Properties

Label 880.2.w.a.221.7
Level $880$
Weight $2$
Character 880.221
Analytic conductor $7.027$
Analytic rank $0$
Dimension $72$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [880,2,Mod(221,880)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(880, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("880.221"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 880.w (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [72] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.02683537787\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(36\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 221.7
Character \(\chi\) \(=\) 880.221
Dual form 880.2.w.a.661.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.27571 + 0.610390i) q^{2} +(0.191372 + 0.191372i) q^{3} +(1.25485 - 1.55736i) q^{4} +(0.707107 - 0.707107i) q^{5} +(-0.360945 - 0.127322i) q^{6} +1.72361i q^{7} +(-0.650220 + 2.75267i) q^{8} -2.92675i q^{9} +(-0.470449 + 1.33367i) q^{10} +(-0.707107 + 0.707107i) q^{11} +(0.538176 - 0.0578916i) q^{12} +(2.10654 + 2.10654i) q^{13} +(-1.05208 - 2.19882i) q^{14} +0.270640 q^{15} +(-0.850716 - 3.90849i) q^{16} +2.15875 q^{17} +(1.78646 + 3.73367i) q^{18} +(0.960096 + 0.960096i) q^{19} +(-0.213906 - 1.98853i) q^{20} +(-0.329851 + 0.329851i) q^{21} +(0.470449 - 1.33367i) q^{22} +4.90055i q^{23} +(-0.651217 + 0.402350i) q^{24} -1.00000i q^{25} +(-3.97313 - 1.40151i) q^{26} +(1.13421 - 1.13421i) q^{27} +(2.68428 + 2.16287i) q^{28} +(1.71672 + 1.71672i) q^{29} +(-0.345257 + 0.165196i) q^{30} +0.278102 q^{31} +(3.47097 + 4.46681i) q^{32} -0.270640 q^{33} +(-2.75393 + 1.31768i) q^{34} +(1.21878 + 1.21878i) q^{35} +(-4.55800 - 3.67263i) q^{36} +(5.65605 - 5.65605i) q^{37} +(-1.81083 - 0.638766i) q^{38} +0.806263i q^{39} +(1.48666 + 2.40621i) q^{40} -2.17914i q^{41} +(0.219455 - 0.622130i) q^{42} +(3.48058 - 3.48058i) q^{43} +(0.213906 + 1.98853i) q^{44} +(-2.06953 - 2.06953i) q^{45} +(-2.99125 - 6.25165i) q^{46} +1.06451 q^{47} +(0.585171 - 0.910777i) q^{48} +4.02916 q^{49} +(0.610390 + 1.27571i) q^{50} +(0.413124 + 0.413124i) q^{51} +(5.92401 - 0.637246i) q^{52} +(2.76868 - 2.76868i) q^{53} +(-0.754608 + 2.13923i) q^{54} +1.00000i q^{55} +(-4.74455 - 1.12073i) q^{56} +0.367470i q^{57} +(-3.23790 - 1.14216i) q^{58} +(-0.814977 + 0.814977i) q^{59} +(0.339612 - 0.421483i) q^{60} +(3.44842 + 3.44842i) q^{61} +(-0.354776 + 0.169751i) q^{62} +5.04459 q^{63} +(-7.15443 - 3.57969i) q^{64} +2.97909 q^{65} +(0.345257 - 0.165196i) q^{66} +(1.79605 + 1.79605i) q^{67} +(2.70891 - 3.36195i) q^{68} +(-0.937826 + 0.937826i) q^{69} +(-2.29873 - 0.810872i) q^{70} +3.26305i q^{71} +(8.05640 + 1.90303i) q^{72} +5.36462i q^{73} +(-3.76306 + 10.6679i) q^{74} +(0.191372 - 0.191372i) q^{75} +(2.69998 - 0.290437i) q^{76} +(-1.21878 - 1.21878i) q^{77} +(-0.492135 - 1.02855i) q^{78} +12.9535 q^{79} +(-3.36527 - 2.16217i) q^{80} -8.34615 q^{81} +(1.33012 + 2.77993i) q^{82} +(4.27228 + 4.27228i) q^{83} +(0.0997827 + 0.927607i) q^{84} +(1.52647 - 1.52647i) q^{85} +(-2.31568 + 6.56471i) q^{86} +0.657063i q^{87} +(-1.48666 - 2.40621i) q^{88} +2.22599i q^{89} +(3.90333 + 1.37689i) q^{90} +(-3.63086 + 3.63086i) q^{91} +(7.63190 + 6.14944i) q^{92} +(0.0532208 + 0.0532208i) q^{93} +(-1.35800 + 0.649768i) q^{94} +1.35778 q^{95} +(-0.190576 + 1.51907i) q^{96} +12.7002 q^{97} +(-5.14001 + 2.45936i) q^{98} +(2.06953 + 2.06953i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 12 q^{6} - 4 q^{10} + 12 q^{12} - 8 q^{14} + 8 q^{15} + 4 q^{16} + 56 q^{17} + 20 q^{18} + 8 q^{19} - 8 q^{20} + 4 q^{22} - 24 q^{24} - 24 q^{27} + 20 q^{28} - 20 q^{30} + 20 q^{32} - 8 q^{33} + 4 q^{34}+ \cdots - 60 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.27571 + 0.610390i −0.902060 + 0.431611i
\(3\) 0.191372 + 0.191372i 0.110488 + 0.110488i 0.760190 0.649701i \(-0.225106\pi\)
−0.649701 + 0.760190i \(0.725106\pi\)
\(4\) 1.25485 1.55736i 0.627424 0.778678i
\(5\) 0.707107 0.707107i 0.316228 0.316228i
\(6\) −0.360945 0.127322i −0.147355 0.0519791i
\(7\) 1.72361i 0.651465i 0.945462 + 0.325732i \(0.105611\pi\)
−0.945462 + 0.325732i \(0.894389\pi\)
\(8\) −0.650220 + 2.75267i −0.229888 + 0.973217i
\(9\) 2.92675i 0.975585i
\(10\) −0.470449 + 1.33367i −0.148769 + 0.421744i
\(11\) −0.707107 + 0.707107i −0.213201 + 0.213201i
\(12\) 0.538176 0.0578916i 0.155358 0.0167119i
\(13\) 2.10654 + 2.10654i 0.584248 + 0.584248i 0.936068 0.351820i \(-0.114437\pi\)
−0.351820 + 0.936068i \(0.614437\pi\)
\(14\) −1.05208 2.19882i −0.281179 0.587660i
\(15\) 0.270640 0.0698790
\(16\) −0.850716 3.90849i −0.212679 0.977122i
\(17\) 2.15875 0.523574 0.261787 0.965126i \(-0.415688\pi\)
0.261787 + 0.965126i \(0.415688\pi\)
\(18\) 1.78646 + 3.73367i 0.421073 + 0.880036i
\(19\) 0.960096 + 0.960096i 0.220261 + 0.220261i 0.808608 0.588347i \(-0.200221\pi\)
−0.588347 + 0.808608i \(0.700221\pi\)
\(20\) −0.213906 1.98853i −0.0478308 0.444648i
\(21\) −0.329851 + 0.329851i −0.0719793 + 0.0719793i
\(22\) 0.470449 1.33367i 0.100300 0.284340i
\(23\) 4.90055i 1.02183i 0.859630 + 0.510917i \(0.170694\pi\)
−0.859630 + 0.510917i \(0.829306\pi\)
\(24\) −0.651217 + 0.402350i −0.132929 + 0.0821293i
\(25\) 1.00000i 0.200000i
\(26\) −3.97313 1.40151i −0.779195 0.274859i
\(27\) 1.13421 1.13421i 0.218279 0.218279i
\(28\) 2.68428 + 2.16287i 0.507281 + 0.408744i
\(29\) 1.71672 + 1.71672i 0.318787 + 0.318787i 0.848301 0.529514i \(-0.177626\pi\)
−0.529514 + 0.848301i \(0.677626\pi\)
\(30\) −0.345257 + 0.165196i −0.0630351 + 0.0301606i
\(31\) 0.278102 0.0499485 0.0249743 0.999688i \(-0.492050\pi\)
0.0249743 + 0.999688i \(0.492050\pi\)
\(32\) 3.47097 + 4.46681i 0.613586 + 0.789628i
\(33\) −0.270640 −0.0471124
\(34\) −2.75393 + 1.31768i −0.472295 + 0.225981i
\(35\) 1.21878 + 1.21878i 0.206011 + 0.206011i
\(36\) −4.55800 3.67263i −0.759666 0.612105i
\(37\) 5.65605 5.65605i 0.929850 0.929850i −0.0678462 0.997696i \(-0.521613\pi\)
0.997696 + 0.0678462i \(0.0216127\pi\)
\(38\) −1.81083 0.638766i −0.293756 0.103622i
\(39\) 0.806263i 0.129105i
\(40\) 1.48666 + 2.40621i 0.235061 + 0.380455i
\(41\) 2.17914i 0.340324i −0.985416 0.170162i \(-0.945571\pi\)
0.985416 0.170162i \(-0.0544291\pi\)
\(42\) 0.219455 0.622130i 0.0338626 0.0959967i
\(43\) 3.48058 3.48058i 0.530784 0.530784i −0.390022 0.920806i \(-0.627532\pi\)
0.920806 + 0.390022i \(0.127532\pi\)
\(44\) 0.213906 + 1.98853i 0.0322475 + 0.299782i
\(45\) −2.06953 2.06953i −0.308507 0.308507i
\(46\) −2.99125 6.25165i −0.441035 0.921756i
\(47\) 1.06451 0.155275 0.0776375 0.996982i \(-0.475262\pi\)
0.0776375 + 0.996982i \(0.475262\pi\)
\(48\) 0.585171 0.910777i 0.0844621 0.131459i
\(49\) 4.02916 0.575594
\(50\) 0.610390 + 1.27571i 0.0863222 + 0.180412i
\(51\) 0.413124 + 0.413124i 0.0578489 + 0.0578489i
\(52\) 5.92401 0.637246i 0.821512 0.0883701i
\(53\) 2.76868 2.76868i 0.380307 0.380307i −0.490905 0.871213i \(-0.663334\pi\)
0.871213 + 0.490905i \(0.163334\pi\)
\(54\) −0.754608 + 2.13923i −0.102689 + 0.291113i
\(55\) 1.00000i 0.134840i
\(56\) −4.74455 1.12073i −0.634017 0.149764i
\(57\) 0.367470i 0.0486726i
\(58\) −3.23790 1.14216i −0.425157 0.149973i
\(59\) −0.814977 + 0.814977i −0.106101 + 0.106101i −0.758164 0.652063i \(-0.773904\pi\)
0.652063 + 0.758164i \(0.273904\pi\)
\(60\) 0.339612 0.421483i 0.0438438 0.0544133i
\(61\) 3.44842 + 3.44842i 0.441525 + 0.441525i 0.892524 0.450999i \(-0.148932\pi\)
−0.450999 + 0.892524i \(0.648932\pi\)
\(62\) −0.354776 + 0.169751i −0.0450566 + 0.0215583i
