Properties

Label 880.3.i.b.769.1
Level $880$
Weight $3$
Character 880.769
Analytic conductor $23.978$
Analytic rank $0$
Dimension $2$
CM discriminant -11
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [880,3,Mod(769,880)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(880, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("880.769"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 880.i (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.9782632637\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-11}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 769.1
Root \(0.500000 + 1.65831i\) of defining polynomial
Character \(\chi\) \(=\) 880.769
Dual form 880.3.i.b.769.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.31662i q^{3} +(0.500000 + 4.97494i) q^{5} -2.00000 q^{9} -11.0000 q^{11} +(16.5000 - 1.65831i) q^{15} +29.8496i q^{23} +(-24.5000 + 4.97494i) q^{25} -23.2164i q^{27} -37.0000 q^{31} +36.4829i q^{33} +69.6491i q^{37} +(-1.00000 - 9.94987i) q^{45} +79.5990i q^{47} -49.0000 q^{49} -79.5990i q^{53} +(-5.50000 - 54.7243i) q^{55} -107.000 q^{59} +129.348i q^{67} +99.0000 q^{69} +133.000 q^{71} +(16.5000 + 81.2573i) q^{75} -95.0000 q^{81} +97.0000 q^{89} +122.715i q^{93} +169.148i q^{97} +22.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{5} - 4 q^{9} - 22 q^{11} + 33 q^{15} - 49 q^{25} - 74 q^{31} - 2 q^{45} - 98 q^{49} - 11 q^{55} - 214 q^{59} + 198 q^{69} + 266 q^{71} + 33 q^{75} - 190 q^{81} + 194 q^{89} + 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.31662i 1.10554i −0.833333 0.552771i \(-0.813571\pi\)
0.833333 0.552771i \(-0.186429\pi\)
\(4\) 0 0
\(5\) 0.500000 + 4.97494i 0.100000 + 0.994987i
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 0 0
\(9\) −2.00000 −0.222222
\(10\) 0 0
\(11\) −11.0000 −1.00000
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 16.5000 1.65831i 1.10000 0.110554i
\(16\) 0 0
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 29.8496i 1.29781i 0.760870 + 0.648905i \(0.224773\pi\)
−0.760870 + 0.648905i \(0.775227\pi\)
\(24\) 0 0
\(25\) −24.5000 + 4.97494i −0.980000 + 0.198997i
\(26\) 0 0
\(27\) 23.2164i 0.859866i
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) −37.0000 −1.19355 −0.596774 0.802409i \(-0.703551\pi\)
−0.596774 + 0.802409i \(0.703551\pi\)
\(32\) 0 0
\(33\) 36.4829i 1.10554i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 69.6491i 1.88241i 0.337838 + 0.941204i \(0.390304\pi\)
−0.337838 + 0.941204i \(0.609696\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) −1.00000 9.94987i −0.0222222 0.221108i
\(46\) 0 0
\(47\) 79.5990i 1.69360i 0.531915 + 0.846798i \(0.321473\pi\)
−0.531915 + 0.846798i \(0.678527\pi\)
\(48\) 0 0
\(49\) −49.0000 −1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 79.5990i 1.50187i −0.660377 0.750934i \(-0.729604\pi\)
0.660377 0.750934i \(-0.270396\pi\)
\(54\) 0 0
\(55\) −5.50000 54.7243i −0.100000 0.994987i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −107.000 −1.81356 −0.906780 0.421605i \(-0.861467\pi\)
−0.906780 + 0.421605i \(0.861467\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 129.348i 1.93057i 0.261194 + 0.965286i \(0.415884\pi\)
−0.261194 + 0.965286i \(0.584116\pi\)
\(68\) 0 0
\(69\) 99.0000 1.43478
\(70\) 0 0
\(71\) 133.000 1.87324 0.936620 0.350348i \(-0.113937\pi\)
0.936620 + 0.350348i \(0.113937\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 0 0
\(75\) 16.5000 + 81.2573i 0.220000 + 1.08343i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) −95.0000 −1.17284
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 97.0000 1.08989 0.544944 0.838473i \(-0.316551\pi\)
