Properties

Label 880.3.j.a.241.8
Level $880$
Weight $3$
Character 880.241
Analytic conductor $23.978$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [880,3,Mod(241,880)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(880, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("880.241"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 880.j (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-8,0,0,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.9782632637\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 30x^{6} + 280x^{4} + 890x^{2} + 895 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 241.8
Root \(3.15955i\) of defining polynomial
Character \(\chi\) \(=\) 880.241
Dual form 880.3.j.a.241.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.03112 q^{3} -2.23607 q^{5} +5.67155i q^{7} +0.187686 q^{9} +(-10.8573 - 1.76614i) q^{11} -17.2349i q^{13} -6.77779 q^{15} +3.43437i q^{17} +18.5738i q^{19} +17.1911i q^{21} -15.7918 q^{23} +5.00000 q^{25} -26.7112 q^{27} +52.6031i q^{29} -27.5484 q^{31} +(-32.9097 - 5.35337i) q^{33} -12.6820i q^{35} -40.1425 q^{37} -52.2411i q^{39} -74.8398i q^{41} +9.72983i q^{43} -0.419679 q^{45} -18.2212 q^{47} +16.8335 q^{49} +10.4100i q^{51} -75.2040 q^{53} +(24.2776 + 3.94920i) q^{55} +56.2994i q^{57} -1.75672 q^{59} -48.5900i q^{61} +1.06447i q^{63} +38.5385i q^{65} +35.4901 q^{67} -47.8668 q^{69} -110.499 q^{71} +50.7154i q^{73} +15.1556 q^{75} +(10.0167 - 61.5777i) q^{77} -12.7481i q^{79} -82.6540 q^{81} +112.062i q^{83} -7.67948i q^{85} +159.446i q^{87} +66.3600 q^{89} +97.7488 q^{91} -83.5024 q^{93} -41.5323i q^{95} +65.1302 q^{97} +(-2.03776 - 0.331479i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{3} - 4 q^{9} - 8 q^{11} - 20 q^{15} - 8 q^{23} + 40 q^{25} + 16 q^{27} - 36 q^{31} - 152 q^{33} - 88 q^{37} + 8 q^{47} + 172 q^{49} - 152 q^{53} + 20 q^{55} + 16 q^{59} + 88 q^{67} + 8 q^{69}+ \cdots + 184 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.03112 1.01037 0.505187 0.863010i \(-0.331424\pi\)
0.505187 + 0.863010i \(0.331424\pi\)
\(4\) 0 0
\(5\) −2.23607 −0.447214
\(6\) 0 0
\(7\) 5.67155i 0.810221i 0.914268 + 0.405111i \(0.132767\pi\)
−0.914268 + 0.405111i \(0.867233\pi\)
\(8\) 0 0
\(9\) 0.187686 0.0208540
\(10\) 0 0
\(11\) −10.8573 1.76614i −0.987026 0.160558i
\(12\) 0 0
\(13\) 17.2349i 1.32576i −0.748724 0.662882i \(-0.769333\pi\)
0.748724 0.662882i \(-0.230667\pi\)
\(14\) 0 0
\(15\) −6.77779 −0.451853
\(16\) 0 0
\(17\) 3.43437i 0.202022i 0.994885 + 0.101011i \(0.0322077\pi\)
−0.994885 + 0.101011i \(0.967792\pi\)
\(18\) 0 0
\(19\) 18.5738i 0.977569i 0.872405 + 0.488784i \(0.162559\pi\)
−0.872405 + 0.488784i \(0.837441\pi\)
\(20\) 0 0
\(21\) 17.1911i 0.818626i
\(22\) 0 0
\(23\) −15.7918 −0.686599 −0.343300 0.939226i \(-0.611545\pi\)
−0.343300 + 0.939226i \(0.611545\pi\)
\(24\) 0 0
\(25\) 5.00000 0.200000
\(26\) 0 0
\(27\) −26.7112 −0.989303
\(28\) 0 0
\(29\) 52.6031i 1.81390i 0.421238 + 0.906950i \(0.361596\pi\)
−0.421238 + 0.906950i \(0.638404\pi\)
\(30\) 0 0
\(31\) −27.5484 −0.888657 −0.444328 0.895864i \(-0.646558\pi\)
−0.444328 + 0.895864i \(0.646558\pi\)
\(32\) 0 0
\(33\) −32.9097 5.35337i −0.997265 0.162223i
\(34\) 0 0
\(35\) 12.6820i 0.362342i
\(36\) 0 0
\(37\) −40.1425 −1.08493 −0.542467 0.840077i \(-0.682510\pi\)
−0.542467 + 0.840077i \(0.682510\pi\)
\(38\) 0 0
\(39\) 52.2411i 1.33952i
\(40\) 0 0
\(41\) 74.8398i 1.82536i −0.408675 0.912680i \(-0.634009\pi\)
0.408675 0.912680i \(-0.365991\pi\)
\(42\) 0 0
\(43\) 9.72983i 0.226275i 0.993579 + 0.113138i \(0.0360901\pi\)
−0.993579 + 0.113138i \(0.963910\pi\)
\(44\) 0 0
\(45\) −0.419679 −0.00932620
\(46\) 0 0
\(47\) −18.2212 −0.387686 −0.193843 0.981033i \(-0.562095\pi\)
−0.193843 + 0.981033i \(0.562095\pi\)
\(48\) 0 0
\(49\) 16.8335 0.343541
\(50\) 0 0
\(51\) 10.4100i 0.204117i
\(52\) 0 0
\(53\) −75.2040 −1.41894 −0.709471 0.704734i \(-0.751066\pi\)
−0.709471 + 0.704734i \(0.751066\pi\)
\(54\) 0 0
\(55\) 24.2776 + 3.94920i 0.441412 + 0.0718036i
\(56\) 0 0
\(57\) 56.2994i 0.987709i
\(58\) 0 0
\(59\) −1.75672 −0.0297750 −0.0148875 0.999889i \(-0.504739\pi\)
−0.0148875 + 0.999889i \(0.504739\pi\)
\(60\) 0 0
\(61\) 48.5900i 0.796557i −0.917265 0.398278i \(-0.869608\pi\)
0.917265 0.398278i \(-0.130392\pi\)
\(62\) 0 0
\(63\) 1.06447i 0.0168964i
\(64\) 0 0
\(65\) 38.5385i 0.592900i
\(66\) 0 0
\(67\) 35.4901 0.529702 0.264851 0.964289i \(-0.414677\pi\)
0.264851 + 0.964289i \(0.414677\pi\)