\(63\) 5.04459 0.635559
\(64\) −7.15443 3.57969i −0.894303 0.447461i
\(65\) 2.97909 0.369511
\(66\) 0.345257 0.165196i 0.0424982 0.0203343i
\(67\) 1.79605 + 1.79605i 0.219423 + 0.219423i 0.808255 0.588833i \(-0.200412\pi\)
−0.588833 + 0.808255i \(0.700412\pi\)
\(68\) 2.70891 3.36195i 0.328503 0.407696i
\(69\) −0.937826 + 0.937826i −0.112901 + 0.112901i
\(70\) −2.29873 0.810872i −0.274751 0.0969177i
\(71\) 3.26305i 0.387253i 0.981075 + 0.193626i \(0.0620249\pi\)
−0.981075 + 0.193626i \(0.937975\pi\)
\(72\) 8.05640 + 1.90303i 0.949456 + 0.224275i
\(73\) 5.36462i 0.627881i 0.949443 + 0.313941i \(0.101649\pi\)
−0.949443 + 0.313941i \(0.898351\pi\)
\(74\) −3.76306 + 10.6679i −0.437446 + 1.24011i
\(75\) 0.191372 0.191372i 0.0220977 0.0220977i
\(76\) 2.69998 0.290437i 0.309710 0.0333154i
\(77\) −1.21878 1.21878i −0.138893 0.138893i
\(78\) −0.492135 1.02855i −0.0557233 0.116461i
\(79\) 12.9535 1.45738 0.728690 0.684844i \(-0.240130\pi\)
0.728690 + 0.684844i \(0.240130\pi\)
\(80\) −3.36527 2.16217i −0.376248 0.241738i
\(81\) −8.34615 −0.927350
\(82\) 1.33012 + 2.77993i 0.146888 + 0.306992i
\(83\) 4.27228 + 4.27228i 0.468943 + 0.468943i 0.901572 0.432629i \(-0.142414\pi\)
−0.432629 + 0.901572i \(0.642414\pi\)
\(84\) 0.0997827 + 0.927607i 0.0108872 + 0.101210i
\(85\) 1.52647 1.52647i 0.165569 0.165569i
\(86\) −2.31568 + 6.56471i −0.249707 + 0.707891i
\(87\) 0.657063i 0.0704445i
\(88\) −1.48666 2.40621i −0.158478 0.256503i
\(89\) 2.22599i 0.235955i 0.993016 + 0.117977i \(0.0376410\pi\)
−0.993016 + 0.117977i \(0.962359\pi\)
\(90\) 3.90333 + 1.37689i 0.411447 + 0.145137i
\(91\) −3.63086 + 3.63086i −0.380617 + 0.380617i
\(92\) 7.63190 + 6.14944i 0.795680 + 0.641123i
\(93\) 0.0532208 + 0.0532208i 0.00551874 + 0.00551874i
\(94\) −1.35800 + 0.649768i −0.140067 + 0.0670184i
\(95\) 1.35778 0.139305
\(96\) −0.190576 + 1.51907i −0.0194506 + 0.155039i
\(97\) 12.7002 1.28951 0.644753 0.764391i \(-0.276960\pi\)
0.644753 + 0.764391i \(0.276960\pi\)
\(98\) −5.14001 + 2.45936i −0.519220 + 0.248433i
\(99\) 2.06953 + 2.06953i 0.207995 + 0.207995i
\(100\) −1.55736 1.25485i −0.155736 0.125485i
\(101\) −5.22426 + 5.22426i −0.519833 + 0.519833i −0.917521 0.397688i \(-0.869813\pi\)
0.397688 + 0.917521i \(0.369813\pi\)
\(102\) −0.779191 0.274858i −0.0771514 0.0272150i
\(103\) 8.29929i 0.817754i 0.912590 + 0.408877i \(0.134079\pi\)
−0.912590 + 0.408877i \(0.865921\pi\)
\(104\) −7.16832 + 4.42890i −0.702912 + 0.434289i
\(105\) 0.466479i 0.0455237i
\(106\) −1.84204 + 5.22199i −0.178915 + 0.507205i
\(107\) −5.63504 + 5.63504i −0.544760 + 0.544760i −0.924921 0.380160i \(-0.875869\pi\)
0.380160 + 0.924921i \(0.375869\pi\)
\(108\) −0.343109 3.18964i −0.0330157 0.306923i
\(109\) −5.19573 5.19573i −0.497661 0.497661i 0.413048 0.910709i \(-0.364464\pi\)
−0.910709 + 0.413048i \(0.864464\pi\)
\(110\) −0.610390 1.27571i −0.0581984 0.121634i
\(111\) 2.16482 0.205475
\(112\) 6.73672 1.46631i 0.636561 0.138553i
\(113\) −20.0749 −1.88848 −0.944242 0.329251i \(-0.893204\pi\)
−0.944242 + 0.329251i \(0.893204\pi\)
\(114\) −0.224300 0.468784i −0.0210076 0.0439056i
\(115\) 3.46521 + 3.46521i 0.323132 + 0.323132i
\(116\) 4.82776 0.519322i 0.448247 0.0482179i
\(117\) 6.16531 6.16531i 0.569983 0.569983i
\(118\) 0.542216 1.53712i 0.0499151 0.141504i
\(119\) 3.72086i 0.341090i
\(120\) −0.175976 + 0.744985i −0.0160643 + 0.0680075i
\(121\) 1.00000i 0.0909091i
\(122\) −6.50405 2.29429i −0.588849 0.207715i
\(123\) 0.417025 0.417025i 0.0376018 0.0376018i
\(124\) 0.348975 0.433103i 0.0313389 0.0388938i
\(125\) −0.707107 0.707107i −0.0632456 0.0632456i
\(126\) −6.43541 + 3.07917i −0.573312 + 0.274314i
\(127\) 19.8296 1.75959 0.879795 0.475354i \(-0.157680\pi\)
0.879795 + 0.475354i \(0.157680\pi\)
\(128\) 11.3119 + 0.199635i 0.999844 + 0.0176454i
\(129\) 1.33217 0.117291
\(130\) −3.80044 + 1.81841i −0.333321 + 0.159485i
\(131\) −5.10598 5.10598i −0.446111 0.446111i 0.447948 0.894059i \(-0.352155\pi\)
−0.894059 + 0.447948i \(0.852155\pi\)
\(132\) −0.339612 + 0.421483i −0.0295595 + 0.0366854i
\(133\) −1.65483 + 1.65483i −0.143492 + 0.143492i
\(134\) −3.38752 1.19494i −0.292637 0.103227i
\(135\) 1.60402i 0.138052i
\(136\) −1.40367 + 5.94234i −0.120363 + 0.509552i
\(137\) 8.18160i 0.699001i 0.936936 + 0.349501i \(0.113649\pi\)
−0.936936 + 0.349501i \(0.886351\pi\)
\(138\) 0.623949 1.76883i 0.0531141 0.150573i
\(139\) −0.628022 + 0.628022i −0.0532681 + 0.0532681i −0.733239 0.679971i \(-0.761992\pi\)
0.679971 + 0.733239i \(0.261992\pi\)
\(140\) 3.42745 0.368691i 0.289673 0.0311601i
\(141\) 0.203717 + 0.203717i 0.0171561 + 0.0171561i
\(142\) −1.99173 4.16269i −0.167143 0.349325i
\(143\) −2.97909 −0.249124
\(144\) −11.4392 + 2.48984i −0.953265 + 0.207486i
\(145\) 2.42781 0.201618
\(146\) −3.27451 6.84367i −0.271000 0.566386i
\(147\) 0.771066 + 0.771066i 0.0635965 + 0.0635965i
\(148\) −1.71101 15.9060i −0.140644 1.30746i
\(149\) 7.87635 7.87635i 0.645255 0.645255i −0.306587 0.951843i \(-0.599187\pi\)
0.951843 + 0.306587i \(0.0991871\pi\)
\(150\) −0.127322 + 0.360945i −0.0103958 + 0.0294710i
\(151\) 1.93200i 0.157224i 0.996905 + 0.0786118i \(0.0250488\pi\)
−0.996905 + 0.0786118i \(0.974951\pi\)
\(152\) −3.26710 + 2.01856i −0.264997 + 0.163727i
\(153\) 6.31814i 0.510791i
\(154\) 2.29873 + 0.810872i 0.185237 + 0.0653419i
\(155\) 0.196648 0.196648i 0.0157951 0.0157951i
\(156\) 1.25564 + 1.01174i 0.100531 + 0.0810038i
\(157\) −5.42164 5.42164i −0.432694 0.432694i 0.456850 0.889544i \(-0.348978\pi\)
−0.889544 + 0.456850i \(0.848978\pi\)
\(158\) −16.5248 + 7.90667i −1.31464 + 0.629021i
\(159\) 1.05969 0.0840391
\(160\) 5.61286 + 0.704168i 0.443735 + 0.0556694i
\(161\) −8.44665 −0.665689
\(162\) 10.6472 5.09441i 0.836525 0.400255i
\(163\) 0.880518 + 0.880518i 0.0689675 + 0.0689675i 0.740749 0.671782i \(-0.234471\pi\)
−0.671782 + 0.740749i \(0.734471\pi\)
\(164\) −3.39369 2.73448i −0.265003 0.213527i
\(165\) −0.191372 + 0.191372i −0.0148983 + 0.0148983i
\(166\) −8.05792 2.84241i −0.625416 0.220614i
\(167\) 10.2521i 0.793330i 0.917963 + 0.396665i \(0.129833\pi\)
−0.917963 + 0.396665i \(0.870167\pi\)
\(168\) −0.693496 1.12245i −0.0535044 0.0865987i
\(169\) 4.12501i 0.317308i
\(170\) −1.01558 + 2.87907i −0.0778916 + 0.220814i
\(171\) 2.80996 2.80996i 0.214883 0.214883i
\(172\) −1.05291 9.78811i −0.0802834 0.746336i
\(173\) −14.0460 14.0460i −1.06789 1.06789i −0.997521 0.0703742i \(-0.977581\pi\)
−0.0703742 0.997521i \(-0.522419\pi\)
\(174\) −0.401065 0.838218i −0.0304046 0.0635452i
\(175\) 1.72361 0.130293
\(176\) 3.36527 + 2.16217i 0.253666 + 0.162980i
\(177\) −0.311927 −0.0234459
\(178\) −1.35872 2.83971i −0.101841 0.212845i
\(179\) −8.95892 8.95892i −0.669621 0.669621i 0.288007 0.957628i \(-0.407007\pi\)
−0.957628 + 0.288007i \(0.907007\pi\)
\(180\) −5.81993 + 0.626050i −0.433792 + 0.0466630i
\(181\) 9.69069 9.69069i 0.720303 0.720303i −0.248363 0.968667i \(-0.579893\pi\)
0.968667 + 0.248363i \(0.0798927\pi\)
\(182\) 2.41566 6.84814i 0.179061 0.507618i
\(183\) 1.31986i 0.0975669i
\(184\) −13.4896 3.18644i −0.994467 0.234907i
\(185\) 7.99887i 0.588088i
\(186\) −0.100379 0.0354086i −0.00736018 0.00259628i
\(187\) −1.52647 + 1.52647i −0.111626 + 0.111626i
\(188\) 1.33580 1.65782i 0.0974233 0.120909i
\(189\) 1.95494 + 1.95494i 0.142201 + 0.142201i
\(190\) −1.73213 + 0.828776i −0.125662 + 0.0601257i
\(191\) −0.679908 −0.0491964 −0.0245982 0.999697i \(-0.507831\pi\)
−0.0245982 + 0.999697i \(0.507831\pi\)