0.544944 + 0.838473i \(0.316551\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 122.715i 1.31952i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 169.148i 1.74379i 0.489691 + 0.871896i \(0.337110\pi\)
−0.489691 + 0.871896i \(0.662890\pi\)
\(98\) 0 0
\(99\) 22.0000 0.222222
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 79.5990i 0.772806i 0.922330 + 0.386403i \(0.126283\pi\)
−0.922330 + 0.386403i \(0.873717\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 231.000 2.08108
\(112\) 0 0
\(113\) 69.6491i 0.616364i 0.951327 + 0.308182i \(0.0997206\pi\)
−0.951327 + 0.308182i \(0.900279\pi\)
\(114\) 0 0
\(115\) −148.500 + 14.9248i −1.29130 + 0.129781i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 121.000 1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −37.0000 119.398i −0.296000 0.955188i
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 115.500 11.6082i 0.855556 0.0859866i
\(136\) 0 0
\(137\) 69.6491i 0.508388i 0.967153 + 0.254194i \(0.0818101\pi\)
−0.967153 + 0.254194i \(0.918190\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 264.000 1.87234
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 162.515i 1.10554i
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −18.5000 184.073i −0.119355 1.18757i
\(156\) 0 0
\(157\) 228.847i 1.45762i −0.684713 0.728812i \(-0.740073\pi\)
0.684713 0.728812i \(-0.259927\pi\)
\(158\) 0 0
\(159\) −264.000 −1.66038
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 318.396i 1.95335i −0.214724 0.976675i \(-0.568885\pi\)
0.214724 0.976675i \(-0.431115\pi\)
\(164\) 0 0
\(165\) −181.500 + 18.2414i −1.10000 + 0.110554i
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −169.000 −1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 354.879i 2.00497i
\(178\) 0 0
\(179\) 83.0000 0.463687 0.231844 0.972753i \(-0.425524\pi\)
0.231844 + 0.972753i \(0.425524\pi\)
\(180\) 0 0
\(181\) −263.000 −1.45304 −0.726519 0.687146i \(-0.758863\pi\)
−0.726519 + 0.687146i \(0.758863\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −346.500 + 34.8246i −1.87297 + 0.188241i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −157.000 −0.821990 −0.410995 0.911638i \(-0.634819\pi\)
−0.410995 + 0.911638i \(0.634819\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) −2.00000 −0.0100503 −0.00502513 0.999987i \(-0.501600\pi\)
−0.00502513 + 0.999987i \(0.501600\pi\)
\(200\) 0 0
\(201\) 429.000 2.13433
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 59.6992i 0.288402i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 441.111i 2.07094i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 29.8496i 0.133855i 0.997758 + 0.0669274i \(0.0213196\pi\)
−0.997758 + 0.0669274i \(0.978680\pi\)
\(224\) 0 0
\(225\) 49.0000 9.94987i 0.217778 0.0442217i
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) −433.000 −1.89083 −0.945415 0.325869i \(-0.894343\pi\)
−0.945415 + 0.325869i \(0.894343\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) −396.000 + 39.7995i −1.68511 + 0.169360i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 106.132i 0.436757i
\(244\) 0 0
\(245\) −24.5000 243.772i −0.100000 0.994987i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −227.000 −0.904382 −0.452191 0.891921i \(-0.649358\pi\)
−0.452191 + 0.891921i \(0.649358\pi\)
\(252\) 0 0
\(253\) 328.346i 1.29781i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 477.594i 1.85834i −0.369650 0.929171i \(-0.620522\pi\)
0.369650 0.929171i \(-0.379478\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 396.000 39.7995i 1.49434 0.150187i
\(266\) 0 0
\(267\) 321.713i 1.20492i
\(268\) 0 0
\(269\) 362.000 1.34572 0.672862 0.739768i \(-0.265065\pi\)
0.672862 + 0.739768i \(0.265065\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 269.500 54.7243i 0.980000 0.198997i