\(68\) 0 0
\(69\) −47.8668 −0.693721
\(70\) 0 0
\(71\) −110.499 −1.55632 −0.778159 0.628067i \(-0.783846\pi\)
−0.778159 + 0.628067i \(0.783846\pi\)
\(72\) 0 0
\(73\) 50.7154i 0.694732i 0.937730 + 0.347366i \(0.112924\pi\)
−0.937730 + 0.347366i \(0.887076\pi\)
\(74\) 0 0
\(75\) 15.1556 0.202075
\(76\) 0 0
\(77\) 10.0167 61.5777i 0.130087 0.799710i
\(78\) 0 0
\(79\) 12.7481i 0.161368i −0.996740 0.0806842i \(-0.974289\pi\)
0.996740 0.0806842i \(-0.0257105\pi\)
\(80\) 0 0
\(81\) −82.6540 −1.02042
\(82\) 0 0
\(83\) 112.062i 1.35015i 0.737749 + 0.675075i \(0.235889\pi\)
−0.737749 + 0.675075i \(0.764111\pi\)
\(84\) 0 0
\(85\) 7.67948i 0.0903468i
\(86\) 0 0
\(87\) 159.446i 1.83272i
\(88\) 0 0
\(89\) 66.3600 0.745618 0.372809 0.927908i \(-0.378395\pi\)
0.372809 + 0.927908i \(0.378395\pi\)
\(90\) 0 0
\(91\) 97.7488 1.07416
\(92\) 0 0
\(93\) −83.5024 −0.897875
\(94\) 0 0
\(95\) 41.5323i 0.437182i
\(96\) 0 0
\(97\) 65.1302 0.671445 0.335723 0.941961i \(-0.391020\pi\)
0.335723 + 0.941961i \(0.391020\pi\)
\(98\) 0 0
\(99\) −2.03776 0.331479i −0.0205835 0.00334828i
\(100\) 0 0
\(101\) 172.019i 1.70316i 0.524229 + 0.851578i \(0.324354\pi\)
−0.524229 + 0.851578i \(0.675646\pi\)
\(102\) 0 0
\(103\) −28.3278 −0.275027 −0.137514 0.990500i \(-0.543911\pi\)
−0.137514 + 0.990500i \(0.543911\pi\)
\(104\) 0 0
\(105\) 38.4406i 0.366101i
\(106\) 0 0
\(107\) 63.2464i 0.591088i −0.955329 0.295544i \(-0.904499\pi\)
0.955329 0.295544i \(-0.0955009\pi\)
\(108\) 0 0
\(109\) 128.641i 1.18020i −0.807331 0.590098i \(-0.799089\pi\)
0.807331 0.590098i \(-0.200911\pi\)
\(110\) 0 0
\(111\) −121.677 −1.09619
\(112\) 0 0
\(113\) −35.4694 −0.313889 −0.156944 0.987607i \(-0.550164\pi\)
−0.156944 + 0.987607i \(0.550164\pi\)
\(114\) 0 0
\(115\) 35.3115 0.307056
\(116\) 0 0
\(117\) 3.23476i 0.0276475i
\(118\) 0 0
\(119\) −19.4782 −0.163682
\(120\) 0 0
\(121\) 114.762 + 38.3509i 0.948442 + 0.316949i
\(122\) 0 0
\(123\) 226.848i 1.84430i
\(124\) 0 0
\(125\) −11.1803 −0.0894427
\(126\) 0 0
\(127\) 210.686i 1.65895i −0.558547 0.829473i \(-0.688641\pi\)
0.558547 0.829473i \(-0.311359\pi\)
\(128\) 0 0
\(129\) 29.4923i 0.228622i
\(130\) 0 0
\(131\) 131.724i 1.00553i −0.864424 0.502764i \(-0.832316\pi\)
0.864424 0.502764i \(-0.167684\pi\)
\(132\) 0 0
\(133\) −105.342 −0.792047
\(134\) 0 0
\(135\) 59.7280 0.442430
\(136\) 0 0
\(137\) 167.934 1.22580 0.612898 0.790162i \(-0.290004\pi\)
0.612898 + 0.790162i \(0.290004\pi\)
\(138\) 0 0
\(139\) 90.6142i 0.651901i 0.945387 + 0.325950i \(0.105684\pi\)
−0.945387 + 0.325950i \(0.894316\pi\)
\(140\) 0 0
\(141\) −55.2308 −0.391708
\(142\) 0 0
\(143\) −30.4392 + 187.125i −0.212862 + 1.30856i
\(144\) 0 0
\(145\) 117.624i 0.811201i
\(146\) 0 0
\(147\) 51.0244 0.347105
\(148\) 0 0
\(149\) 72.8977i 0.489246i 0.969618 + 0.244623i \(0.0786642\pi\)
−0.969618 + 0.244623i \(0.921336\pi\)
\(150\) 0 0
\(151\) 237.180i 1.57073i 0.619035 + 0.785364i \(0.287524\pi\)
−0.619035 + 0.785364i \(0.712476\pi\)
\(152\) 0 0
\(153\) 0.644584i 0.00421296i
\(154\) 0 0
\(155\) 61.6000 0.397419
\(156\) 0 0
\(157\) 105.915 0.674620 0.337310 0.941394i \(-0.390483\pi\)
0.337310 + 0.941394i \(0.390483\pi\)
\(158\) 0 0
\(159\) −227.952 −1.43366
\(160\) 0 0
\(161\) 89.5639i 0.556297i
\(162\) 0 0
\(163\) −143.233 −0.878730 −0.439365 0.898309i \(-0.644797\pi\)
−0.439365 + 0.898309i \(0.644797\pi\)
\(164\) 0 0
\(165\) 73.5884 + 11.9705i 0.445991 + 0.0725484i
\(166\) 0 0
\(167\) 35.5974i 0.213158i 0.994304 + 0.106579i \(0.0339897\pi\)
−0.994304 + 0.106579i \(0.966010\pi\)
\(168\) 0 0
\(169\) −128.043 −0.757650
\(170\) 0 0
\(171\) 3.48605i 0.0203862i
\(172\) 0 0
\(173\) 196.047i 1.13322i 0.823987 + 0.566609i \(0.191745\pi\)
−0.823987 + 0.566609i \(0.808255\pi\)
\(174\) 0 0
\(175\) 28.3578i 0.162044i
\(176\) 0 0
\(177\) −5.32484 −0.0300838
\(178\) 0 0
\(179\) 65.1824 0.364148 0.182074 0.983285i \(-0.441719\pi\)
0.182074 + 0.983285i \(0.441719\pi\)
\(180\) 0 0
\(181\) −157.016 −0.867493 −0.433746 0.901035i \(-0.642809\pi\)
−0.433746 + 0.901035i \(0.642809\pi\)
\(182\) 0 0
\(183\) 147.282i 0.804820i
\(184\) 0 0
\(185\) 89.7615 0.485197
\(186\) 0 0
\(187\) 6.06556 37.2879i 0.0324361 0.199401i
\(188\) 0 0
\(189\) 151.494i 0.801554i
\(190\) 0 0
\(191\) −161.967 −0.847995 −0.423997 0.905663i \(-0.639373\pi\)
−0.423997 + 0.905663i \(0.639373\pi\)
\(192\) 0 0
\(193\) 0.742915i 0.00384930i 0.999998 + 0.00192465i \(0.000612635\pi\)
−0.999998 + 0.00192465i \(0.999387\pi\)