\(192\) −0.684103 2.05421i −0.0493709 0.148249i
\(193\) −19.0426 −1.37072 −0.685360 0.728205i \(-0.740355\pi\)
−0.685360 + 0.728205i \(0.740355\pi\)
\(194\) −16.2017 + 7.75205i −1.16321 + 0.556565i
\(195\) 0.570114 + 0.570114i 0.0408267 + 0.0408267i
\(196\) 5.05598 6.27483i 0.361141 0.448202i
\(197\) 15.1051 15.1051i 1.07619 1.07619i 0.0793432 0.996847i \(-0.474718\pi\)
0.996847 0.0793432i \(-0.0252823\pi\)
\(198\) −3.90333 1.37689i −0.277397 0.0978511i
\(199\) 2.61124i 0.185106i −0.995708 0.0925531i \(-0.970497\pi\)
0.995708 0.0925531i \(-0.0295028\pi\)
\(200\) 2.75267 + 0.650220i 0.194643 + 0.0459775i
\(201\) 0.687426i 0.0484873i
\(202\) 3.47577 9.85344i 0.244555 0.693286i
\(203\) −2.95896 + 2.95896i −0.207678 + 0.207678i
\(204\) 1.16179 0.124974i 0.0813415 0.00874990i
\(205\) −1.54088 1.54088i −0.107620 0.107620i
\(206\) −5.06581 10.5875i −0.352952 0.737663i
\(207\) 14.3427 0.996886
\(208\) 6.44131 10.0254i 0.446624 0.695139i
\(209\) −1.35778 −0.0939196
\(210\) −0.284735 0.595090i −0.0196485 0.0410651i
\(211\) −17.3860 17.3860i −1.19690 1.19690i −0.975089 0.221816i \(-0.928802\pi\)
−0.221816 0.975089i \(-0.571198\pi\)
\(212\) −0.837549 7.78609i −0.0575231 0.534751i
\(213\) −0.624455 + 0.624455i −0.0427870 + 0.0427870i
\(214\) 3.74908 10.6282i 0.256282 0.726531i
\(215\) 4.92229i 0.335697i
\(216\) 2.38463 + 3.85961i 0.162253 + 0.262613i
\(217\) 0.479340i 0.0325397i
\(218\) 9.79965 + 3.45680i 0.663716 + 0.234124i
\(219\) −1.02664 + 1.02664i −0.0693736 + 0.0693736i
\(220\) 1.55736 + 1.25485i 0.104997 + 0.0846018i
\(221\) 4.54749 + 4.54749i 0.305897 + 0.305897i
\(222\) −2.76167 + 1.32138i −0.185351 + 0.0886854i
\(223\) −15.1229 −1.01270 −0.506351 0.862327i \(-0.669006\pi\)
−0.506351 + 0.862327i \(0.669006\pi\)
\(224\) −7.69906 + 5.98261i −0.514415 + 0.399730i
\(225\) −2.92675 −0.195117
\(226\) 25.6096 12.2535i 1.70353 0.815091i
\(227\) −9.26858 9.26858i −0.615177 0.615177i 0.329113 0.944290i \(-0.393250\pi\)
−0.944290 + 0.329113i \(0.893250\pi\)
\(228\) 0.572282 + 0.461119i 0.0379003 + 0.0305384i
\(229\) 13.6250 13.6250i 0.900366 0.900366i −0.0951016 0.995468i \(-0.530318\pi\)
0.995468 + 0.0951016i \(0.0303176\pi\)
\(230\) −6.53572 2.30546i −0.430952 0.152017i
\(231\) 0.466479i 0.0306921i
\(232\) −5.84181 + 3.60932i −0.383534 + 0.236964i
\(233\) 10.9217i 0.715505i 0.933816 + 0.357753i \(0.116457\pi\)
−0.933816 + 0.357753i \(0.883543\pi\)
\(234\) −4.10187 + 11.6284i −0.268148 + 0.760170i
\(235\) 0.752724 0.752724i 0.0491023 0.0491023i
\(236\) 0.246538 + 2.29188i 0.0160482 + 0.149189i
\(237\) 2.47893 + 2.47893i 0.161024 + 0.161024i
\(238\) −2.27117 4.74672i −0.147218 0.307684i
\(239\) −10.0633 −0.650938 −0.325469 0.945553i \(-0.605522\pi\)
−0.325469 + 0.945553i \(0.605522\pi\)
\(240\) −0.230238 1.05779i −0.0148618 0.0682804i
\(241\) −2.30792 −0.148666 −0.0743332 0.997233i \(-0.523683\pi\)
−0.0743332 + 0.997233i \(0.523683\pi\)
\(242\) 0.610390 + 1.27571i 0.0392374 + 0.0820054i
\(243\) −4.99985 4.99985i −0.320741 0.320741i
\(244\) 9.69766 1.04318i 0.620829 0.0667826i
\(245\) 2.84904 2.84904i 0.182019 0.182019i
\(246\) −0.277453 + 0.786548i −0.0176897 + 0.0501485i
\(247\) 4.04495i 0.257374i
\(248\) −0.180827 + 0.765523i −0.0114826 + 0.0486108i
\(249\) 1.63519i 0.103626i
\(250\) 1.33367 + 0.470449i 0.0843488 + 0.0297538i
\(251\) −13.5660 + 13.5660i −0.856276 + 0.856276i −0.990897 0.134621i \(-0.957018\pi\)
0.134621 + 0.990897i \(0.457018\pi\)
\(252\) 6.33019 7.85623i 0.398765 0.494896i
\(253\) −3.46521 3.46521i −0.217856 0.217856i
\(254\) −25.2967 + 12.1038i −1.58725 + 0.759458i
\(255\) 0.584246 0.0365869
\(256\) −14.5526 + 6.65003i −0.909535 + 0.415627i
\(257\) −11.9931 −0.748111 −0.374055 0.927406i \(-0.622033\pi\)
−0.374055 + 0.927406i \(0.622033\pi\)
\(258\) −1.69946 + 0.813143i −0.105803 + 0.0506241i
\(259\) 9.74885 + 9.74885i 0.605764 + 0.605764i
\(260\) 3.73831 4.63951i 0.231840 0.287730i
\(261\) 5.02441 5.02441i 0.311003 0.311003i
\(262\) 9.63036 + 3.39708i 0.594966 + 0.209872i
\(263\) 14.1938i 0.875226i 0.899163 + 0.437613i \(0.144176\pi\)
−0.899163 + 0.437613i \(0.855824\pi\)
\(264\) 0.175976 0.744985i 0.0108306 0.0458506i
\(265\) 3.91550i 0.240527i
\(266\) 1.10099 3.12118i 0.0675058 0.191372i
\(267\) −0.425992 + 0.425992i −0.0260703 + 0.0260703i
\(268\) 5.05086 0.543321i 0.308530 0.0331886i
\(269\) −17.6243 17.6243i −1.07457 1.07457i −0.996985 0.0775891i \(-0.975278\pi\)
−0.0775891 0.996985i \(-0.524722\pi\)
\(270\) 0.979077 + 2.04625i 0.0595848 + 0.124531i
\(271\) −26.3421 −1.60017 −0.800086 0.599886i \(-0.795213\pi\)
−0.800086 + 0.599886i \(0.795213\pi\)
\(272\) −1.83649 8.43746i −0.111353 0.511596i
\(273\) −1.38969 −0.0841076
\(274\) −4.99397 10.4373i −0.301697 0.630541i
\(275\) 0.707107 + 0.707107i 0.0426401 + 0.0426401i
\(276\) 0.283700 + 2.63736i 0.0170768 + 0.158750i
\(277\) −11.8709 + 11.8709i −0.713251 + 0.713251i −0.967214 0.253963i \(-0.918266\pi\)
0.253963 + 0.967214i \(0.418266\pi\)
\(278\) 0.417832 1.18451i 0.0250599 0.0710422i
\(279\) 0.813935i 0.0487290i
\(280\) −4.14738 + 2.56243i −0.247853 + 0.153134i
\(281\) 3.13340i 0.186923i 0.995623 + 0.0934615i \(0.0297932\pi\)
−0.995623 + 0.0934615i \(0.970207\pi\)
\(282\) −0.384230 0.135536i −0.0228806 0.00807107i
\(283\) 0.231924 0.231924i 0.0137865 0.0137865i −0.700180 0.713966i \(-0.746897\pi\)
0.713966 + 0.700180i \(0.246897\pi\)
\(284\) 5.08173 + 4.09463i 0.301545 + 0.242972i
\(285\) 0.259841 + 0.259841i 0.0153916 + 0.0153916i
\(286\) 3.80044 1.81841i 0.224725 0.107525i
\(287\) 3.75599 0.221709
\(288\) 13.0733 10.1587i 0.770349 0.598605i
\(289\) −12.3398 −0.725870
\(290\) −3.09717 + 1.48191i −0.181872 + 0.0870208i
\(291\) 2.43045 + 2.43045i 0.142475 + 0.142475i
\(292\) 8.35462 + 6.73178i 0.488917 + 0.393947i
\(293\) 2.57259 2.57259i 0.150292 0.150292i −0.627956 0.778249i \(-0.716108\pi\)
0.778249 + 0.627956i \(0.216108\pi\)
\(294\) −1.45430 0.513002i −0.0848167 0.0299189i
\(295\) 1.15255i 0.0671041i
\(296\) 11.8916 + 19.2470i 0.691185 + 1.11871i
\(297\) 1.60402i 0.0930746i
\(298\) −5.24025 + 14.8555i −0.303560 + 0.860558i
\(299\) −10.3232 + 10.3232i −0.597005 + 0.597005i
\(300\) −0.0578916 0.538176i −0.00334237 0.0310716i
\(301\) 5.99918 + 5.99918i 0.345787 + 0.345787i
\(302\) −1.17927 2.46466i −0.0678595 0.141825i
\(303\) −1.99955 −0.114871
\(304\) 2.93575 4.56929i 0.168377 0.262067i
\(305\) 4.87680 0.279245
\(306\) 3.85653 + 8.06008i 0.220463 + 0.460764i
\(307\) −0.0220202 0.0220202i −0.00125676 0.00125676i 0.706478 0.707735i \(-0.250283\pi\)
−0.707735 + 0.706478i \(0.750283\pi\)
\(308\) −3.42745 + 0.368691i −0.195297 + 0.0210081i
\(309\) −1.58825 + 1.58825i −0.0903523 + 0.0903523i
\(310\) −0.130833 + 0.370896i −0.00743079 + 0.0210655i
\(311\) 19.2884i 1.09374i 0.837217 + 0.546871i \(0.184181\pi\)
−0.837217 + 0.546871i \(0.815819\pi\)
\(312\) −2.21938 0.524248i −0.125648 0.0296797i
\(313\) 4.42358i 0.250035i 0.992155 + 0.125018i \(0.0398988\pi\)
−0.992155 + 0.125018i \(0.960101\pi\)
\(314\) 10.2257 + 3.60710i 0.577071 + 0.203560i
\(315\) 3.56707 3.56707i 0.200981 0.200981i
\(316\) 16.2546 20.1732i 0.914394 1.13483i
\(317\) 19.4164 + 19.4164i 1.09053 + 1.09053i 0.995471 + 0.0950624i \(0.0303051\pi\)
0.0950624 + 0.995471i \(0.469695\pi\)
\(318\) −1.35186 + 0.646826i −0.0758083 + 0.0362722i
\(319\) −2.42781 −0.135931
\(320\) −7.59017 + 2.52772i −0.424303 + 0.141304i
\(321\) −2.15677 −0.120379
\(322\) 10.7754 5.15575i 0.600492 0.287319i