\(276\) 0 0
\(277\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) 0 0
\(279\) 74.0000 0.265233
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −289.000 −1.00000
\(290\) 0 0
\(291\) 561.000 1.92784
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) −53.5000 532.318i −0.181356 1.80447i
\(296\) 0 0
\(297\) 255.380i 0.859866i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 264.000 0.854369
\(310\) 0 0
\(311\) 478.000 1.53698 0.768489 0.639863i \(-0.221009\pi\)
0.768489 + 0.639863i \(0.221009\pi\)
\(312\) 0 0
\(313\) 567.143i 1.81196i 0.423323 + 0.905979i \(0.360864\pi\)
−0.423323 + 0.905979i \(0.639136\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 626.842i 1.97742i −0.149842 0.988710i \(-0.547877\pi\)
0.149842 0.988710i \(-0.452123\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 563.000 1.70091 0.850453 0.526051i \(-0.176328\pi\)
0.850453 + 0.526051i \(0.176328\pi\)
\(332\) 0 0
\(333\) 139.298i 0.418313i
\(334\) 0 0
\(335\) −643.500 + 64.6742i −1.92090 + 0.193057i
\(336\) 0 0
\(337\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(338\) 0 0
\(339\) 231.000 0.681416
\(340\) 0 0
\(341\) 407.000 1.19355
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 49.5000 + 492.519i 0.143478 + 1.42759i
\(346\) 0 0
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 328.346i 0.930158i −0.885269 0.465079i \(-0.846026\pi\)
0.885269 0.465079i \(-0.153974\pi\)
\(354\) 0 0
\(355\) 66.5000 + 661.667i 0.187324 + 1.86385i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) 361.000 1.00000
\(362\) 0 0
\(363\) 401.312i 1.10554i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 368.145i 1.00312i −0.865123 0.501560i \(-0.832759\pi\)
0.865123 0.501560i \(-0.167241\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) −396.000 + 122.715i −1.05600 + 0.327240i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 133.000 0.350923 0.175462 0.984486i \(-0.443858\pi\)
0.175462 + 0.984486i \(0.443858\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 129.348i 0.337724i 0.985640 + 0.168862i \(0.0540093\pi\)
−0.985640 + 0.168862i \(0.945991\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −553.000 −1.42159 −0.710797 0.703397i \(-0.751666\pi\)
−0.710797 + 0.703397i \(0.751666\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 79.5990i 0.200501i −0.994962 0.100251i \(-0.968036\pi\)
0.994962 0.100251i \(-0.0319645\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −98.0000 −0.244389 −0.122195 0.992506i \(-0.538993\pi\)
−0.122195 + 0.992506i \(0.538993\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −47.5000 472.619i −0.117284 1.16696i
\(406\) 0 0
\(407\) 766.140i 1.88241i
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 231.000 0.562044
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −262.000 −0.625298 −0.312649 0.949869i \(-0.601216\pi\)
−0.312649 + 0.949869i \(0.601216\pi\)
\(420\) 0 0
\(421\) 742.000 1.76247 0.881235 0.472678i \(-0.156713\pi\)
0.881235 + 0.472678i \(0.156713\pi\)
\(422\) 0 0
\(423\) 159.198i 0.376355i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 865.639i 1.99917i 0.0288684 + 0.999583i \(0.490810\pi\)
−0.0288684 + 0.999583i \(0.509190\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 98.0000 0.222222
\(442\) 0 0
\(443\) 766.140i 1.72944i −0.502257 0.864718i \(-0.667497\pi\)
0.502257 0.864718i \(-0.332503\pi\)
\(444\) 0 0
\(445\) 48.5000 + 482.569i 0.108989 + 1.08442i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −623.000 −1.38753 −0.693764 0.720202i \(-0.744049\pi\)
−0.693764 + 0.720202i \(0.744049\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 925.338i 1.99857i 0.0377970 + 0.999285i \(0.487966\pi\)