\(194\) 0 0
\(195\) 116.815i 0.599050i
\(196\) 0 0
\(197\) 43.0945i 0.218754i −0.994000 0.109377i \(-0.965114\pi\)
0.994000 0.109377i \(-0.0348855\pi\)
\(198\) 0 0
\(199\) 201.933 1.01474 0.507370 0.861729i \(-0.330618\pi\)
0.507370 + 0.861729i \(0.330618\pi\)
\(200\) 0 0
\(201\) 107.575 0.535197
\(202\) 0 0
\(203\) −298.341 −1.46966
\(204\) 0 0
\(205\) 167.347i 0.816326i
\(206\) 0 0
\(207\) −2.96390 −0.0143184
\(208\) 0 0
\(209\) 32.8038 201.661i 0.156956 0.964886i
\(210\) 0 0
\(211\) 53.4705i 0.253415i 0.991940 + 0.126707i \(0.0404409\pi\)
−0.991940 + 0.126707i \(0.959559\pi\)
\(212\) 0 0
\(213\) −334.934 −1.57246
\(214\) 0 0
\(215\) 21.7566i 0.101193i
\(216\) 0 0
\(217\) 156.242i 0.720009i
\(218\) 0 0
\(219\) 153.725i 0.701939i
\(220\) 0 0
\(221\) 59.1911 0.267833
\(222\) 0 0
\(223\) 282.600 1.26726 0.633632 0.773635i \(-0.281563\pi\)
0.633632 + 0.773635i \(0.281563\pi\)
\(224\) 0 0
\(225\) 0.938431 0.00417081
\(226\) 0 0
\(227\) 111.251i 0.490092i 0.969511 + 0.245046i \(0.0788031\pi\)
−0.969511 + 0.245046i \(0.921197\pi\)
\(228\) 0 0
\(229\) −53.3814 −0.233107 −0.116553 0.993184i \(-0.537185\pi\)
−0.116553 + 0.993184i \(0.537185\pi\)
\(230\) 0 0
\(231\) 30.3619 186.649i 0.131437 0.808006i
\(232\) 0 0
\(233\) 42.7082i 0.183297i −0.995791 0.0916485i \(-0.970786\pi\)
0.995791 0.0916485i \(-0.0292136\pi\)
\(234\) 0 0
\(235\) 40.7439 0.173378
\(236\) 0 0
\(237\) 38.6411i 0.163042i
\(238\) 0 0
\(239\) 216.974i 0.907840i 0.891042 + 0.453920i \(0.149975\pi\)
−0.891042 + 0.453920i \(0.850025\pi\)
\(240\) 0 0
\(241\) 155.081i 0.643488i 0.946827 + 0.321744i \(0.104269\pi\)
−0.946827 + 0.321744i \(0.895731\pi\)
\(242\) 0 0
\(243\) −10.1334 −0.0417013
\(244\) 0 0
\(245\) −37.6409 −0.153636
\(246\) 0 0
\(247\) 320.118 1.29603
\(248\) 0 0
\(249\) 339.675i 1.36416i
\(250\) 0 0
\(251\) 116.539 0.464300 0.232150 0.972680i \(-0.425424\pi\)
0.232150 + 0.972680i \(0.425424\pi\)
\(252\) 0 0
\(253\) 171.456 + 27.8904i 0.677692 + 0.110239i
\(254\) 0 0
\(255\) 23.2774i 0.0912840i
\(256\) 0 0
\(257\) −85.7024 −0.333472 −0.166736 0.986002i \(-0.553323\pi\)
−0.166736 + 0.986002i \(0.553323\pi\)
\(258\) 0 0
\(259\) 227.670i 0.879037i
\(260\) 0 0
\(261\) 9.87288i 0.0378271i
\(262\) 0 0
\(263\) 398.864i 1.51659i −0.651911 0.758296i \(-0.726032\pi\)
0.651911 0.758296i \(-0.273968\pi\)
\(264\) 0 0
\(265\) 168.161 0.634570
\(266\) 0 0
\(267\) 201.145 0.753353
\(268\) 0 0
\(269\) −237.209 −0.881819 −0.440910 0.897552i \(-0.645344\pi\)
−0.440910 + 0.897552i \(0.645344\pi\)
\(270\) 0 0
\(271\) 34.0378i 0.125601i −0.998026 0.0628003i \(-0.979997\pi\)
0.998026 0.0628003i \(-0.0200031\pi\)
\(272\) 0 0
\(273\) 296.288 1.08530
\(274\) 0 0
\(275\) −54.2865 8.83068i −0.197405 0.0321116i
\(276\) 0 0
\(277\) 202.654i 0.731604i 0.930693 + 0.365802i \(0.119205\pi\)
−0.930693 + 0.365802i \(0.880795\pi\)
\(278\) 0 0
\(279\) −5.17045 −0.0185321
\(280\) 0 0
\(281\) 100.966i 0.359311i 0.983730 + 0.179655i \(0.0574982\pi\)
−0.983730 + 0.179655i \(0.942502\pi\)
\(282\) 0 0
\(283\) 162.113i 0.572836i −0.958105 0.286418i \(-0.907535\pi\)
0.958105 0.286418i \(-0.0924646\pi\)
\(284\) 0 0
\(285\) 125.889i 0.441717i
\(286\) 0 0
\(287\) 424.458 1.47895
\(288\) 0 0
\(289\) 277.205 0.959187
\(290\) 0 0
\(291\) 197.417 0.678410
\(292\) 0 0
\(293\) 372.772i 1.27226i −0.771582 0.636130i \(-0.780534\pi\)
0.771582 0.636130i \(-0.219466\pi\)
\(294\) 0 0
\(295\) 3.92815 0.0133158
\(296\) 0 0
\(297\) 290.011 + 47.1756i 0.976468 + 0.158840i
\(298\) 0 0
\(299\) 272.170i 0.910268i
\(300\) 0 0
\(301\) −55.1832 −0.183333
\(302\) 0 0
\(303\) 521.409i 1.72082i
\(304\) 0 0
\(305\) 108.650i 0.356231i
\(306\) 0 0
\(307\) 445.994i 1.45275i −0.687300 0.726374i \(-0.741204\pi\)
0.687300 0.726374i \(-0.258796\pi\)
\(308\) 0 0
\(309\) −85.8650 −0.277880
\(310\) 0 0
\(311\) 249.222 0.801357 0.400679 0.916219i \(-0.368774\pi\)
0.400679 + 0.916219i \(0.368774\pi\)
\(312\) 0 0
\(313\) 463.222 1.47994 0.739971 0.672638i \(-0.234839\pi\)
0.739971 + 0.672638i \(0.234839\pi\)
\(314\) 0 0
\(315\) 2.38023i 0.00755629i
\(316\) 0 0
\(317\) 167.548 0.528542 0.264271 0.964448i \(-0.414869\pi\)
0.264271 + 0.964448i \(0.414869\pi\)
\(318\) 0 0
\(319\) 92.9042 571.127i 0.291236 1.79037i
\(320\) 0 0
\(321\) 191.707i 0.597220i
\(322\) 0 0
\(323\) −63.7893 −0.197490
\(324\) 0 0
\(325\) 86.1747i 0.265153i
\(326\) 0 0
\(327\) 389.928i 1.19244i
\(328\) 0 0
\(329\) 103.343i 0.314112i
\(330\) 0 0
