Properties

Label 880.2.w.a.221.13
Level $880$
Weight $2$
Character 880.221
Analytic conductor $7.027$
Analytic rank $0$
Dimension $72$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [880,2,Mod(221,880)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(880, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("880.221"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 880.w (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [72] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.02683537787\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(36\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 221.13
Character \(\chi\) \(=\) 880.221
Dual form 880.2.w.a.661.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.820740 - 1.15169i) q^{2} +(-0.928026 - 0.928026i) q^{3} +(-0.652771 + 1.89047i) q^{4} +(-0.707107 + 0.707107i) q^{5} +(-0.307128 + 1.83047i) q^{6} +0.454189i q^{7} +(2.71299 - 0.799799i) q^{8} -1.27753i q^{9} +(1.39472 + 0.234015i) q^{10} +(0.707107 - 0.707107i) q^{11} +(2.36020 - 1.14862i) q^{12} +(1.69624 + 1.69624i) q^{13} +(0.523084 - 0.372771i) q^{14} +1.31243 q^{15} +(-3.14778 - 2.46809i) q^{16} -5.02242 q^{17} +(-1.47132 + 1.04852i) q^{18} +(-5.00428 - 5.00428i) q^{19} +(-0.875188 - 1.79835i) q^{20} +(0.421499 - 0.421499i) q^{21} +(-1.39472 - 0.234015i) q^{22} +3.74454i q^{23} +(-3.25996 - 1.77549i) q^{24} -1.00000i q^{25} +(0.561367 - 3.34571i) q^{26} +(-3.96966 + 3.96966i) q^{27} +(-0.858632 - 0.296481i) q^{28} +(3.90492 + 3.90492i) q^{29} +(-1.07716 - 1.51151i) q^{30} -0.907497 q^{31} +(-0.258963 + 5.65092i) q^{32} -1.31243 q^{33} +(4.12210 + 5.78426i) q^{34} +(-0.321160 - 0.321160i) q^{35} +(2.41514 + 0.833937i) q^{36} +(-2.75378 + 2.75378i) q^{37} +(-1.65616 + 9.87059i) q^{38} -3.14831i q^{39} +(-1.35283 + 2.48392i) q^{40} +5.92805i q^{41} +(-0.831377 - 0.139494i) q^{42} +(-1.64187 + 1.64187i) q^{43} +(0.875188 + 1.79835i) q^{44} +(0.903353 + 0.903353i) q^{45} +(4.31255 - 3.07330i) q^{46} +2.91136 q^{47} +(0.630768 + 5.21168i) q^{48} +6.79371 q^{49} +(-1.15169 + 0.820740i) q^{50} +(4.66094 + 4.66094i) q^{51} +(-4.31395 + 2.09944i) q^{52} +(-8.18387 + 8.18387i) q^{53} +(7.82988 + 1.31375i) q^{54} +1.00000i q^{55} +(0.363260 + 1.23221i) q^{56} +9.28822i q^{57} +(1.29233 - 7.70218i) q^{58} +(-4.18163 + 4.18163i) q^{59} +(-0.856714 + 2.48111i) q^{60} +(-2.75880 - 2.75880i) q^{61} +(0.744819 + 1.04515i) q^{62} +0.580242 q^{63} +(6.72064 - 4.33970i) q^{64} -2.39885 q^{65} +(1.07716 + 1.51151i) q^{66} +(-11.5020 - 11.5020i) q^{67} +(3.27849 - 9.49476i) q^{68} +(3.47504 - 3.47504i) q^{69} +(-0.106287 + 0.633465i) q^{70} -9.03904i q^{71} +(-1.02177 - 3.46594i) q^{72} +14.5363i q^{73} +(5.43164 + 0.911359i) q^{74} +(-0.928026 + 0.928026i) q^{75} +(12.7271 - 6.19382i) q^{76} +(0.321160 + 0.321160i) q^{77} +(-3.62587 + 2.58394i) q^{78} +6.29965 q^{79} +(3.97102 - 0.480612i) q^{80} +3.53530 q^{81} +(6.82726 - 4.86539i) q^{82} +(6.58447 + 6.58447i) q^{83} +(0.521691 + 1.07198i) q^{84} +(3.55139 - 3.55139i) q^{85} +(3.23848 + 0.543374i) q^{86} -7.24774i q^{87} +(1.35283 - 2.48392i) q^{88} +16.3014i q^{89} +(0.298963 - 1.78180i) q^{90} +(-0.770413 + 0.770413i) q^{91} +(-7.07896 - 