−0.0377970 + 0.999285i \(0.512034\pi\)
\(464\) 0 0
\(465\) −610.500 + 61.3576i −1.31290 + 0.131952i
\(466\) 0 0
\(467\) 129.348i 0.276977i 0.990364 + 0.138489i \(0.0442244\pi\)
−0.990364 + 0.138489i \(0.955776\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −759.000 −1.61146
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 159.198i 0.333748i
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −841.500 + 84.5739i −1.73505 + 0.174379i
\(486\) 0 0
\(487\) 427.845i 0.878531i 0.898357 + 0.439266i \(0.144761\pi\)
−0.898357 + 0.439266i \(0.855239\pi\)
\(488\) 0 0
\(489\) −1056.00 −2.15951
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 11.0000 + 109.449i 0.0222222 + 0.221108i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −602.000 −1.20641 −0.603206 0.797585i \(-0.706110\pi\)
−0.603206 + 0.797585i \(0.706110\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 560.510i 1.10554i
\(508\) 0 0
\(509\) 1007.00 1.97839 0.989194 0.146609i \(-0.0468360\pi\)
0.989194 + 0.146609i \(0.0468360\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −396.000 + 39.7995i −0.768932 + 0.0772806i
\(516\) 0 0
\(517\) 875.589i 1.69360i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 817.000 1.56814 0.784069 0.620674i \(-0.213141\pi\)
0.784069 + 0.620674i \(0.213141\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −362.000 −0.684310
\(530\) 0 0
\(531\) 214.000 0.403013
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 275.280i 0.512625i
\(538\) 0 0
\(539\) 539.000 1.00000
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 872.272i 1.60639i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 115.500 + 1149.21i 0.208108 + 2.07065i
\(556\) 0 0
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) −346.500 + 34.8246i −0.613274 + 0.0616364i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 520.710i 0.908744i
\(574\) 0 0
\(575\) −148.500 731.316i −0.258261 1.27185i
\(576\) 0 0
\(577\) 467.644i 0.810475i 0.914211 + 0.405238i \(0.132811\pi\)
−0.914211 + 0.405238i \(0.867189\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 875.589i 1.50187i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 318.396i 0.542412i −0.962521 0.271206i \(-0.912577\pi\)
0.962521 0.271206i \(-0.0874225\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 6.63325i 0.0111110i
\(598\) 0 0
\(599\) 98.0000 0.163606 0.0818030 0.996649i \(-0.473932\pi\)
0.0818030 + 0.996649i \(0.473932\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 258.697i 0.429016i
\(604\) 0 0
\(605\) 60.5000 + 601.967i 0.100000 + 0.994987i
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1114.39i 1.80614i 0.429498 + 0.903068i \(0.358691\pi\)
−0.429498 + 0.903068i \(0.641309\pi\)
\(618\) 0 0
\(619\) −1237.00 −1.99838 −0.999192 0.0401853i \(-0.987205\pi\)
−0.999192 + 0.0401853i \(0.987205\pi\)
\(620\) 0 0
\(621\) 693.000 1.11594
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 575.500 243.772i 0.920800 0.390035i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 1213.00 1.92235 0.961173 0.275947i \(-0.0889916\pi\)
0.961173 + 0.275947i \(0.0889916\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −266.000 −0.416275
\(640\) 0 0
\(641\) −743.000 −1.15913 −0.579563 0.814927i \(-0.696777\pi\)
−0.579563 + 0.814927i \(0.696777\pi\)
\(642\) 0 0
\(643\) 1223.83i 1.90332i 0.307154 + 0.951660i \(0.400623\pi\)
−0.307154 + 0.951660i \(0.599377\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1164.14i 1.79928i −0.436631 0.899641i \(-0.643828\pi\)
0.436631 0.899641i \(-0.356172\pi\)
\(648\) 0 0
\(649\) 1177.00 1.81356
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 169.148i 0.259032i 0.991577 + 0.129516i \(0.0413424\pi\)