\(331\) −8.98005 −0.0271301 −0.0135650 0.999908i \(-0.504318\pi\)
−0.0135650 + 0.999908i \(0.504318\pi\)
\(332\) 0 0
\(333\) −7.53420 −0.0226252
\(334\) 0 0
\(335\) −79.3582 −0.236890
\(336\) 0 0
\(337\) 263.901i 0.783090i −0.920159 0.391545i \(-0.871941\pi\)
0.920159 0.391545i \(-0.128059\pi\)
\(338\) 0 0
\(339\) −107.512 −0.317145
\(340\) 0 0
\(341\) 299.101 + 48.6541i 0.877128 + 0.142681i
\(342\) 0 0
\(343\) 373.378i 1.08857i
\(344\) 0 0
\(345\) 107.033 0.310242
\(346\) 0 0
\(347\) 611.749i 1.76297i 0.472216 + 0.881483i \(0.343454\pi\)
−0.472216 + 0.881483i \(0.656546\pi\)
\(348\) 0 0
\(349\) 282.223i 0.808662i 0.914613 + 0.404331i \(0.132496\pi\)
−0.914613 + 0.404331i \(0.867504\pi\)
\(350\) 0 0
\(351\) 460.365i 1.31158i
\(352\) 0 0
\(353\) −173.629 −0.491868 −0.245934 0.969287i \(-0.579095\pi\)
−0.245934 + 0.969287i \(0.579095\pi\)
\(354\) 0 0
\(355\) 247.082 0.696007
\(356\) 0 0
\(357\) −59.0407 −0.165380
\(358\) 0 0
\(359\) 285.384i 0.794941i −0.917615 0.397471i \(-0.869888\pi\)
0.917615 0.397471i \(-0.130112\pi\)
\(360\) 0 0
\(361\) 16.0139 0.0443597
\(362\) 0 0
\(363\) 347.856 + 116.246i 0.958281 + 0.320237i
\(364\) 0 0
\(365\) 113.403i 0.310694i
\(366\) 0 0
\(367\) 324.275 0.883582 0.441791 0.897118i \(-0.354343\pi\)
0.441791 + 0.897118i \(0.354343\pi\)
\(368\) 0 0
\(369\) 14.0464i 0.0380661i
\(370\) 0 0
\(371\) 426.523i 1.14966i
\(372\) 0 0
\(373\) 128.367i 0.344148i 0.985084 + 0.172074i \(0.0550469\pi\)
−0.985084 + 0.172074i \(0.944953\pi\)
\(374\) 0 0
\(375\) −33.8889 −0.0903705
\(376\) 0 0
\(377\) 906.611 2.40480
\(378\) 0 0
\(379\) −684.510 −1.80610 −0.903048 0.429540i \(-0.858676\pi\)
−0.903048 + 0.429540i \(0.858676\pi\)
\(380\) 0 0
\(381\) 638.615i 1.67615i
\(382\) 0 0
\(383\) −338.766 −0.884506 −0.442253 0.896890i \(-0.645821\pi\)
−0.442253 + 0.896890i \(0.645821\pi\)
\(384\) 0 0
\(385\) −22.3981 + 137.692i −0.0581768 + 0.357641i
\(386\) 0 0
\(387\) 1.82616i 0.00471875i
\(388\) 0 0
\(389\) −552.950 −1.42146 −0.710732 0.703463i \(-0.751636\pi\)
−0.710732 + 0.703463i \(0.751636\pi\)
\(390\) 0 0
\(391\) 54.2348i 0.138708i
\(392\) 0 0
\(393\) 399.272i 1.01596i
\(394\) 0 0
\(395\) 28.5056i 0.0721662i
\(396\) 0 0
\(397\) 111.881 0.281815 0.140908 0.990023i \(-0.454998\pi\)
0.140908 + 0.990023i \(0.454998\pi\)
\(398\) 0 0
\(399\) −319.305 −0.800263
\(400\) 0 0
\(401\) −284.972 −0.710654 −0.355327 0.934742i \(-0.615630\pi\)
−0.355327 + 0.934742i \(0.615630\pi\)
\(402\) 0 0
\(403\) 474.794i 1.17815i
\(404\) 0 0
\(405\) 184.820 0.456345
\(406\) 0 0
\(407\) 435.839 + 70.8972i 1.07086 + 0.174195i
\(408\) 0 0
\(409\) 122.119i 0.298580i −0.988793 0.149290i \(-0.952301\pi\)
0.988793 0.149290i \(-0.0476989\pi\)
\(410\) 0 0
\(411\) 509.028 1.23851
\(412\) 0 0
\(413\) 9.96334i 0.0241243i
\(414\) 0 0
\(415\) 250.579i 0.603806i
\(416\) 0 0
\(417\) 274.663i 0.658663i
\(418\) 0 0
\(419\) −407.625 −0.972852 −0.486426 0.873722i \(-0.661700\pi\)
−0.486426 + 0.873722i \(0.661700\pi\)
\(420\) 0 0
\(421\) −348.212 −0.827107 −0.413554 0.910480i \(-0.635713\pi\)
−0.413554 + 0.910480i \(0.635713\pi\)
\(422\) 0 0
\(423\) −3.41988 −0.00808481
\(424\) 0 0
\(425\) 17.1718i 0.0404043i
\(426\) 0 0
\(427\) 275.580 0.645387
\(428\) 0 0
\(429\) −92.2649 + 567.197i −0.215070 + 1.32214i
\(430\) 0 0
\(431\) 453.606i 1.05245i −0.850346 0.526225i \(-0.823607\pi\)
0.850346 0.526225i \(-0.176393\pi\)
\(432\) 0 0
\(433\) 760.149 1.75554 0.877771 0.479081i \(-0.159030\pi\)
0.877771 + 0.479081i \(0.159030\pi\)
\(434\) 0 0
\(435\) 356.533i 0.819616i
\(436\) 0 0
\(437\) 293.313i 0.671198i
\(438\) 0 0
\(439\) 343.308i 0.782023i 0.920386 + 0.391011i \(0.127875\pi\)
−0.920386 + 0.391011i \(0.872125\pi\)
\(440\) 0 0
\(441\) 3.15942 0.00716422
\(442\) 0 0
\(443\) −47.4703 −0.107156 −0.0535782 0.998564i \(-0.517063\pi\)
−0.0535782 + 0.998564i \(0.517063\pi\)
\(444\) 0 0
\(445\) −148.385 −0.333451
\(446\) 0 0
\(447\) 220.962i 0.494321i
\(448\) 0 0
\(449\) −339.087 −0.755205 −0.377602 0.925968i \(-0.623251\pi\)
−0.377602 + 0.925968i \(0.623251\pi\)
\(450\) 0 0
\(451\) −132.177 + 812.557i −0.293076 + 1.80168i
\(452\) 0 0
\(453\) 718.921i 1.58702i
\(454\) 0 0
\(455\) −218.573 −0.480380
\(456\) 0 0
\(457\) 276.791i 0.605669i 0.953043 + 0.302835i \(0.0979330\pi\)
−0.953043 + 0.302835i \(0.902067\pi\)
\(458\) 0 0
\(459\) 91.7360i 0.199861i
\(460\) 0 0
\(461\) 156.898i 0.340342i 0.985415 + 0.170171i \(0.0544321\pi\)
−0.985415 + 0.170171i \(0.945568\pi\)
\(462\) 0 0
