Character orbit 880.a
Self dual yes
Analytic conductor $51.922$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [880,4,Mod(1,880)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(880, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("880.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 880.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(51.9216808051\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{17})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta + 1) q^{3} + 5 q^{5} + ( - 9 \beta + 17) q^{7} + (3 \beta - 22) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta + 1) q^{3} + 5 q^{5} + ( - 9 \beta + 17) q^{7} + (3 \beta - 22) q^{9} + 11 q^{11} + (10 \beta - 30) q^{13} + (5 \beta + 5) q^{15} + ( - 17 \beta - 67) q^{17} + (45 \beta - 21) q^{19} + ( - \beta - 19) q^{21} + (4 \beta - 26) q^{23} + 25 q^{25} + ( - 43 \beta - 37) q^{27} + ( - 71 \beta - 75) q^{29} + (117 \beta - 129) q^{31} + (11 \beta + 11) q^{33} + ( - 45 \beta + 85) q^{35} + (43 \beta - 301) q^{37} + ( - 10 \beta + 10) q^{39} + (156 \beta - 150) q^{41} + ( - 156 \beta + 108) q^{43} + (15 \beta - 110) q^{45} + ( - 100 \beta + 74) q^{47} + ( - 225 \beta + 270) q^{49} + ( - 101 \beta - 135) q^{51} + ( - 169 \beta + 143) q^{53} + 55 q^{55} + (69 \beta + 159) q^{57} + ( - 158 \beta + 122) q^{59} + (119 \beta - 137) q^{61} + (222 \beta - 482) q^{63} + (50 \beta - 150) q^{65} + (150 \beta - 208) q^{67} + ( - 18 \beta - 10) q^{69} + ( - 61 \beta - 763) q^{71} + (58 \beta + 6) q^{73} + (25 \beta + 25) q^{75} + ( - 99 \beta + 187) q^{77} + (114 \beta + 590) q^{79} + ( - 204 \beta + 385) q^{81} + ( - 270 \beta + 414) q^{83} + ( - 85 \beta - 335) q^{85} + ( - 217 \beta - 359) q^{87} + ( - 43 \beta - 867) q^{89} + (350 \beta - 870) q^{91} + (105 \beta + 339) q^{93} + (225 \beta - 105) q^{95} + ( - 454 \beta + 60) q^{97} + (33 \beta - 242) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{3} + 10 q^{5} + 25 q^{7} - 41 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 3 q^{3} + 10 q^{5} + 25 q^{7} - 41 q^{9} + 22 q^{11} - 50 q^{13} + 15 q^{15} - 151 q^{17} + 3 q^{19} - 39 q^{21} - 48 q^{23} + 50 q^{25} - 117 q^{27} - 221 q^{29} - 141 q^{31} + 33 q^{33} + 125 q^{35} - 559 q^{37} + 10 q^{39} - 144 q^{41} + 60 q^{43} - 205 q^{45} + 48 q^{47} + 315 q^{49} - 371 q^{51} + 117 q^{53} + 110 q^{55} + 387 q^{57} + 86 q^{59} - 155 q^{61} - 742 q^{63} - 250 q^{65} - 266 q^{67} - 38 q^{69} - 1587 q^{71} + 70 q^{73} + 75 q^{75} + 275 q^{77} + 1294 q^{79} + 566 q^{81} + 558 q^{83} - 755 q^{85} - 935 q^{87} - 1777 q^{89} - 1390 q^{91} + 783 q^{93} + 15 q^{95} - 334 q^{97} - 451 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.56155
2.56155
0 −0.561553 0 5.00000 0 31.0540 0 −26.6847 0
1.2 0 3.56155 0 5.00000 0 −6.05398 0 −14.3153 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 880.4.a.r 2
4.b odd 2 1 55.4.a.b 2
12.b even 2 1 495.4.a.e 2
20.d odd 2 1 275.4.a.c 2
20.e even 4 2 275.4.b.b 4
44.c even 2 1 605.4.a.g 2
60.h even 2 1 2475.4.a.l 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
55.4.a.b 2 4.b odd 2 1
275.4.a.c 2 20.d odd 2 1
275.4.b.b 4 20.e even 4 2
495.4.a.e 2 12.b even 2 1
605.4.a.g 2 44.c even 2 1
880.4.a.r 2 1.a even 1 1 trivial
2475.4.a.l 2 60.h even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(880))\):

\( T_{3}^{2} - 3T_{3} - 2 \) Copy content Toggle raw display
\( T_{7}^{2} - 25T_{7} - 188 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 3T - 2 \) Copy content Toggle raw display
$5$ \( (T - 5)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 25T - 188 \) Copy content Toggle raw display
$11$ \( (T - 11)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 50T + 200 \) Copy content Toggle raw display
$17$ \( T^{2} + 151T + 4472 \) Copy content Toggle raw display
$19$ \( T^{2} - 3T - 8604 \) Copy content Toggle raw display
$23$ \( T^{2} + 48T + 508 \) Copy content Toggle raw display
$29$ \( T^{2} + 221T - 9214 \) Copy content Toggle raw display
$31$ \( T^{2} + 141T - 53208 \) Copy content Toggle raw display
$37$ \( T^{2} + 559T + 70262 \) Copy content Toggle raw display
$41$ \( T^{2} + 144T - 98244 \) Copy content Toggle raw display
$43$ \( T^{2} - 60T - 102528 \) Copy content Toggle raw display
$47$ \( T^{2} - 48T - 41924 \) Copy content Toggle raw display
$53$ \( T^{2} - 117T - 117962 \) Copy content Toggle raw display
$59$ \( T^{2} - 86T - 104248 \) Copy content Toggle raw display
$61$ \( T^{2} + 155T - 54178 \) Copy content Toggle raw display
$67$ \( T^{2} + 266T - 77936 \) Copy content Toggle raw display
$71$ \( T^{2} + 1587 T + 613828 \) Copy content Toggle raw display
$73$ \( T^{2} - 70T - 13072 \) Copy content Toggle raw display
$79$ \( T^{2} - 1294 T + 363376 \) Copy content Toggle raw display
$83$ \( T^{2} - 558T - 231984 \) Copy content Toggle raw display
$89$ \( T^{2} + 1777 T + 781574 \) Copy content Toggle raw display
$97$ \( T^{2} + 334T - 848104 \) Copy content Toggle raw display
show more
show less