\(323\) 2.07261 + 2.07261i 0.115323 + 0.115323i
\(324\) −10.4731 + 12.9979i −0.581841 + 0.722107i
\(325\) 2.10654 2.10654i 0.116850 0.116850i
\(326\) −1.66074 0.585822i −0.0919800 0.0324457i
\(327\) 1.98863i 0.109972i
\(328\) 5.99845 + 1.41692i 0.331209 + 0.0782362i
\(329\) 1.83481i 0.101156i
\(330\) 0.127322 0.360945i 0.00700887 0.0198694i
\(331\) 9.92339 9.92339i 0.545439 0.545439i −0.379679 0.925118i \(-0.623966\pi\)
0.925118 + 0.379679i \(0.123966\pi\)
\(332\) 12.0145 1.29240i 0.659382 0.0709297i
\(333\) −16.5539 16.5539i −0.907147 0.907147i
\(334\) −6.25777 13.0786i −0.342410 0.715631i
\(335\) 2.54000 0.138775
\(336\) 1.56983 + 1.00861i 0.0856411 + 0.0550241i
\(337\) −11.4051 −0.621277 −0.310638 0.950528i \(-0.600543\pi\)
−0.310638 + 0.950528i \(0.600543\pi\)
\(338\) 2.51787 + 5.26229i 0.136954 + 0.286231i
\(339\) −3.84176 3.84176i −0.208656 0.208656i
\(340\) −0.461770 4.29274i −0.0250430 0.232807i
\(341\) −0.196648 + 0.196648i −0.0106491 + 0.0106491i
\(342\) −1.86951 + 5.29986i −0.101092 + 0.286584i
\(343\) 19.0100i 1.02644i
\(344\) 7.31776 + 11.8441i 0.394547 + 0.638589i
\(345\) 1.32629i 0.0714048i
\(346\) 26.4920 + 9.34499i 1.42422 + 0.502390i
\(347\) 10.5111 10.5111i 0.564267 0.564267i −0.366249 0.930517i \(-0.619358\pi\)
0.930517 + 0.366249i \(0.119358\pi\)
\(348\) 1.02328 + 0.824513i 0.0548536 + 0.0441986i
\(349\) 4.48143 + 4.48143i 0.239886 + 0.239886i 0.816803 0.576917i \(-0.195744\pi\)
−0.576917 + 0.816803i \(0.695744\pi\)
\(350\) −2.19882 + 1.05208i −0.117532 + 0.0562359i
\(351\) 4.77852 0.255059
\(352\) −5.61286 0.704168i −0.299166 0.0375323i
\(353\) −28.4761 −1.51563 −0.757815 0.652469i \(-0.773733\pi\)
−0.757815 + 0.652469i \(0.773733\pi\)
\(354\) 0.397927 0.190397i 0.0211496 0.0101195i
\(355\) 2.30732 + 2.30732i 0.122460 + 0.122460i
\(356\) 3.46666 + 2.79328i 0.183733 + 0.148044i
\(357\) −0.712066 + 0.712066i −0.0376865 + 0.0376865i
\(358\) 16.8974 + 5.96051i 0.893055 + 0.315023i
\(359\) 11.0087i 0.581018i −0.956872 0.290509i \(-0.906175\pi\)
0.956872 0.290509i \(-0.0938247\pi\)
\(360\) 7.04238 4.35109i 0.371166 0.229322i
\(361\) 17.1564i 0.902970i
\(362\) −6.44736 + 18.2776i −0.338866 + 0.960648i
\(363\) 0.191372 0.191372i 0.0100444 0.0100444i
\(364\) 1.09837 + 10.2107i 0.0575700 + 0.535186i
\(365\) 3.79336 + 3.79336i 0.198553 + 0.198553i
\(366\) −0.805630 1.68375i −0.0421109 0.0880111i
\(367\) 7.07292 0.369203 0.184602 0.982813i \(-0.440900\pi\)
0.184602 + 0.982813i \(0.440900\pi\)
\(368\) 19.1537 4.16897i 0.998457 0.217323i
\(369\) −6.37779 −0.332015
\(370\) 4.88243 + 10.2042i 0.253826 + 0.530491i
\(371\) 4.77213 + 4.77213i 0.247757 + 0.247757i
\(372\) 0.149668 0.0160997i 0.00775991 0.000834733i
\(373\) 7.53386 7.53386i 0.390089 0.390089i −0.484630 0.874719i \(-0.661046\pi\)
0.874719 + 0.484630i \(0.161046\pi\)
\(374\) 1.01558 2.87907i 0.0525145 0.148873i
\(375\) 0.270640i 0.0139758i
\(376\) −0.692167 + 2.93025i −0.0356958 + 0.151116i
\(377\) 7.23266i 0.372501i
\(378\) −3.68721 1.30065i −0.189650 0.0668984i
\(379\) 23.4231 23.4231i 1.20317 1.20317i 0.229967 0.973198i \(-0.426138\pi\)
0.973198 0.229967i \(-0.0738619\pi\)
\(380\) 1.70381 2.11455i 0.0874035 0.108474i
\(381\) 3.79482 + 3.79482i 0.194414 + 0.194414i
\(382\) 0.867362 0.415009i 0.0443781 0.0212337i
\(383\) 22.6204 1.15585 0.577924 0.816091i \(-0.303863\pi\)
0.577924 + 0.816091i \(0.303863\pi\)
\(384\) 2.12658 + 2.20299i 0.108522 + 0.112421i
\(385\) −1.72361 −0.0878435
\(386\) 24.2928 11.6234i 1.23647 0.591618i
\(387\) −10.1868 10.1868i −0.517825 0.517825i
\(388\) 15.9368 19.7787i 0.809066 1.00411i
\(389\) 9.39630 9.39630i 0.476411 0.476411i −0.427571 0.903982i \(-0.640630\pi\)
0.903982 + 0.427571i \(0.140630\pi\)
\(390\) −1.07529 0.379305i −0.0544494 0.0192069i
\(391\) 10.5791i 0.535007i
\(392\) −2.61984 + 11.0910i −0.132322 + 0.560178i
\(393\) 1.95428i 0.0985803i
\(394\) −10.0496 + 28.4896i −0.506292 + 1.43528i
\(395\) 9.15949 9.15949i 0.460864 0.460864i
\(396\) 5.81993 0.626050i 0.292463 0.0314602i
\(397\) −11.2541 11.2541i −0.564826 0.564826i 0.365848 0.930674i \(-0.380779\pi\)
−0.930674 + 0.365848i \(0.880779\pi\)
\(398\) 1.59388 + 3.33118i 0.0798939 + 0.166977i
\(399\) −0.633377 −0.0317085
\(400\) −3.90849 + 0.850716i −0.195424 + 0.0425358i
\(401\) 19.4462 0.971098 0.485549 0.874210i \(-0.338620\pi\)
0.485549 + 0.874210i \(0.338620\pi\)
\(402\) −0.419598 0.876953i −0.0209277 0.0437385i
\(403\) 0.585831 + 0.585831i 0.0291823 + 0.0291823i
\(404\) 1.58038 + 14.6917i 0.0786270 + 0.730938i
\(405\) −5.90162 + 5.90162i −0.293254 + 0.293254i
\(406\) 1.96864 5.58088i 0.0977020 0.276975i
\(407\) 7.99887i 0.396489i
\(408\) −1.40582 + 0.868574i −0.0695983 + 0.0430008i
\(409\) 2.28872i 0.113170i 0.998398 + 0.0565850i \(0.0180212\pi\)
−0.998398 + 0.0565850i \(0.981979\pi\)
\(410\) 2.90625 + 1.02517i 0.143529 + 0.0506296i
\(411\) −1.56573 + 1.56573i −0.0772316 + 0.0772316i
\(412\) 12.9250 + 10.4143i 0.636767 + 0.513078i
\(413\) −1.40471 1.40471i −0.0691210 0.0691210i
\(414\) −18.2970 + 8.75464i −0.899251 + 0.430267i
\(415\) 6.04191 0.296586
\(416\) −2.09778 + 16.7212i −0.102852 + 0.819825i
\(417\) −0.240371 −0.0117710
\(418\) 1.73213 0.828776i 0.0847211 0.0405368i
\(419\) −20.7009 20.7009i −1.01131 1.01131i −0.999935 0.0113704i \(-0.996381\pi\)
−0.0113704 0.999935i \(-0.503619\pi\)
\(420\) 0.726475 + 0.585361i 0.0354483 + 0.0285627i
\(421\) −10.7884 + 10.7884i −0.525793 + 0.525793i −0.919315 0.393522i \(-0.871256\pi\)
0.393522 + 0.919315i \(0.371256\pi\)
\(422\) 32.7917 + 11.5672i 1.59628 + 0.563082i
\(423\) 3.11557i 0.151484i
\(424\) 5.82102 + 9.42152i 0.282694 + 0.457550i
\(425\) 2.15875i 0.104715i
\(426\) 0.415459 1.17778i 0.0201291 0.0570637i
\(427\) −5.94375 + 5.94375i −0.287638 + 0.287638i
\(428\) 1.70465 + 15.8469i 0.0823973 + 0.765988i
\(429\) −0.570114 0.570114i −0.0275254 0.0275254i
\(430\) 3.00452 + 6.27939i 0.144891 + 0.302819i
\(431\) −29.4096 −1.41661 −0.708305 0.705906i \(-0.750540\pi\)
−0.708305 + 0.705906i \(0.750540\pi\)
\(432\) −5.39795 3.46816i −0.259709 0.166862i
\(433\) −24.5084 −1.17780 −0.588898 0.808207i \(-0.700438\pi\)
−0.588898 + 0.808207i \(0.700438\pi\)
\(434\) −0.292584 0.611497i −0.0140445 0.0293528i
\(435\) 0.464613 + 0.464613i 0.0222765 + 0.0222765i
\(436\) −14.6115 + 1.57175i −0.699762 + 0.0752734i
\(437\) −4.70499 + 4.70499i −0.225070 + 0.225070i
\(438\) 0.683036 1.93633i 0.0326367 0.0925216i
\(439\) 16.1927i 0.772837i 0.922324 + 0.386419i \(0.126288\pi\)
−0.922324 + 0.386419i \(0.873712\pi\)
\(440\) −2.75267 0.650220i −0.131229 0.0309980i
\(441\) 11.7923i 0.561540i
\(442\) −8.57700 3.02551i −0.407966 0.143909i
\(443\) −11.6595 + 11.6595i −0.553959 + 0.553959i −0.927581 0.373622i \(-0.878116\pi\)
0.373622 + 0.927581i \(0.378116\pi\)
\(444\) 2.71651 3.37139i 0.128920 0.159999i
\(445\) 1.57401 + 1.57401i 0.0746154 + 0.0746154i
\(446\) 19.2923 9.23085i 0.913518 0.437093i
\(447\) 3.01462 0.142587
\(448\) 6.17000 12.3315i 0.291505 0.582607i
\(449\) 13.5095 0.637553 0.318776 0.947830i \(-0.396728\pi\)
0.318776 + 0.947830i \(0.396728\pi\)
\(450\) 3.73367 1.78646i 0.176007 0.0842146i
\(451\) 1.54088 + 1.54088i 0.0725573 + 0.0725573i
\(452\) −25.1909 + 31.2637i −1.18488 + 1.47052i
\(453\) −0.369729 + 0.369729i −0.0173714 + 0.0173714i
\(454\) 17.4814 + 6.16652i 0.820444 + 0.289409i
\(455\) 5.13480i 0.240723i
\(456\) −1.01153 0.238937i −0.0473690 0.0111892i
\(457\) 26.7237i 1.25008i 0.780592 + 0.625041i \(0.214918\pi\)