\(463\) −407.669 −0.880494 −0.440247 0.897877i \(-0.645109\pi\)
−0.440247 + 0.897877i \(0.645109\pi\)
\(464\) 0 0
\(465\) 186.717 0.401542
\(466\) 0 0
\(467\) −749.076 −1.60402 −0.802008 0.597313i \(-0.796235\pi\)
−0.802008 + 0.597313i \(0.796235\pi\)
\(468\) 0 0
\(469\) 201.284i 0.429176i
\(470\) 0 0
\(471\) 321.042 0.681618
\(472\) 0 0
\(473\) 17.1842 105.640i 0.0363302 0.223340i
\(474\) 0 0
\(475\) 92.8690i 0.195514i
\(476\) 0 0
\(477\) −14.1147 −0.0295907
\(478\) 0 0
\(479\) 11.2596i 0.0235064i 0.999931 + 0.0117532i \(0.00374124\pi\)
−0.999931 + 0.0117532i \(0.996259\pi\)
\(480\) 0 0
\(481\) 691.854i 1.43837i
\(482\) 0 0
\(483\) 271.479i 0.562068i
\(484\) 0 0
\(485\) −145.636 −0.300279
\(486\) 0 0
\(487\) 734.846 1.50892 0.754462 0.656344i \(-0.227898\pi\)
0.754462 + 0.656344i \(0.227898\pi\)
\(488\) 0 0
\(489\) −434.156 −0.887845
\(490\) 0 0
\(491\) 347.360i 0.707455i −0.935349 0.353727i \(-0.884914\pi\)
0.935349 0.353727i \(-0.115086\pi\)
\(492\) 0 0
\(493\) −180.658 −0.366447
\(494\) 0 0
\(495\) 4.55658 + 0.741210i 0.00920521 + 0.00149739i
\(496\) 0 0
\(497\) 626.698i 1.26096i
\(498\) 0 0
\(499\) −875.439 −1.75439 −0.877193 0.480138i \(-0.840587\pi\)
−0.877193 + 0.480138i \(0.840587\pi\)
\(500\) 0 0
\(501\) 107.900i 0.215369i
\(502\) 0 0
\(503\) 505.554i 1.00508i −0.864554 0.502539i \(-0.832399\pi\)
0.864554 0.502539i \(-0.167601\pi\)
\(504\) 0 0
\(505\) 384.645i 0.761674i
\(506\) 0 0
\(507\) −388.113 −0.765509
\(508\) 0 0
\(509\) −778.269 −1.52902 −0.764508 0.644614i \(-0.777018\pi\)
−0.764508 + 0.644614i \(0.777018\pi\)
\(510\) 0 0
\(511\) −287.635 −0.562887
\(512\) 0 0
\(513\) 496.128i 0.967111i
\(514\) 0 0
\(515\) 63.3429 0.122996
\(516\) 0 0
\(517\) 197.833 + 32.1812i 0.382656 + 0.0622460i
\(518\) 0 0
\(519\) 594.241i 1.14497i
\(520\) 0 0
\(521\) −273.723 −0.525380 −0.262690 0.964880i \(-0.584610\pi\)
−0.262690 + 0.964880i \(0.584610\pi\)
\(522\) 0 0
\(523\) 628.316i 1.20137i −0.799486 0.600685i \(-0.794895\pi\)
0.799486 0.600685i \(-0.205105\pi\)
\(524\) 0 0
\(525\) 85.9557i 0.163725i
\(526\) 0 0
\(527\) 94.6112i 0.179528i
\(528\) 0 0
\(529\) −279.620 −0.528582
\(530\) 0 0
\(531\) −0.329713 −0.000620928
\(532\) 0 0
\(533\) −1289.86 −2.42000
\(534\) 0 0
\(535\) 141.423i 0.264343i
\(536\) 0 0
\(537\) 197.576 0.367925
\(538\) 0 0
\(539\) −182.766 29.7303i −0.339084 0.0551582i
\(540\) 0 0
\(541\) 543.648i 1.00490i −0.864608 0.502448i \(-0.832433\pi\)
0.864608 0.502448i \(-0.167567\pi\)
\(542\) 0 0
\(543\) −475.935 −0.876492
\(544\) 0 0
\(545\) 287.651i 0.527800i
\(546\) 0 0
\(547\) 421.038i 0.769722i 0.922975 + 0.384861i \(0.125751\pi\)
−0.922975 + 0.384861i \(0.874249\pi\)
\(548\) 0 0
\(549\) 9.11967i 0.0166114i
\(550\) 0 0
\(551\) −977.040 −1.77321
\(552\) 0 0
\(553\) 72.3016 0.130744
\(554\) 0 0
\(555\) 272.078 0.490230
\(556\) 0 0
\(557\) 940.508i 1.68852i 0.535930 + 0.844262i \(0.319961\pi\)
−0.535930 + 0.844262i \(0.680039\pi\)
\(558\) 0 0
\(559\) 167.693 0.299987
\(560\) 0 0
\(561\) 18.3854 113.024i 0.0327726 0.201469i
\(562\) 0 0
\(563\) 285.806i 0.507649i 0.967250 + 0.253824i \(0.0816885\pi\)
−0.967250 + 0.253824i \(0.918312\pi\)
\(564\) 0 0
\(565\) 79.3120 0.140375
\(566\) 0 0
\(567\) 468.776i 0.826765i
\(568\) 0 0
\(569\) 307.137i 0.539783i −0.962891 0.269892i \(-0.913012\pi\)
0.962891 0.269892i \(-0.0869879\pi\)
\(570\) 0 0
\(571\) 390.713i 0.684261i −0.939652 0.342130i \(-0.888852\pi\)
0.939652 0.342130i \(-0.111148\pi\)
\(572\) 0 0
\(573\) −490.941 −0.856791
\(574\) 0 0
\(575\) −78.9589 −0.137320
\(576\) 0 0
\(577\) −119.491 −0.207090 −0.103545 0.994625i \(-0.533019\pi\)
−0.103545 + 0.994625i \(0.533019\pi\)
\(578\) 0 0
\(579\) 2.25186i 0.00388923i
\(580\) 0 0
\(581\) −635.568 −1.09392
\(582\) 0 0
\(583\) 816.511 + 132.820i 1.40053 + 0.227822i
\(584\) 0 0
\(585\) 7.23314i 0.0123643i
\(586\) 0 0
\(587\) 340.259 0.579658 0.289829 0.957078i \(-0.406402\pi\)
0.289829 + 0.957078i \(0.406402\pi\)
\(588\) 0 0
\(589\) 511.678i 0.868723i
\(590\) 0 0
\(591\) 130.625i 0.221023i
\(592\) 0 0
\(593\) 752.004i 1.26813i 0.773278 + 0.634067i \(0.218616\pi\)
−0.773278 + 0.634067i \(0.781384\pi\)
\(594\) 0 0
\(595\) 43.5546 0.0732009
\(596\) 0 0
\(597\) 612.083 1.02527
\(598\) 0 0
\(599\) −274.841 −0.458833 −0.229416 0.973328i \(-0.573682\pi\)
−0.229416 + 0.973328i \(0.573682\pi\)
\(600\) 0 0
\(601\) 397.025i 0.660608i −0.943875 0.330304i \(-0.892849\pi\)
0.943875 0.330304i \(-0.107151\pi\)
\(602\) 0 0