−0.991577 + 0.129516i \(0.958658\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) −1153.00 −1.74433 −0.872163 0.489215i \(-0.837283\pi\)
−0.872163 + 0.489215i \(0.837283\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 99.0000 0.147982
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(674\) 0 0
\(675\) 115.500 + 568.801i 0.171111 + 0.842668i
\(676\) 0 0
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1114.39i 1.63160i −0.578331 0.815802i \(-0.696296\pi\)
0.578331 0.815802i \(-0.303704\pi\)
\(684\) 0 0
\(685\) −346.500 + 34.8246i −0.505839 + 0.0508388i
\(686\) 0 0
\(687\) 1436.10i 2.09039i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 1093.00 1.58177 0.790883 0.611968i \(-0.209622\pi\)
0.790883 + 0.611968i \(0.209622\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 132.000 + 1313.38i 0.187234 + 1.86296i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 1057.00 1.49083 0.745416 0.666599i \(-0.232251\pi\)
0.745416 + 0.666599i \(0.232251\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1104.44i 1.54900i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1163.00 1.61752 0.808762 0.588136i \(-0.200138\pi\)
0.808762 + 0.588136i \(0.200138\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 527.343i 0.725369i 0.931912 + 0.362685i \(0.118140\pi\)
−0.931912 + 0.362685i \(0.881860\pi\)
\(728\) 0 0
\(729\) −503.000 −0.689986
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) −808.500 + 81.2573i −1.10000 + 0.110554i
\(736\) 0 0
\(737\) 1422.83i 1.93057i
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 973.000 1.29561 0.647803 0.761808i \(-0.275688\pi\)
0.647803 + 0.761808i \(0.275688\pi\)
\(752\) 0 0
\(753\) 752.874i 0.999832i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1512.38i 1.99786i 0.0462351 + 0.998931i \(0.485278\pi\)
−0.0462351 + 0.998931i \(0.514722\pi\)
\(758\) 0 0
\(759\) −1089.00 −1.43478
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) −1584.00 −2.05447
\(772\) 0 0
\(773\) 716.391i 0.926767i 0.886158 + 0.463384i \(0.153365\pi\)
−0.886158 + 0.463384i \(0.846635\pi\)
\(774\) 0 0
\(775\) 906.500 184.073i 1.16968 0.237513i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −1463.00 −1.87324
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1138.50 114.424i 1.45032 0.145762i
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −132.000 1313.38i −0.166038 1.65205i
\(796\) 0 0
\(797\) 169.148i 0.212231i 0.994354 + 0.106115i \(0.0338413\pi\)
−0.994354 + 0.106115i \(0.966159\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −194.000 −0.242197
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1200.62i 1.48775i
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1584.00 159.198i 1.94356 0.195335i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 1462.63i 1.77720i −0.458688 0.888598i \(-0.651680\pi\)
0.458688 0.888598i \(-0.348320\pi\)
\(824\) 0 0
\(825\) −181.500 893.830i −0.220000 1.08343i
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) 817.000 0.985525 0.492762 0.870164i \(-0.335987\pi\)
0.492762 + 0.870164i \(0.335987\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 859.006i 1.02629i
\(838\) 0 0
\(839\) −347.000 −0.413588 −0.206794 0.978385i \(-0.566303\pi\)
−0.206794 + 0.978385i \(0.566303\pi\)
\(840\) 0 0
\(841\) 841.000 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −84.5000 840.764i −0.100000 0.994987i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −2079.00 −2.44301
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) −757.000 −0.881257 −0.440629 0.897689i \(-0.645244\pi\)
−0.440629 + 0.897689i \(0.645244\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1671.58i 1.93694i 0.249131 + 0.968470i \(0.419855\pi\)