−0.780592 + 0.625041i \(0.785082\pi\)
\(458\) −9.06492 + 25.6981i −0.423576 + 1.20079i
\(459\) 2.44848 2.44848i 0.114285 0.114285i
\(460\) 9.74488 1.04826i 0.454357 0.0488752i
\(461\) 25.1701 + 25.1701i 1.17229 + 1.17229i 0.981662 + 0.190627i \(0.0610522\pi\)
0.190627 + 0.981662i \(0.438948\pi\)
\(462\) 0.284735 + 0.595090i 0.0132470 + 0.0276861i
\(463\) 15.4560 0.718299 0.359150 0.933280i \(-0.383067\pi\)
0.359150 + 0.933280i \(0.383067\pi\)
\(464\) 5.24934 8.17022i 0.243694 0.379293i
\(465\) 0.0752655 0.00349036
\(466\) −6.66651 13.9329i −0.308820 0.645429i
\(467\) −27.4025 27.4025i −1.26804 1.26804i −0.947100 0.320938i \(-0.896002\pi\)
−0.320938 0.947100i \(-0.603998\pi\)
\(468\) −1.86506 17.3381i −0.0862125 0.801455i
\(469\) −3.09570 + 3.09570i −0.142946 + 0.142946i
\(470\) −0.500798 + 1.41971i −0.0231001 + 0.0654863i
\(471\) 2.07510i 0.0956154i
\(472\) −1.71345 2.77328i −0.0788680 0.127651i
\(473\) 4.92229i 0.226327i
\(474\) −4.67549 1.64927i −0.214753 0.0757533i
\(475\) 0.960096 0.960096i 0.0440522 0.0440522i
\(476\) 5.79470 + 4.66911i 0.265600 + 0.214008i
\(477\) −8.10324 8.10324i −0.371022 0.371022i
\(478\) 12.8377 6.14251i 0.587185 0.280952i
\(479\) 28.3248 1.29419 0.647097 0.762408i \(-0.275983\pi\)
0.647097 + 0.762408i \(0.275983\pi\)
\(480\) 0.939383 + 1.20890i 0.0428768 + 0.0551784i
\(481\) 23.8294 1.08653
\(482\) 2.94423 1.40873i 0.134106 0.0641660i
\(483\) −1.61645 1.61645i −0.0735510 0.0735510i
\(484\) −1.55736 1.25485i −0.0707889 0.0570385i
\(485\) 8.98037 8.98037i 0.407777 0.407777i
\(486\) 9.43020 + 3.32648i 0.427763 + 0.150892i
\(487\) 9.35621i 0.423970i 0.977273 + 0.211985i \(0.0679929\pi\)
−0.977273 + 0.211985i \(0.932007\pi\)
\(488\) −11.7346 + 7.25015i −0.531201 + 0.328199i
\(489\) 0.337012i 0.0152402i
\(490\) −1.89551 + 5.37357i −0.0856305 + 0.242753i
\(491\) −8.99034 + 8.99034i −0.405728 + 0.405728i −0.880246 0.474518i \(-0.842623\pi\)
0.474518 + 0.880246i \(0.342623\pi\)
\(492\) −0.126154 1.17276i −0.00568744 0.0528720i
\(493\) 3.70597 + 3.70597i 0.166909 + 0.166909i
\(494\) −2.46900 5.16017i −0.111086 0.232167i
\(495\) 2.92675 0.131548
\(496\) −0.236586 1.08696i −0.0106230 0.0488058i
\(497\) −5.62424 −0.252282
\(498\) −0.998101 2.08601i −0.0447260 0.0934765i
\(499\) 4.09347 + 4.09347i 0.183249 + 0.183249i 0.792770 0.609521i \(-0.208638\pi\)
−0.609521 + 0.792770i \(0.708638\pi\)
\(500\) −1.98853 + 0.213906i −0.0889297 + 0.00956616i
\(501\) −1.96196 + 1.96196i −0.0876538 + 0.0876538i
\(502\) 9.02564 25.5867i 0.402834 1.14199i
\(503\) 19.2925i 0.860210i 0.902779 + 0.430105i \(0.141523\pi\)
−0.902779 + 0.430105i \(0.858477\pi\)
\(504\) −3.28010 + 13.8861i −0.146107 + 0.618537i
\(505\) 7.38821i 0.328771i
\(506\) 6.53572 + 2.30546i 0.290548 + 0.102490i
\(507\) 0.789410 0.789410i 0.0350589 0.0350589i
\(508\) 24.8831 30.8817i 1.10401 1.37015i
\(509\) 9.45873 + 9.45873i 0.419251 + 0.419251i 0.884946 0.465695i \(-0.154195\pi\)
−0.465695 + 0.884946i \(0.654195\pi\)
\(510\) −0.745325 + 0.356618i −0.0330036 + 0.0157913i
\(511\) −9.24653 −0.409042
\(512\) 14.5057 17.3662i 0.641066 0.767486i
\(513\) 2.17791 0.0961569
\(514\) 15.2997 7.32049i 0.674841 0.322893i
\(515\) 5.86849 + 5.86849i 0.258596 + 0.258596i
\(516\) 1.67167 2.07466i 0.0735912 0.0913319i
\(517\) −0.752724 + 0.752724i −0.0331048 + 0.0331048i
\(518\) −18.3873 6.48606i −0.807890 0.284981i
\(519\) 5.37600i 0.235980i
\(520\) −1.93707 + 8.20047i −0.0849460 + 0.359614i
\(521\) 0.222314i 0.00973975i −0.999988 0.00486988i \(-0.998450\pi\)
0.999988 0.00486988i \(-0.00155014\pi\)
\(522\) −3.34282 + 9.47653i −0.146311 + 0.414776i
\(523\) −11.2065 + 11.2065i −0.490028 + 0.490028i −0.908315 0.418287i \(-0.862631\pi\)
0.418287 + 0.908315i \(0.362631\pi\)
\(524\) −14.3590 + 1.54460i −0.627278 + 0.0674763i
\(525\) 0.329851 + 0.329851i 0.0143959 + 0.0143959i
\(526\) −8.66375 18.1071i −0.377757 0.789507i
\(527\) 0.600353 0.0261518
\(528\) 0.230238 + 1.05779i 0.0100198 + 0.0460346i
\(529\) −1.01536 −0.0441461
\(530\) 2.38999 + 4.99503i 0.103814 + 0.216970i
\(531\) 2.38524 + 2.38524i 0.103510 + 0.103510i
\(532\) 0.500602 + 4.65373i 0.0217038 + 0.201765i
\(533\) 4.59043 4.59043i 0.198833 0.198833i
\(534\) 0.283419 0.803461i 0.0122647 0.0347692i
\(535\) 7.96915i 0.344537i
\(536\) −6.11177 + 3.77611i −0.263988 + 0.163103i
\(537\) 3.42897i 0.147971i
\(538\) 33.2412 + 11.7257i 1.43313 + 0.505532i
\(539\) −2.84904 + 2.84904i −0.122717 + 0.122717i
\(540\) −2.49803 2.01280i −0.107498 0.0866171i
\(541\) 9.42376 + 9.42376i 0.405159 + 0.405159i 0.880047 0.474887i \(-0.157511\pi\)
−0.474887 + 0.880047i \(0.657511\pi\)
\(542\) 33.6048 16.0790i 1.44345 0.690652i
\(543\) 3.70905 0.159170
\(544\) 7.49296 + 9.64274i 0.321258 + 0.413429i
\(545\) −7.34788 −0.314748
\(546\) 1.77283 0.848250i 0.0758701 0.0363018i
\(547\) −25.0238 25.0238i −1.06994 1.06994i −0.997363 0.0725778i \(-0.976877\pi\)
−0.0725778 0.997363i \(-0.523123\pi\)
\(548\) 12.7417 + 10.2667i 0.544297 + 0.438570i
\(549\) 10.0927 10.0927i 0.430745 0.430745i
\(550\) −1.33367 0.470449i −0.0568679 0.0200600i
\(551\) 3.29643i 0.140433i
\(552\) −1.97173 3.19132i −0.0839226 0.135832i
\(553\) 22.3268i 0.949431i
\(554\) 7.89786 22.3896i 0.335548 0.951241i
\(555\) 1.53076 1.53076i 0.0649770 0.0649770i
\(556\) 0.189982 + 1.76613i 0.00805704 + 0.0749004i
\(557\) −5.12617 5.12617i −0.217203 0.217203i 0.590116 0.807319i \(-0.299082\pi\)
−0.807319 + 0.590116i \(0.799082\pi\)
\(558\) 0.496818 + 1.03834i 0.0210320 + 0.0439565i
\(559\) 14.6640 0.620219
\(560\) 3.72675 5.80042i 0.157484 0.245112i
\(561\) −0.584246 −0.0246669
\(562\) −1.91260 3.99730i −0.0806780 0.168616i
\(563\) −19.3267 19.3267i −0.814524 0.814524i 0.170784 0.985308i \(-0.445370\pi\)
−0.985308 + 0.170784i \(0.945370\pi\)
\(564\) 0.572895 0.0616263i 0.0241232 0.00259493i
\(565\) −14.1951 + 14.1951i −0.597191 + 0.597191i
\(566\) −0.154303 + 0.437431i −0.00648582 + 0.0183866i
\(567\) 14.3855i 0.604136i
\(568\) −8.98211 2.12170i −0.376881 0.0890246i
\(569\) 35.7496i 1.49870i 0.662172 + 0.749351i \(0.269635\pi\)
−0.662172 + 0.749351i \(0.730365\pi\)
\(570\) −0.490084 0.172876i −0.0205274 0.00724097i
\(571\) 17.2797 17.2797i 0.723135 0.723135i −0.246108 0.969242i \(-0.579152\pi\)
0.969242 + 0.246108i \(0.0791518\pi\)
\(572\) −3.73831 + 4.63951i −0.156306 + 0.193988i
\(573\) −0.130115 0.130115i −0.00543563 0.00543563i
\(574\) −4.79153 + 2.29262i −0.199995 + 0.0956920i
\(575\) 4.90055 0.204367
\(576\) −10.4769 + 20.9392i −0.436536 + 0.872469i
\(577\) −6.19829 −0.258038 −0.129019 0.991642i \(-0.541183\pi\)
−0.129019 + 0.991642i \(0.541183\pi\)
\(578\) 15.7419 7.53209i 0.654778 0.313293i
\(579\) −3.64422 3.64422i −0.151449 0.151449i
\(580\) 3.04653 3.78096i 0.126500 0.156996i
\(581\) −7.36376 + 7.36376i −0.305500 + 0.305500i
\(582\) −4.58406 1.61701i −0.190015 0.0670274i
\(583\) 3.91550i 0.162164i
\(584\) −14.7670 3.48818i −0.611065 0.144342i
\(585\) 8.71907i 0.360489i
\(586\) −1.71158 + 4.85215i −0.0707048 + 0.200440i
\(587\) −11.6202 + 11.6202i −0.479617 + 0.479617i −0.905009 0.425392i \(-0.860136\pi\)
0.425392 + 0.905009i \(0.360136\pi\)
\(588\) 2.16839 0.233254i 0.0894231 0.00961924i
\(589\) 0.267004 + 0.267004i 0.0110017 + 0.0110017i
\(590\) −0.703506 1.47032i −0.0289629 0.0605319i
\(591\) 5.78136 0.237813
\(592\) −26.9183 17.2949i −1.10634 0.710817i
\(593\) 23.9613 0.983971 0.491985 0.870603i \(-0.336271\pi\)
0.491985 + 0.870603i \(0.336271\pi\)
\(594\) −0.979077 2.04625i −0.0401720 0.0839589i