\(603\) 6.66100 0.0110464
\(604\) 0 0
\(605\) −256.615 85.7552i −0.424156 0.141744i
\(606\) 0 0
\(607\) 351.597i 0.579238i 0.957142 + 0.289619i \(0.0935286\pi\)
−0.957142 + 0.289619i \(0.906471\pi\)
\(608\) 0 0
\(609\) −904.308 −1.48491
\(610\) 0 0
\(611\) 314.042i 0.513980i
\(612\) 0 0
\(613\) 547.965i 0.893907i −0.894557 0.446953i \(-0.852509\pi\)
0.894557 0.446953i \(-0.147491\pi\)
\(614\) 0 0
\(615\) 507.248i 0.824794i
\(616\) 0 0
\(617\) −1124.68 −1.82282 −0.911408 0.411505i \(-0.865003\pi\)
−0.911408 + 0.411505i \(0.865003\pi\)
\(618\) 0 0
\(619\) −82.7193 −0.133634 −0.0668169 0.997765i \(-0.521284\pi\)
−0.0668169 + 0.997765i \(0.521284\pi\)
\(620\) 0 0
\(621\) 421.817 0.679254
\(622\) 0 0
\(623\) 376.364i 0.604116i
\(624\) 0 0
\(625\) 25.0000 0.0400000
\(626\) 0 0
\(627\) 99.4324 611.259i 0.158584 0.974895i
\(628\) 0 0
\(629\) 137.864i 0.219180i
\(630\) 0 0
\(631\) −317.879 −0.503771 −0.251885 0.967757i \(-0.581051\pi\)
−0.251885 + 0.967757i \(0.581051\pi\)
\(632\) 0 0
\(633\) 162.076i 0.256043i
\(634\) 0 0
\(635\) 471.108i 0.741903i
\(636\) 0 0
\(637\) 290.125i 0.455454i
\(638\) 0 0
\(639\) −20.7391 −0.0324555
\(640\) 0 0
\(641\) 432.182 0.674230 0.337115 0.941463i \(-0.390549\pi\)
0.337115 + 0.941463i \(0.390549\pi\)
\(642\) 0 0
\(643\) −229.511 −0.356937 −0.178469 0.983946i \(-0.557114\pi\)
−0.178469 + 0.983946i \(0.557114\pi\)
\(644\) 0 0
\(645\) 65.9467i 0.102243i
\(646\) 0 0
\(647\) 768.342 1.18755 0.593773 0.804633i \(-0.297638\pi\)
0.593773 + 0.804633i \(0.297638\pi\)
\(648\) 0 0
\(649\) 19.0733 + 3.10261i 0.0293887 + 0.00478060i
\(650\) 0 0
\(651\) 473.588i 0.727478i
\(652\) 0 0
\(653\) 624.977 0.957085 0.478543 0.878064i \(-0.341165\pi\)
0.478543 + 0.878064i \(0.341165\pi\)
\(654\) 0 0
\(655\) 294.544i 0.449686i
\(656\) 0 0
\(657\) 9.51859i 0.0144880i
\(658\) 0 0
\(659\) 1104.04i 1.67533i 0.546185 + 0.837665i \(0.316080\pi\)
−0.546185 + 0.837665i \(0.683920\pi\)
\(660\) 0 0
\(661\) 246.985 0.373653 0.186827 0.982393i \(-0.440180\pi\)
0.186827 + 0.982393i \(0.440180\pi\)
\(662\) 0 0
\(663\) 179.415 0.270611
\(664\) 0 0
\(665\) 235.552 0.354214
\(666\) 0 0
\(667\) 830.697i 1.24542i
\(668\) 0 0
\(669\) 856.594 1.28041
\(670\) 0 0
\(671\) −85.8165 + 527.555i −0.127893 + 0.786223i
\(672\) 0 0
\(673\) 715.709i 1.06346i 0.846914 + 0.531730i \(0.178458\pi\)
−0.846914 + 0.531730i \(0.821542\pi\)
\(674\) 0 0
\(675\) −133.556 −0.197861
\(676\) 0 0
\(677\) 946.798i 1.39852i −0.714867 0.699260i \(-0.753513\pi\)
0.714867 0.699260i \(-0.246487\pi\)
\(678\) 0 0
\(679\) 369.389i 0.544019i
\(680\) 0 0
\(681\) 337.215i 0.495176i
\(682\) 0 0
\(683\) −67.4542 −0.0987616 −0.0493808 0.998780i \(-0.515725\pi\)
−0.0493808 + 0.998780i \(0.515725\pi\)
\(684\) 0 0
\(685\) −375.512 −0.548193
\(686\) 0 0
\(687\) −161.805 −0.235525
\(688\) 0 0
\(689\) 1296.13i 1.88118i
\(690\) 0 0
\(691\) 396.379 0.573632 0.286816 0.957986i \(-0.407403\pi\)
0.286816 + 0.957986i \(0.407403\pi\)
\(692\) 0 0
\(693\) 1.88000 11.5573i 0.00271284 0.0166772i
\(694\) 0 0
\(695\) 202.620i 0.291539i
\(696\) 0 0
\(697\) 257.027 0.368762
\(698\) 0 0
\(699\) 129.454i 0.185198i
\(700\) 0 0
\(701\) 884.194i 1.26133i 0.776054 + 0.630666i \(0.217218\pi\)
−0.776054 + 0.630666i \(0.782782\pi\)
\(702\) 0 0
\(703\) 745.600i 1.06060i
\(704\) 0 0
\(705\) 123.500 0.175177
\(706\) 0 0
\(707\) −975.613 −1.37993
\(708\) 0 0
\(709\) −902.302 −1.27264 −0.636320 0.771425i \(-0.719544\pi\)
−0.636320 + 0.771425i \(0.719544\pi\)
\(710\) 0 0
\(711\) 2.39265i 0.00336518i
\(712\) 0 0
\(713\) 435.038 0.610151
\(714\) 0 0
\(715\) 68.0642 418.423i 0.0951946 0.585208i
\(716\) 0 0
\(717\) 657.673i 0.917257i
\(718\) 0 0
\(719\) −1021.01 −1.42004 −0.710021 0.704180i \(-0.751315\pi\)
−0.710021 + 0.704180i \(0.751315\pi\)
\(720\) 0 0
\(721\) 160.663i 0.222833i
\(722\) 0 0
\(723\) 470.068i 0.650163i
\(724\) 0 0
\(725\) 263.016i 0.362780i
\(726\) 0 0
\(727\) −637.169 −0.876436 −0.438218 0.898869i \(-0.644390\pi\)
−0.438218 + 0.898869i \(0.644390\pi\)
\(728\) 0 0
\(729\) 713.170 0.978285
\(730\) 0 0
\(731\) −33.4158 −0.0457125
\(732\) 0 0
\(733\) 261.937i 0.357349i −0.983908 0.178674i \(-0.942819\pi\)
0.983908 0.178674i \(-0.0571809\pi\)
\(734\) 0 0
\(735\) −114.094 −0.155230
\(736\) 0 0
\(737\) −385.326 62.6803i −0.522830 0.0850478i
\(738\) 0 0
\(739\) 734.865i 0.994404i −0.867635 0.497202i \(-0.834361\pi\)
0.867635 0.497202i \(-0.165639\pi\)
\(740\) 0 0
\(741\) 970.317 1.30947
\(742\) 0 0