−0.249131 + 0.968470i \(0.580145\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 958.505i 1.10554i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 338.296i 0.387509i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1487.00 1.68785 0.843927 0.536457i \(-0.180238\pi\)
0.843927 + 0.536457i \(0.180238\pi\)
\(882\) 0 0
\(883\) 1114.39i 1.26205i −0.775764 0.631023i \(-0.782636\pi\)
0.775764 0.631023i \(-0.217364\pi\)
\(884\) 0 0
\(885\) −1765.50 + 177.439i −1.99492 + 0.200497i
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 1045.00 1.17284
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 41.5000 + 412.920i 0.0463687 + 0.461363i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −131.500 1308.41i −0.145304 1.44576i
\(906\) 0 0
\(907\) 477.594i 0.526564i 0.964719 + 0.263282i \(0.0848050\pi\)
−0.964719 + 0.263282i \(0.915195\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1778.00 1.95170 0.975851 0.218439i \(-0.0700963\pi\)
0.975851 + 0.218439i \(0.0700963\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −346.500 1706.40i −0.374595 1.84476i
\(926\) 0 0
\(927\) 159.198i 0.171735i
\(928\) 0 0
\(929\) −958.000 −1.03122 −0.515608 0.856824i \(-0.672434\pi\)
−0.515608 + 0.856824i \(0.672434\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 1585.35i 1.69919i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) 1881.00 2.00319
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1323.33i 1.39740i 0.715417 + 0.698698i \(0.246237\pi\)
−0.715417 + 0.698698i \(0.753763\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −2079.00 −2.18612
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) −78.5000 781.065i −0.0821990 0.817869i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 408.000 0.424558
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 83.0000 0.0854789 0.0427394 0.999086i \(-0.486391\pi\)
0.0427394 + 0.999086i \(0.486391\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1522.33i 1.55817i −0.626919 0.779084i \(-0.715684\pi\)
0.626919 0.779084i \(-0.284316\pi\)
\(978\) 0 0
\(979\) −1067.00 −1.08989
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1860.63i 1.89280i −0.322991 0.946402i \(-0.604688\pi\)
0.322991 0.946402i \(-0.395312\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −1582.00 −1.59637 −0.798184 0.602414i \(-0.794206\pi\)
−0.798184 + 0.602414i \(0.794206\pi\)
\(992\) 0 0
\(993\) 1867.26i 1.88042i
\(994\) 0 0
\(995\) −1.00000 9.94987i −0.00100503 0.00999987i
\(996\) 0 0
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) 0 0
\(999\) 1617.00 1.61862
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 880.3.i.b.769.1 2
4.3 odd 2 55.3.d.a.54.2 yes 2
5.4 even 2 inner 880.3.i.b.769.2 2
11.10 odd 2 CM 880.3.i.b.769.1 2
12.11 even 2 495.3.h.a.109.1 2
20.3 even 4 275.3.c.d.76.1 2
20.7 even 4 275.3.c.d.76.2 2
20.19 odd 2 55.3.d.a.54.1 2
44.43 even 2 55.3.d.a.54.2 yes 2
55.54 odd 2 inner 880.3.i.b.769.2 2
60.59 even 2 495.3.h.a.109.2 2
132.131 odd 2 495.3.h.a.109.1 2
220.43 odd 4 275.3.c.d.76.1 2
220.87 odd 4 275.3.c.d.76.2 2
220.219 even 2 55.3.d.a.54.1 2
660.659 odd 2 495.3.h.a.109.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.3.d.a.54.1 2 20.19 odd 2
55.3.d.a.54.1 2 220.219 even 2
55.3.d.a.54.2 yes 2 4.3 odd 2
55.3.d.a.54.2 yes 2 44.43 even 2
275.3.c.d.76.1 2 20.3 even 4
275.3.c.d.76.1 2 220.43 odd 4
275.3.c.d.76.2 2 20.7 even 4
275.3.c.d.76.2 2 220.87 odd 4
495.3.h.a.109.1 2 12.11 even 2
495.3.h.a.109.1 2 132.131 odd 2
495.3.h.a.109.2 2 60.59 even 2
495.3.h.a.109.2 2 660.659 odd 2
880.3.i.b.769.1 2 1.1 even 1 trivial
880.3.i.b.769.1 2 11.10 odd 2 CM
880.3.i.b.769.2 2 5.4 even 2 inner
880.3.i.b.769.2 2 55.54 odd 2 inner