\(595\) 2.63104 + 2.63104i 0.107862 + 0.107862i
\(596\) −2.38266 22.1499i −0.0975977 0.907295i
\(597\) 0.499718 0.499718i 0.0204521 0.0204521i
\(598\) 6.86817 19.4705i 0.280860 0.796208i
\(599\) 40.0187i 1.63512i −0.575845 0.817559i \(-0.695327\pi\)
0.575845 0.817559i \(-0.304673\pi\)
\(600\) 0.402350 + 0.651217i 0.0164259 + 0.0265858i
\(601\) 30.7523i 1.25441i 0.778853 + 0.627206i \(0.215802\pi\)
−0.778853 + 0.627206i \(0.784198\pi\)
\(602\) −11.3150 3.99134i −0.461166 0.162675i
\(603\) 5.25660 5.25660i 0.214065 0.214065i
\(604\) 3.00881 + 2.42436i 0.122427 + 0.0986458i
\(605\) −0.707107 0.707107i −0.0287480 0.0287480i
\(606\) 2.55083 1.22050i 0.103621 0.0495796i
\(607\) −47.9139 −1.94476 −0.972382 0.233394i \(-0.925017\pi\)
−0.972382 + 0.233394i \(0.925017\pi\)
\(608\) −0.956106 + 7.62103i −0.0387752 + 0.309073i
\(609\) −1.13252 −0.0458921
\(610\) −6.22137 + 2.97675i −0.251896 + 0.120525i
\(611\) 2.24243 + 2.24243i 0.0907192 + 0.0907192i
\(612\) −9.83959 7.92830i −0.397742 0.320483i
\(613\) −22.7751 + 22.7751i −0.919876 + 0.919876i −0.997020 0.0771437i \(-0.975420\pi\)
0.0771437 + 0.997020i \(0.475420\pi\)
\(614\) 0.0415322 + 0.0146504i 0.00167610 + 0.000591241i
\(615\) 0.589762i 0.0237815i
\(616\) 4.14738 2.56243i 0.167103 0.103243i
\(617\) 3.41048i 0.137301i −0.997641 0.0686503i \(-0.978131\pi\)
0.997641 0.0686503i \(-0.0218693\pi\)
\(618\) 1.05669 2.99559i 0.0425061 0.120500i
\(619\) −11.8100 + 11.8100i −0.474685 + 0.474685i −0.903427 0.428742i \(-0.858957\pi\)
0.428742 + 0.903427i \(0.358957\pi\)
\(620\) −0.0594876 0.553013i −0.00238908 0.0222095i
\(621\) 5.55826 + 5.55826i 0.223045 + 0.223045i
\(622\) −11.7734 24.6063i −0.472071 0.986621i
\(623\) −3.83675 −0.153716
\(624\) 3.15127 0.685900i 0.126152 0.0274580i
\(625\) −1.00000 −0.0400000
\(626\) −2.70011 5.64318i −0.107918 0.225547i
\(627\) −0.259841 0.259841i −0.0103770 0.0103770i
\(628\) −15.2468 + 1.64009i −0.608412 + 0.0654468i
\(629\) 12.2100 12.2100i 0.486846 0.486846i
\(630\) −2.37322 + 6.72783i −0.0945514 + 0.268043i
\(631\) 26.0544i 1.03721i −0.855014 0.518604i \(-0.826452\pi\)
0.855014 0.518604i \(-0.173548\pi\)
\(632\) −8.42261 + 35.6567i −0.335033 + 1.41835i
\(633\) 6.65439i 0.264488i
\(634\) −36.6212 12.9180i −1.45441 0.513040i
\(635\) 14.0216 14.0216i 0.556431 0.556431i
\(636\) 1.32975 1.65032i 0.0527281 0.0654394i
\(637\) 8.48756 + 8.48756i 0.336289 + 0.336289i
\(638\) 3.09717 1.48191i 0.122618 0.0586694i
\(639\) 9.55014 0.377798
\(640\) 8.13992 7.85759i 0.321759 0.310599i
\(641\) 11.6549 0.460342 0.230171 0.973150i \(-0.426071\pi\)
0.230171 + 0.973150i \(0.426071\pi\)
\(642\) 2.75141 1.31647i 0.108589 0.0519571i
\(643\) 34.0658 + 34.0658i 1.34343 + 1.34343i 0.892624 + 0.450801i \(0.148862\pi\)
0.450801 + 0.892624i \(0.351138\pi\)
\(644\) −10.5993 + 13.1544i −0.417669 + 0.518358i
\(645\) 0.941986 0.941986i 0.0370907 0.0370907i
\(646\) −3.90914 1.37894i −0.153803 0.0542536i
\(647\) 47.8518i 1.88125i −0.339447 0.940625i \(-0.610240\pi\)
0.339447 0.940625i \(-0.389760\pi\)
\(648\) 5.42684 22.9742i 0.213186 0.902513i
\(649\) 1.15255i 0.0452416i
\(650\) −1.40151 + 3.97313i −0.0549717 + 0.155839i
\(651\) −0.0917321 + 0.0917321i −0.00359526 + 0.00359526i
\(652\) 2.47620 0.266364i 0.0969753 0.0104316i
\(653\) −26.1520 26.1520i −1.02341 1.02341i −0.999719 0.0236891i \(-0.992459\pi\)
−0.0236891 0.999719i \(-0.507541\pi\)
\(654\) 1.21384 + 2.53691i 0.0474650 + 0.0992009i
\(655\) −7.22094 −0.282146
\(656\) −8.51712 + 1.85382i −0.332538 + 0.0723797i
\(657\) 15.7009 0.612551
\(658\) −1.11995 2.34067i −0.0436602 0.0912490i
\(659\) −0.786446 0.786446i −0.0306356 0.0306356i 0.691623 0.722259i \(-0.256896\pi\)
−0.722259 + 0.691623i \(0.756896\pi\)
\(660\) 0.0578916 + 0.538176i 0.00225343 + 0.0209485i
\(661\) −12.5912 + 12.5912i −0.489739 + 0.489739i −0.908224 0.418485i \(-0.862561\pi\)
0.418485 + 0.908224i \(0.362561\pi\)
\(662\) −6.60218 + 18.7165i −0.256601 + 0.727436i
\(663\) 1.74052i 0.0675963i
\(664\) −14.5381 + 8.98226i −0.564188 + 0.348579i
\(665\) 2.34029i 0.0907525i
\(666\) 31.2222 + 11.0135i 1.20984 + 0.426766i
\(667\) −8.41286 + 8.41286i −0.325747 + 0.325747i
\(668\) 15.9661 + 12.8648i 0.617749 + 0.497754i
\(669\) −2.89409 2.89409i −0.111892 0.111892i
\(670\) −3.24029 + 1.55039i −0.125183 + 0.0598968i
\(671\) −4.87680 −0.188267
\(672\) −2.61828 0.328480i −0.101002 0.0126714i
\(673\) 7.75847 0.299067 0.149533 0.988757i \(-0.452223\pi\)
0.149533 + 0.988757i \(0.452223\pi\)
\(674\) 14.5496 6.96158i 0.560429 0.268150i
\(675\) −1.13421 1.13421i −0.0436559 0.0436559i
\(676\) −6.42411 5.17626i −0.247081 0.199087i
\(677\) 20.7713 20.7713i 0.798307 0.798307i −0.184522 0.982828i \(-0.559074\pi\)
0.982828 + 0.184522i \(0.0590736\pi\)
\(678\) 7.24593 + 2.55598i 0.278278 + 0.0981618i
\(679\) 21.8902i 0.840067i
\(680\) 3.20933 + 5.19441i 0.123072 + 0.199197i
\(681\) 3.54749i 0.135940i
\(682\) 0.130833 0.370896i 0.00500984 0.0142023i
\(683\) −10.4992 + 10.4992i −0.401742 + 0.401742i −0.878847 0.477105i \(-0.841686\pi\)
0.477105 + 0.878847i \(0.341686\pi\)
\(684\) −0.850038 7.90219i −0.0325020 0.302148i
\(685\) 5.78527 + 5.78527i 0.221044 + 0.221044i
\(686\) −11.6035 24.2512i −0.443025 0.925914i
\(687\) 5.21488 0.198960
\(688\) −16.5648 10.6428i −0.631527 0.405754i
\(689\) 11.6646 0.444388
\(690\) −0.809552 1.69195i −0.0308191 0.0644114i
\(691\) −27.2587 27.2587i −1.03697 1.03697i −0.999290 0.0376780i \(-0.988004\pi\)
−0.0376780 0.999290i \(-0.511996\pi\)
\(692\) −39.5001 + 4.24903i −1.50157 + 0.161524i
\(693\) −3.56707 + 3.56707i −0.135502 + 0.135502i
\(694\) −6.99322 + 19.8250i −0.265459 + 0.752547i
\(695\) 0.888157i 0.0336897i
\(696\) −1.80868 0.427236i −0.0685578 0.0161943i
\(697\) 4.70421i 0.178185i
\(698\) −8.45241 2.98156i −0.319928 0.112854i
\(699\) −2.09011 + 2.09011i −0.0790551 + 0.0790551i
\(700\) 2.16287 2.68428i 0.0817489 0.101456i
\(701\) 8.62775 + 8.62775i 0.325866 + 0.325866i 0.851012 0.525146i \(-0.175989\pi\)
−0.525146 + 0.851012i \(0.675989\pi\)
\(702\) −6.09598 + 2.91676i −0.230078 + 0.110086i
\(703\) 10.8607 0.409619
\(704\) 7.59017 2.52772i 0.286065 0.0952671i
\(705\) 0.288100 0.0108505
\(706\) 36.3271 17.3815i 1.36719 0.654163i
\(707\) −9.00460 9.00460i −0.338653 0.338653i
\(708\) −0.391421 + 0.485781i −0.0147105 + 0.0182568i
\(709\) 20.3851 20.3851i 0.765578 0.765578i −0.211747 0.977325i \(-0.567915\pi\)
0.977325 + 0.211747i \(0.0679152\pi\)
\(710\) −4.35183 1.53510i −0.163321 0.0576112i
\(711\) 37.9116i 1.42180i
\(712\) −6.12743 1.44739i −0.229635 0.0542431i
\(713\) 1.36285i 0.0510392i
\(714\) 0.473748 1.34303i 0.0177296 0.0502614i
\(715\) −2.10654 + 2.10654i −0.0787800 + 0.0787800i
\(716\) −25.1943 + 2.71015i −0.941556 + 0.101283i
\(717\) −1.92582 1.92582i −0.0719211 0.0719211i
\(718\) 6.71962 + 14.0439i 0.250774 + 0.524113i
\(719\) 28.0790 1.04717 0.523585 0.851973i \(-0.324594\pi\)
0.523585 + 0.851973i \(0.324594\pi\)
\(720\) −6.32814 + 9.84930i −0.235836 + 0.367062i
\(721\) −14.3048 −0.532738
\(722\) 10.4721 + 21.8865i 0.389732 + 0.814533i
\(723\) −0.441671 0.441671i −0.0164259 0.0164259i
\(724\) −2.93152 27.2522i −0.108949 1.01282i
\(725\) 1.71672 1.71672i 0.0637574 0.0637574i
\(726\) −0.127322 + 0.360945i −0.00472538 + 0.0133959i
\(727\) 31.1195i 1.15416i 0.816689 + 0.577079i \(0.195807\pi\)
−0.816689 + 0.577079i \(0.804193\pi\)
\(728\) −7.63370 12.3554i −0.282924 0.457922i
\(729\) 23.1248i 0.856474i
\(730\) −7.15463 2.52378i −0.264805 0.0934092i