\(743\) 161.161i 0.216905i 0.994102 + 0.108453i \(0.0345896\pi\)
−0.994102 + 0.108453i \(0.965410\pi\)
\(744\) 0 0
\(745\) 163.004i 0.218797i
\(746\) 0 0
\(747\) 21.0326i 0.0281561i
\(748\) 0 0
\(749\) 358.705 0.478912
\(750\) 0 0
\(751\) −1141.77 −1.52033 −0.760167 0.649728i \(-0.774883\pi\)
−0.760167 + 0.649728i \(0.774883\pi\)
\(752\) 0 0
\(753\) 353.244 0.469116
\(754\) 0 0
\(755\) 530.350i 0.702451i
\(756\) 0 0
\(757\) 119.677 0.158094 0.0790469 0.996871i \(-0.474812\pi\)
0.0790469 + 0.996871i \(0.474812\pi\)
\(758\) 0 0
\(759\) 519.704 + 84.5392i 0.684721 + 0.111382i
\(760\) 0 0
\(761\) 157.280i 0.206676i 0.994646 + 0.103338i \(0.0329523\pi\)
−0.994646 + 0.103338i \(0.967048\pi\)
\(762\) 0 0
\(763\) 729.596 0.956221
\(764\) 0 0
\(765\) 1.44133i 0.00188409i
\(766\) 0 0
\(767\) 30.2770i 0.0394746i
\(768\) 0 0
\(769\) 1498.58i 1.94874i −0.224947 0.974371i \(-0.572221\pi\)
0.224947 0.974371i \(-0.427779\pi\)
\(770\) 0 0
\(771\) −259.774 −0.336931
\(772\) 0 0
\(773\) −1528.87 −1.97784 −0.988920 0.148450i \(-0.952572\pi\)
−0.988920 + 0.148450i \(0.952572\pi\)
\(774\) 0 0
\(775\) −137.742 −0.177731
\(776\) 0 0
\(777\) 690.096i 0.888155i
\(778\) 0 0
\(779\) 1390.06 1.78441
\(780\) 0 0
\(781\) 1199.72 + 195.155i 1.53613 + 0.249879i
\(782\) 0 0
\(783\) 1405.09i 1.79450i
\(784\) 0 0
\(785\) −236.834 −0.301699
\(786\) 0 0
\(787\) 930.613i 1.18248i 0.806495 + 0.591241i \(0.201362\pi\)
−0.806495 + 0.591241i \(0.798638\pi\)
\(788\) 0 0
\(789\) 1209.00i 1.53232i
\(790\) 0 0
\(791\) 201.167i 0.254319i
\(792\) 0 0
\(793\) −837.445 −1.05605
\(794\) 0 0
\(795\) 509.717 0.641153
\(796\) 0 0
\(797\) −332.628 −0.417350 −0.208675 0.977985i \(-0.566915\pi\)
−0.208675 + 0.977985i \(0.566915\pi\)
\(798\) 0 0
\(799\) 62.5784i 0.0783210i
\(800\) 0 0
\(801\) 12.4549 0.0155491
\(802\) 0 0
\(803\) 89.5703 550.632i 0.111545 0.685719i
\(804\) 0 0
\(805\) 200.271i 0.248784i
\(806\) 0 0
\(807\) −719.010 −0.890966
\(808\) 0 0
\(809\) 870.764i 1.07635i 0.842834 + 0.538173i \(0.180885\pi\)
−0.842834 + 0.538173i \(0.819115\pi\)
\(810\) 0 0
\(811\) 1369.14i 1.68821i 0.536180 + 0.844103i \(0.319867\pi\)
−0.536180 + 0.844103i \(0.680133\pi\)
\(812\) 0 0
\(813\) 103.173i 0.126904i
\(814\) 0 0
\(815\) 320.279 0.392980
\(816\) 0 0
\(817\) −180.720 −0.221199
\(818\) 0 0
\(819\) 18.3461 0.0224006
\(820\) 0 0
\(821\) 759.486i 0.925075i 0.886600 + 0.462537i \(0.153061\pi\)
−0.886600 + 0.462537i \(0.846939\pi\)
\(822\) 0 0
\(823\) −252.673 −0.307015 −0.153507 0.988148i \(-0.549057\pi\)
−0.153507 + 0.988148i \(0.549057\pi\)
\(824\) 0 0
\(825\) −164.549 26.7668i −0.199453 0.0324447i
\(826\) 0 0
\(827\) 172.995i 0.209184i −0.994515 0.104592i \(-0.966646\pi\)
0.994515 0.104592i \(-0.0333536\pi\)
\(828\) 0 0
\(829\) 1145.40 1.38167 0.690834 0.723013i \(-0.257244\pi\)
0.690834 + 0.723013i \(0.257244\pi\)
\(830\) 0 0
\(831\) 614.270i 0.739193i
\(832\) 0 0
\(833\) 57.8125i 0.0694027i
\(834\) 0 0
\(835\) 79.5983i 0.0953273i
\(836\) 0 0
\(837\) 735.849 0.879151
\(838\) 0 0
\(839\) 41.7126 0.0497170 0.0248585 0.999691i \(-0.492086\pi\)
0.0248585 + 0.999691i \(0.492086\pi\)
\(840\) 0 0
\(841\) −1926.09 −2.29023
\(842\) 0 0
\(843\) 306.041i 0.363038i
\(844\) 0 0
\(845\) 286.312 0.338831
\(846\) 0 0
\(847\) −217.509 + 650.876i −0.256799 + 0.768448i
\(848\) 0 0
\(849\) 491.383i 0.578778i
\(850\) 0 0
\(851\) 633.922 0.744915
\(852\) 0 0
\(853\) 725.094i 0.850052i 0.905181 + 0.425026i \(0.139735\pi\)
−0.905181 + 0.425026i \(0.860265\pi\)
\(854\) 0 0
\(855\) 7.79504i 0.00911700i
\(856\) 0 0
\(857\) 302.221i 0.352650i −0.984332 0.176325i \(-0.943579\pi\)
0.984332 0.176325i \(-0.0564210\pi\)
\(858\) 0 0
\(859\) 207.101 0.241096 0.120548 0.992708i \(-0.461535\pi\)
0.120548 + 0.992708i \(0.461535\pi\)
\(860\) 0 0
\(861\) 1286.58 1.49429
\(862\) 0 0
\(863\) −482.444 −0.559032 −0.279516 0.960141i \(-0.590174\pi\)
−0.279516 + 0.960141i \(0.590174\pi\)
\(864\) 0 0
\(865\) 438.374i 0.506791i
\(866\) 0 0
\(867\) 840.242 0.969137
\(868\) 0 0
\(869\) −22.5149 + 138.410i −0.0259090 + 0.159275i
\(870\) 0 0
\(871\) 611.669i 0.702260i
\(872\) 0 0
\(873\) 12.2240 0.0140023
\(874\) 0 0
\(875\) 63.4099i 0.0724684i
\(876\) 0 0
\(877\) 377.864i 0.430860i 0.976519 + 0.215430i \(0.0691153\pi\)
−0.976519 + 0.215430i \(0.930885\pi\)
\(878\) 0 0
\(879\) 1129.92i 1.28546i
\(880\) 0 0
\(881\) −1459.75 −1.65693 −0.828463 0.560045i \(-0.810784\pi\)
−0.828463 + 0.560045i \(0.810784\pi\)
\(882\) 0 0