\(731\) 7.51372 7.51372i 0.277905 0.277905i
\(732\) 2.05549 + 1.65622i 0.0759732 + 0.0612158i
\(733\) 12.2019 + 12.2019i 0.450688 + 0.450688i 0.895583 0.444895i \(-0.146759\pi\)
−0.444895 + 0.895583i \(0.646759\pi\)
\(734\) −9.02296 + 4.31724i −0.333044 + 0.159352i
\(735\) 1.09045 0.0402219
\(736\) −21.8898 + 17.0096i −0.806869 + 0.626983i
\(737\) −2.54000 −0.0935621
\(738\) 8.13618 3.89294i 0.299497 0.143301i
\(739\) −29.5702 29.5702i −1.08776 1.08776i −0.995759 0.0919974i \(-0.970675\pi\)
−0.0919974 0.995759i \(-0.529325\pi\)
\(740\) −12.4571 10.0374i −0.457932 0.368981i
\(741\) −0.774089 + 0.774089i −0.0284369 + 0.0284369i
\(742\) −9.00070 3.17497i −0.330426 0.116557i
\(743\) 9.51666i 0.349132i 0.984645 + 0.174566i \(0.0558523\pi\)
−0.984645 + 0.174566i \(0.944148\pi\)
\(744\) −0.181105 + 0.111894i −0.00663962 + 0.00410224i
\(745\) 11.1388i 0.408095i
\(746\) −5.01239 + 14.2096i −0.183517 + 0.520250i
\(747\) 12.5039 12.5039i 0.457494 0.457494i
\(748\) 0.461770 + 4.29274i 0.0168840 + 0.156958i
\(749\) −9.71264 9.71264i −0.354892 0.354892i
\(750\) 0.165196 + 0.345257i 0.00603211 + 0.0126070i
\(751\) −51.1834 −1.86771 −0.933854 0.357655i \(-0.883576\pi\)
−0.933854 + 0.357655i \(0.883576\pi\)
\(752\) −0.905597 4.16063i −0.0330237 0.151723i
\(753\) −5.19228 −0.189217
\(754\) −4.41475 9.22675i −0.160776 0.336018i
\(755\) 1.36613 + 1.36613i 0.0497185 + 0.0497185i
\(756\) 5.49770 0.591388i 0.199949 0.0215086i
\(757\) −6.18062 + 6.18062i −0.224638 + 0.224638i −0.810448 0.585810i \(-0.800776\pi\)
0.585810 + 0.810448i \(0.300776\pi\)
\(758\) −15.5838 + 44.1783i −0.566028 + 1.60463i
\(759\) 1.32629i 0.0481411i
\(760\) −0.882857 + 3.73753i −0.0320246 + 0.135574i
\(761\) 11.3786i 0.412475i 0.978502 + 0.206237i \(0.0661219\pi\)
−0.978502 + 0.206237i \(0.933878\pi\)
\(762\) −7.15739 2.52475i −0.259285 0.0914620i
\(763\) 8.95544 8.95544i 0.324209 0.324209i
\(764\) −0.853180 + 1.05886i −0.0308670 + 0.0383082i
\(765\) −4.46760 4.46760i −0.161526 0.161526i
\(766\) −28.8569 + 13.8073i −1.04264 + 0.498876i
\(767\) −3.43356 −0.123979
\(768\) −4.05757 1.51232i −0.146415 0.0545712i
\(769\) 8.82078 0.318085 0.159043 0.987272i \(-0.449159\pi\)
0.159043 + 0.987272i \(0.449159\pi\)
\(770\) 2.19882 1.05208i 0.0792401 0.0379142i
\(771\) −2.29514 2.29514i −0.0826576 0.0826576i
\(772\) −23.8956 + 29.6562i −0.860022 + 1.06735i
\(773\) −0.826114 + 0.826114i −0.0297132 + 0.0297132i −0.721807 0.692094i \(-0.756688\pi\)
0.692094 + 0.721807i \(0.256688\pi\)
\(774\) 19.2133 + 6.77744i 0.690608 + 0.243610i
\(775\) 0.278102i 0.00998971i
\(776\) −8.25790 + 34.9594i −0.296441 + 1.25497i
\(777\) 3.73131i 0.133860i
\(778\) −6.25150 + 17.7223i −0.224127 + 0.635376i
\(779\) 2.09218 2.09218i 0.0749601 0.0749601i
\(780\) 1.60328 0.172464i 0.0574065 0.00617521i
\(781\) −2.30732 2.30732i −0.0825626 0.0825626i
\(782\) −6.45736 13.4958i −0.230915 0.482608i
\(783\) 3.89425 0.139169
\(784\) −3.42767 15.7479i −0.122417 0.562425i
\(785\) −7.66736 −0.273660
\(786\) 1.19287 + 2.49308i 0.0425483 + 0.0889253i
\(787\) −9.18632 9.18632i −0.327457 0.327457i 0.524162 0.851619i \(-0.324379\pi\)
−0.851619 + 0.524162i \(0.824379\pi\)
\(788\) −4.56941 42.4785i −0.162778 1.51323i
\(789\) −2.71629 + 2.71629i −0.0967024 + 0.0967024i
\(790\) −6.09394 + 17.2757i −0.216813 + 0.614641i
\(791\) 34.6013i 1.23028i
\(792\) −7.04238 + 4.35109i −0.250240 + 0.154609i
\(793\) 14.5285i 0.515920i
\(794\) 21.2263 + 7.48751i 0.753292 + 0.265722i
\(795\) 0.749316 0.749316i 0.0265755 0.0265755i
\(796\) −4.06664 3.27671i −0.144138 0.116140i
\(797\) 3.73245 + 3.73245i 0.132210 + 0.132210i 0.770115 0.637905i \(-0.220199\pi\)
−0.637905 + 0.770115i \(0.720199\pi\)
\(798\) 0.808002 0.386607i 0.0286030 0.0136857i
\(799\) 2.29802 0.0812981
\(800\) 4.46681 3.47097i 0.157926 0.122717i
\(801\) 6.51493 0.230194
\(802\) −24.8076 + 11.8698i −0.875988 + 0.419137i
\(803\) −3.79336 3.79336i −0.133865 0.133865i
\(804\) 1.07057 + 0.862615i 0.0377560 + 0.0304221i
\(805\) −5.97268 + 5.97268i −0.210509 + 0.210509i
\(806\) −1.10493 0.389762i −0.0389196 0.0137288i
\(807\) 6.74559i 0.237456i
\(808\) −10.9838 17.7776i −0.386407 0.625413i
\(809\) 49.3142i 1.73379i −0.498487 0.866897i \(-0.666111\pi\)
0.498487 0.866897i \(-0.333889\pi\)
\(810\) 3.92643 11.1310i 0.137961 0.391104i
\(811\) 36.1368 36.1368i 1.26894 1.26894i 0.322297 0.946639i \(-0.395545\pi\)
0.946639 0.322297i \(-0.104455\pi\)
\(812\) 0.895111 + 8.32120i 0.0314123 + 0.292017i
\(813\) −5.04114 5.04114i −0.176800 0.176800i
\(814\) −4.88243 10.2042i −0.171129 0.357657i
\(815\) 1.24524 0.0436189
\(816\) 1.26324 1.96614i 0.0442222 0.0688287i
\(817\) 6.68339 0.233822
\(818\) −1.39701 2.91973i −0.0488454 0.102086i
\(819\) 10.6266 + 10.6266i 0.371324 + 0.371324i
\(820\) −4.33327 + 0.466130i −0.151324 + 0.0162780i
\(821\) −8.28757 + 8.28757i −0.289238 + 0.289238i −0.836779 0.547541i \(-0.815564\pi\)
0.547541 + 0.836779i \(0.315564\pi\)
\(822\) 1.04170 2.95311i 0.0363335 0.103002i
\(823\) 49.1488i 1.71322i −0.515965 0.856610i \(-0.672567\pi\)
0.515965 0.856610i \(-0.327433\pi\)
\(824\) −22.8452 5.39637i −0.795852 0.187991i
\(825\) 0.270640i 0.00942249i
\(826\) 2.64941 + 0.934572i 0.0921847 + 0.0325179i
\(827\) −32.6137 + 32.6137i −1.13409 + 1.13409i −0.144600 + 0.989490i \(0.546189\pi\)
−0.989490 + 0.144600i \(0.953811\pi\)
\(828\) 17.9979 22.3367i 0.625470 0.776253i
\(829\) 18.2168 + 18.2168i 0.632697 + 0.632697i 0.948744 0.316047i \(-0.102356\pi\)
−0.316047 + 0.948744i \(0.602356\pi\)
\(830\) −7.70770 + 3.68792i −0.267538 + 0.128010i
\(831\) −4.54349 −0.157612
\(832\) −7.53032 22.6118i −0.261067 0.783923i
\(833\) 8.69795 0.301366
\(834\) 0.306643 0.146720i 0.0106182 0.00508051i
\(835\) 7.24932 + 7.24932i 0.250873 + 0.250873i
\(836\) −1.70381 + 2.11455i −0.0589274 + 0.0731332i
\(837\) 0.315426 0.315426i 0.0109027 0.0109027i
\(838\) 39.0439 + 13.7726i 1.34875 + 0.475767i
\(839\) 43.8533i 1.51399i −0.653423 0.756993i \(-0.726668\pi\)
0.653423 0.756993i \(-0.273332\pi\)
\(840\) −1.28407 0.303314i −0.0443045 0.0104653i
\(841\) 23.1057i 0.796750i
\(842\) 7.17766 20.3479i 0.247358 0.701234i
\(843\) −0.599644 + 0.599644i −0.0206528 + 0.0206528i
\(844\) −48.8931 + 5.25943i −1.68297 + 0.181037i
\(845\) −2.91682 2.91682i −0.100342 0.100342i
\(846\) 1.90171 + 3.97454i 0.0653822 + 0.136648i
\(847\) 1.72361 0.0592241
\(848\) −13.1767 8.46599i −0.452490 0.290723i
\(849\) 0.0887674 0.00304649
\(850\) 1.31768 + 2.75393i 0.0451961 + 0.0944591i
\(851\) 27.7178 + 27.7178i 0.950153 + 0.950153i
\(852\) 0.188903 + 1.75609i 0.00647171 + 0.0601628i
\(853\) −31.5120 + 31.5120i −1.07895 + 1.07895i −0.0823448 + 0.996604i \(0.526241\pi\)
−0.996604 + 0.0823448i \(0.973759\pi\)
\(854\) 3.95446 11.2105i 0.135319 0.383615i
\(855\) 3.97389i 0.135904i
\(856\) −11.8474 19.1755i −0.404936 0.655404i
\(857\) 20.1381i 0.687904i 0.938987 + 0.343952i \(0.111766\pi\)
−0.938987 + 0.343952i \(0.888234\pi\)
\(858\) 1.07529 + 0.379305i 0.0367098 + 0.0129493i
\(859\) 36.8679 36.8679i 1.25792 1.25792i 0.305832 0.952086i \(-0.401066\pi\)
0.952086 0.305832i \(-0.0989345\pi\)
\(860\) −7.66576 6.17672i −0.261400 0.210624i
\(861\) 0.718789 + 0.718789i 0.0244963 + 0.0244963i
\(862\) 37.5180 17.9513i 1.27787 0.611425i
\(863\) 33.9081 1.15425 0.577123 0.816657i \(-0.304175\pi\)
0.577123 + 0.816657i \(0.304175\pi\)
\(864\) 9.00313 + 1.12950i 0.306293 + 0.0384263i
\(865\) −19.8640 −0.675396
\(866\) 31.2654 14.9597i 1.06244 0.508350i
\(867\) −2.36148 2.36148i −0.0802002 0.0802002i
\(868\) 0.746503 + 0.601499i 0.0253380 + 0.0204162i
\(869\) −9.15949 + 9.15949i −0.310714 + 0.310714i
\(870\) −0.876305 0.309114i −0.0297095 0.0104800i
\(871\) 7.56689i 0.256394i
\(872\) 17.6805 10.9238i 0.598738 0.369926i
\(873\) 37.1702i 1.25802i
\(874\) 3.13030 8.87407i 0.105884 0.300170i
\(875\) 1.21878 1.21878i 0.0412023 0.0412023i
\(876\) 0.310566 + 2.88711i 0.0104931 + 0.0975464i
\(877\) −5.77647 5.77647i −0.195058 0.195058i 0.602820 0.797877i \(-0.294044\pi\)
−0.797877 + 0.602820i \(0.794044\pi\)
\(878\) −9.88389 20.6572i −0.333565 0.697145i
\(879\) 0.984641 0.0332111
\(880\) 3.90849 0.850716i 0.131755 0.0286776i
\(881\) 56.4984 1.90348 0.951740 0.306905i \(-0.0992933\pi\)
0.951740 + 0.306905i \(0.0992933\pi\)
\(882\) 7.19793 + 15.0436i 0.242367 + 0.506543i
\(883\) 33.0787 + 33.0787i 1.11319 + 1.11319i 0.992717 + 0.120469i \(0.0384398\pi\)
0.120469 + 0.992717i \(0.461560\pi\)
\(884\) 12.7885 1.37566i 0.430123 0.0462683i
\(885\) −0.220566 + 0.220566i −0.00741423 + 0.00741423i
\(886\) 7.75723 21.9909i 0.260609 0.738799i
\(887\) 16.3645i 0.549467i −0.961520 0.274733i \(-0.911410\pi\)
0.961520 0.274733i \(-0.0885896\pi\)
\(888\) −1.40761 + 5.95903i −0.0472362 + 0.199972i
\(889\) 34.1785i 1.14631i
\(890\) −2.96874 1.04722i −0.0995124 0.0351027i
\(891\) 5.90162 5.90162i 0.197712 0.197712i
\(892\) −18.9769 + 23.5517i −0.635393 + 0.788569i
\(893\) 1.02203 + 1.02203i 0.0342011 + 0.0342011i
\(894\) −3.84576 + 1.84009i −0.128622 + 0.0615419i
\(895\) −12.6698 −0.423506
\(896\) −0.344094 + 19.4974i −0.0114954 + 0.651363i
\(897\) −3.95113 −0.131924
\(898\) −17.2341 + 8.24607i −0.575111 + 0.275175i
\(899\) 0.477423 + 0.477423i 0.0159229 + 0.0159229i
\(900\) −3.67263 + 4.55800i −0.122421 + 0.151933i
\(901\) 5.97689 5.97689i 0.199119 0.199119i
\(902\) −2.90625 1.02517i −0.0967675 0.0341345i
\(903\) 2.29615i 0.0764110i
\(904\) 13.0531 55.2596i 0.434139 1.83791i
\(905\) 13.7047i 0.455560i
\(906\) 0.245986 0.697345i 0.00817235 0.0231677i
\(907\) −7.79416 + 7.79416i −0.258801 + 0.258801i −0.824566 0.565765i \(-0.808581\pi\)
0.565765 + 0.824566i \(0.308581\pi\)
\(908\) −26.0651 + 2.80383i −0.865002 + 0.0930482i
\(909\) 15.2901 + 15.2901i 0.507141 + 0.507141i
\(910\) −3.13423 6.55050i −0.103899 0.217147i
\(911\) −44.4377 −1.47229 −0.736144 0.676825i \(-0.763355\pi\)
−0.736144 + 0.676825i \(0.763355\pi\)
\(912\) 1.43625 0.312613i 0.0475591 0.0103516i
\(913\) −6.04191 −0.199958
\(914\) −16.3119 34.0916i −0.539549 1.12765i
\(915\) 0.933282 + 0.933282i 0.0308534 + 0.0308534i
\(916\) −4.12168 38.3163i −0.136184 1.26601i
\(917\) 8.80073 8.80073i 0.290626 0.290626i
\(918\) −1.62901 + 4.61808i −0.0537654 + 0.152419i
\(919\) 34.8620i 1.14999i 0.818157 + 0.574996i \(0.194996\pi\)
−0.818157 + 0.574996i \(0.805004\pi\)
\(920\) −11.7917 + 7.28544i −0.388762 + 0.240194i
\(921\) 0.00842809i 0.000277715i
\(922\) −47.4733 16.7461i −1.56345 0.551502i
\(923\) −6.87373 + 6.87373i −0.226252 + 0.226252i
\(924\) −0.726475 0.585361i −0.0238993 0.0192569i
\(925\) −5.65605 5.65605i −0.185970 0.185970i
\(926\) −19.7172 + 9.43417i −0.647949 + 0.310026i
\(927\) 24.2900 0.797788
\(928\) −1.70958 + 13.6269i −0.0561199 + 0.447326i
\(929\) 55.0264 1.80536 0.902678 0.430317i \(-0.141598\pi\)
0.902678 + 0.430317i \(0.141598\pi\)
\(930\) −0.0960167 + 0.0459414i −0.00314851 + 0.00150648i
\(931\) 3.86838 + 3.86838i 0.126781 + 0.126781i
\(932\) 17.0090 + 13.7051i 0.557148 + 0.448925i
\(933\) −3.69124 + 3.69124i −0.120846 + 0.120846i
\(934\) 51.6838 + 18.2313i 1.69115 + 0.596547i
\(935\) 2.15875i 0.0705988i
\(936\) 12.9623 + 20.9799i 0.423686 + 0.685750i
\(937\) 60.4530i 1.97491i 0.157889 + 0.987457i \(0.449531\pi\)
−0.157889 + 0.987457i \(0.550469\pi\)
\(938\) 2.05961 5.83878i 0.0672488 0.190643i
\(939\) −0.846547 + 0.846547i −0.0276260 + 0.0276260i
\(940\) −0.227705 2.11681i −0.00742693 0.0690428i
\(941\) −3.84120 3.84120i −0.125220 0.125220i 0.641720 0.766939i \(-0.278221\pi\)
−0.766939 + 0.641720i \(0.778221\pi\)
\(942\) 1.26662 + 2.64721i 0.0412687 + 0.0862508i
\(943\) 10.6790 0.347755
\(944\) 3.87864 + 2.49201i 0.126239 + 0.0811082i
\(945\) 2.76471 0.0899360
\(946\) −3.00452 6.27939i −0.0976853 0.204161i
\(947\) 15.1478 + 15.1478i 0.492237 + 0.492237i 0.909010 0.416773i \(-0.136839\pi\)
−0.416773 + 0.909010i \(0.636839\pi\)
\(948\) 6.97125 0.749897i 0.226416 0.0243555i
\(949\) −11.3008 + 11.3008i −0.366838 + 0.366838i
\(950\) −0.638766 + 1.81083i −0.0207243 + 0.0587512i
\(951\) 7.43150i 0.240983i
\(952\) −10.2423 2.41938i −0.331955 0.0784124i
\(953\) 2.80427i 0.0908394i 0.998968 + 0.0454197i \(0.0144625\pi\)
−0.998968 + 0.0454197i \(0.985537\pi\)
\(954\) 15.2835 + 5.39121i 0.494821 + 0.174547i
\(955\) −0.480767 + 0.480767i −0.0155573 + 0.0155573i
\(956\) −12.6279 + 15.6721i −0.408414 + 0.506871i
\(957\) −0.464613 0.464613i −0.0150188 0.0150188i
\(958\) −36.1341 + 17.2892i −1.16744 + 0.558588i
\(959\) −14.1019 −0.455375
\(960\) −1.93628 0.968808i −0.0624931 0.0312682i
\(961\) −30.9227 −0.997505
\(962\) −30.3992 + 14.5452i −0.980111 + 0.468957i
\(963\) 16.4924 + 16.4924i 0.531460 + 0.531460i
\(964\) −2.89609 + 3.59426i −0.0932768 + 0.115763i
\(965\) −13.4652 + 13.4652i −0.433460 + 0.433460i
\(966\) 3.04878 + 1.07545i 0.0980928 + 0.0346020i
\(967\) 15.6916i 0.504609i 0.967648 + 0.252305i \(0.0811885\pi\)
−0.967648 + 0.252305i \(0.918812\pi\)
\(968\) 2.75267 + 0.650220i 0.0884743 + 0.0208989i
\(969\) 0.793277i 0.0254837i
\(970\) −5.97477 + 16.9378i −0.191838 + 0.543841i
\(971\) −15.8222 + 15.8222i −0.507758 + 0.507758i −0.913838 0.406080i \(-0.866896\pi\)
0.406080 + 0.913838i \(0.366896\pi\)
\(972\) −14.0606 + 1.51250i −0.450994 + 0.0485134i
\(973\) −1.08247 1.08247i −0.0347023 0.0347023i
\(974\) −5.71094 11.9358i −0.182990 0.382447i
\(975\) 0.806263 0.0258211
\(976\) 10.5445 16.4117i 0.337521 0.525327i
\(977\) 13.3084 0.425774 0.212887 0.977077i \(-0.431713\pi\)
0.212887 + 0.977077i \(0.431713\pi\)
\(978\) −0.205709 0.429928i −0.00657785 0.0137476i
\(979\) −1.57401 1.57401i −0.0503057 0.0503057i
\(980\) −0.861860 8.01209i −0.0275311 0.255937i
\(981\) −15.2066 + 15.2066i −0.485510 + 0.485510i
\(982\) 5.98141 16.9566i 0.190874 0.541108i
\(983\) 1.20397i 0.0384005i −0.999816 0.0192003i \(-0.993888\pi\)
0.999816 0.0192003i \(-0.00611201\pi\)
\(984\) 0.876775 + 1.41909i 0.0279506 + 0.0452390i
\(985\) 21.3618i 0.680643i
\(986\) −6.98982 2.46564i −0.222601 0.0785219i
\(987\) −0.351130 + 0.351130i −0.0111766 + 0.0111766i
\(988\) 6.29943 + 5.07580i 0.200412 + 0.161483i
\(989\) 17.0568 + 17.0568i 0.542373 + 0.542373i
\(990\) −3.73367 + 1.78646i −0.118664 + 0.0567775i
\(991\) 0.482712 0.0153339 0.00766693 0.999971i \(-0.497560\pi\)
0.00766693 + 0.999971i \(0.497560\pi\)
\(992\) 0.965282 + 1.24223i 0.0306477 + 0.0394408i
\(993\) 3.79811 0.120529
\(994\) 7.17487 3.43298i 0.227573 0.108887i
\(995\) −1.84643 1.84643i −0.0585357 0.0585357i
\(996\) 2.54657 + 2.05191i 0.0806910 + 0.0650172i
\(997\) 29.3431 29.3431i 0.929306 0.929306i −0.0683555 0.997661i \(-0.521775\pi\)
0.997661 + 0.0683555i \(0.0217752\pi\)
\(998\) −7.72068 2.72345i −0.244394 0.0862092i
\(999\) 12.8303i 0.405934i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 880.2.w.a.221.7 72
16.5 even 4 inner 880.2.w.a.661.7 yes 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
880.2.w.a.221.7 72 1.1 even 1 trivial
880.2.w.a.661.7 yes 72 16.5 even 4 inner