\(883\) 353.252 0.400059 0.200029 0.979790i \(-0.435896\pi\)
0.200029 + 0.979790i \(0.435896\pi\)
\(884\) 0 0
\(885\) 11.9067 0.0134539
\(886\) 0 0
\(887\) 174.064i 0.196239i 0.995175 + 0.0981194i \(0.0312827\pi\)
−0.995175 + 0.0981194i \(0.968717\pi\)
\(888\) 0 0
\(889\) 1194.92 1.34411
\(890\) 0 0
\(891\) 897.398 + 145.978i 1.00718 + 0.163836i
\(892\) 0 0
\(893\) 338.438i 0.378990i
\(894\) 0 0
\(895\) −145.752 −0.162852
\(896\) 0 0
\(897\) 824.981i 0.919711i
\(898\) 0 0
\(899\) 1449.13i 1.61193i
\(900\) 0 0
\(901\) 258.278i 0.286657i
\(902\) 0 0
\(903\) −167.267 −0.185235
\(904\) 0 0
\(905\) 351.099 0.387955
\(906\) 0 0
\(907\) 1341.78 1.47936 0.739679 0.672960i \(-0.234977\pi\)
0.739679 + 0.672960i \(0.234977\pi\)
\(908\) 0 0
\(909\) 32.2855i 0.0355176i
\(910\) 0 0
\(911\) −81.8460 −0.0898419 −0.0449210 0.998991i \(-0.514304\pi\)
−0.0449210 + 0.998991i \(0.514304\pi\)
\(912\) 0 0
\(913\) 197.918 1216.70i 0.216777 1.33263i
\(914\) 0 0
\(915\) 329.333i 0.359926i
\(916\) 0 0
\(917\) 747.080 0.814700
\(918\) 0 0
\(919\) 146.259i 0.159150i −0.996829 0.0795752i \(-0.974644\pi\)
0.996829 0.0795752i \(-0.0253564\pi\)
\(920\) 0 0
\(921\) 1351.86i 1.46782i
\(922\) 0 0
\(923\) 1904.44i 2.06331i
\(924\) 0 0
\(925\) −200.713 −0.216987
\(926\) 0 0
\(927\) −5.31674 −0.00573543
\(928\) 0 0
\(929\) −624.735 −0.672481 −0.336240 0.941776i \(-0.609155\pi\)
−0.336240 + 0.941776i \(0.609155\pi\)
\(930\) 0 0
\(931\) 312.662i 0.335835i
\(932\) 0 0
\(933\) 755.422 0.809670
\(934\) 0 0
\(935\) −13.5630 + 83.3783i −0.0145059 + 0.0891747i
\(936\) 0 0
\(937\) 1737.04i 1.85383i 0.375273 + 0.926915i \(0.377549\pi\)
−0.375273 + 0.926915i \(0.622451\pi\)
\(938\) 0 0
\(939\) 1404.08 1.49529
\(940\) 0 0
\(941\) 1214.68i 1.29084i −0.763830 0.645418i \(-0.776683\pi\)
0.763830 0.645418i \(-0.223317\pi\)
\(942\) 0 0
\(943\) 1181.85i 1.25329i
\(944\) 0 0
\(945\) 338.750i 0.358466i
\(946\) 0 0
\(947\) −1465.25 −1.54725 −0.773627 0.633641i \(-0.781560\pi\)
−0.773627 + 0.633641i \(0.781560\pi\)
\(948\) 0 0
\(949\) 874.077 0.921051
\(950\) 0 0
\(951\) 507.857 0.534025
\(952\) 0 0
\(953\) 464.526i 0.487435i 0.969846 + 0.243717i \(0.0783670\pi\)
−0.969846 + 0.243717i \(0.921633\pi\)
\(954\) 0 0
\(955\) 362.169 0.379235
\(956\) 0 0
\(957\) 281.604 1731.15i 0.294257 1.80894i
\(958\) 0 0
\(959\) 952.446i 0.993166i
\(960\) 0 0
\(961\) −202.088 −0.210289
\(962\) 0 0
\(963\) 11.8705i 0.0123266i
\(964\) 0 0
\(965\) 1.66121i 0.00172146i
\(966\) 0 0
\(967\) 667.349i 0.690123i −0.938580 0.345062i \(-0.887858\pi\)
0.938580 0.345062i \(-0.112142\pi\)
\(968\) 0 0
\(969\) −193.353 −0.199539
\(970\) 0 0
\(971\) −980.665 −1.00995 −0.504977 0.863133i \(-0.668499\pi\)
−0.504977 + 0.863133i \(0.668499\pi\)
\(972\) 0 0
\(973\) −513.923 −0.528184
\(974\) 0 0
\(975\) 261.206i 0.267903i
\(976\) 0 0
\(977\) 342.678 0.350745 0.175372 0.984502i \(-0.443887\pi\)
0.175372 + 0.984502i \(0.443887\pi\)
\(978\) 0 0
\(979\) −720.490 117.201i −0.735945 0.119715i
\(980\) 0 0
\(981\) 24.1442i 0.0246118i
\(982\) 0 0
\(983\) 447.215 0.454949 0.227475 0.973784i \(-0.426953\pi\)
0.227475 + 0.973784i \(0.426953\pi\)
\(984\) 0 0
\(985\) 96.3622i 0.0978297i
\(986\) 0 0
\(987\) 313.244i 0.317370i
\(988\) 0 0
\(989\) 153.651i 0.155360i
\(990\) 0 0
\(991\) −135.932 −0.137166 −0.0685831 0.997645i \(-0.521848\pi\)
−0.0685831 + 0.997645i \(0.521848\pi\)
\(992\) 0 0
\(993\) −27.2196 −0.0274115
\(994\) 0 0
\(995\) −451.536 −0.453805
\(996\) 0 0
\(997\) 303.075i 0.303987i −0.988381 0.151993i \(-0.951431\pi\)
0.988381 0.151993i \(-0.0485693\pi\)
\(998\) 0 0
\(999\) 1072.25 1.07333
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 880.3.j.a.241.8 8
4.3 odd 2 55.3.c.a.21.2 8
11.10 odd 2 inner 880.3.j.a.241.7 8
12.11 even 2 495.3.b.a.406.7 8
20.3 even 4 275.3.d.c.274.3 16
20.7 even 4 275.3.d.c.274.14 16
20.19 odd 2 275.3.c.f.76.7 8
44.43 even 2 55.3.c.a.21.7 yes 8
132.131 odd 2 495.3.b.a.406.2 8
220.43 odd 4 275.3.d.c.274.13 16
220.87 odd 4 275.3.d.c.274.4 16
220.219 even 2 275.3.c.f.76.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.3.c.a.21.2 8 4.3 odd 2
55.3.c.a.21.7 yes 8 44.43 even 2
275.3.c.f.76.2 8 220.219 even 2
275.3.c.f.76.7 8 20.19 odd 2
275.3.d.c.274.3 16 20.3 even 4
275.3.d.c.274.4 16 220.87 odd 4
275.3.d.c.274.13 16 220.43 odd 4
275.3.d.c.274.14 16 20.7 even 4
495.3.b.a.406.2 8 132.131 odd 2
495.3.b.a.406.7 8 12.11 even 2
880.3.j.a.241.7 8 11.10 odd 2 inner
880.3.j.a.241.8 8 1.1 even 1 trivial