2.44433i) q^{92} +(0.842181 + 0.842181i) q^{93} +(-2.38947 - 3.35298i) q^{94} +7.07713 q^{95} +(5.48453 - 5.00388i) q^{96} -0.511104 q^{97} +(-5.57587 - 7.82424i) q^{98} +(-0.903353 - 0.903353i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 12 q^{6} - 4 q^{10} + 12 q^{12} - 8 q^{14} + 8 q^{15} + 4 q^{16} + 56 q^{17} + 20 q^{18} + 8 q^{19} - 8 q^{20} + 4 q^{22} - 24 q^{24} - 24 q^{27} + 20 q^{28} - 20 q^{30} + 20 q^{32} - 8 q^{33} + 4 q^{34}+ \cdots - 60 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.820740 1.15169i −0.580351 0.814366i
\(3\) −0.928026 0.928026i −0.535796 0.535796i 0.386495 0.922291i \(-0.373686\pi\)
−0.922291 + 0.386495i \(0.873686\pi\)
\(4\) −0.652771 + 1.89047i −0.326385 + 0.945237i
\(5\) −0.707107 + 0.707107i −0.316228 + 0.316228i
\(6\) −0.307128 + 1.83047i −0.125385 + 0.747284i
\(7\) 0.454189i 0.171667i 0.996309 + 0.0858337i \(0.0273554\pi\)
−0.996309 + 0.0858337i \(0.972645\pi\)
\(8\) 2.71299 0.799799i 0.959187 0.282772i
\(9\) 1.27753i 0.425845i
\(10\) 1.39472 + 0.234015i 0.441048 + 0.0740022i
\(11\) 0.707107 0.707107i 0.213201 0.213201i
\(12\) 2.36020 1.14862i 0.681330 0.331578i
\(13\) 1.69624 + 1.69624i 0.470452 + 0.470452i 0.902061 0.431609i \(-0.142054\pi\)
−0.431609 + 0.902061i \(0.642054\pi\)
\(14\) 0.523084 0.372771i 0.139800 0.0996273i
\(15\) 1.31243 0.338867
\(16\) −3.14778 2.46809i −0.786945 0.617023i
\(17\) −5.02242 −1.21812 −0.609058 0.793126i \(-0.708452\pi\)
−0.609058 + 0.793126i \(0.708452\pi\)
\(18\) −1.47132 + 1.04852i −0.346794 + 0.247139i
\(19\) −5.00428 5.00428i −1.14806 1.14806i −0.986933 0.161128i \(-0.948487\pi\)
−0.161128 0.986933i \(-0.551513\pi\)
\(20\) −0.875188 1.79835i −0.195698 0.402122i
\(21\) 0.421499 0.421499i 0.0919787 0.0919787i
\(22\) −1.39472 0.234015i −0.297355 0.0498923i
\(23\) 3.74454i 0.780791i 0.920647 + 0.390396i \(0.127662\pi\)
−0.920647 + 0.390396i \(0.872338\pi\)
\(24\) −3.25996 1.77549i −0.665437 0.362421i
\(25\) 1.00000i 0.200000i
\(26\) 0.561367 3.34571i 0.110093 0.656148i
\(27\) −3.96966 + 3.96966i −0.763962 + 0.763962i
\(28\) −0.858632 0.296481i −0.162266 0.0560297i
\(29\) 3.90492 + 3.90492i 0.725125 + 0.725125i 0.969645 0.244519i \(-0.0786301\pi\)
−0.244519 + 0.969645i \(0.578630\pi\)
\(30\) −1.07716 1.51151i −0.196662 0.275962i
\(31\) −0.907497 −0.162991 −0.0814957 0.996674i \(-0.525970\pi\)
−0.0814957 + 0.996674i \(0.525970\pi\)
\(32\) −0.258963 + 5.65092i −0.0457786 + 0.998952i
\(33\) −1.31243 −0.228464
\(34\) 4.12210 + 5.78426i 0.706935 + 0.991993i
\(35\) −0.321160 0.321160i −0.0542860 0.0542860i
\(36\) 2.41514 + 0.833937i 0.402524 + 0.138990i
\(37\) −2.75378 + 2.75378i −0.452719 + 0.452719i −0.896256 0.443537i \(-0.853724\pi\)
0.443537 + 0.896256i \(0.353724\pi\)
\(38\) −1.65616 + 9.87059i −0.268664 + 1.60122i
\(39\) 3.14831i 0.504133i
\(40\) −1.35283 + 2.48392i −0.213901 + 0.392742i
\(41\) 5.92805i 0.925806i 0.886409 + 0.462903i \(0.153192\pi\)
−0.886409 + 0.462903i \(0.846808\pi\)
\(42\) −0.831377 0.139494i −0.128284 0.0215244i
\(43\) −1.64187 + 1.64187i −0.250383 + 0.250383i −0.821128 0.570745i \(-0.806655\pi\)
0.570745 + 0.821128i \(0.306655\pi\)
\(44\) 0.875188 + 1.79835i 0.131940 + 0.271111i
\(45\) 0.903353 + 0.903353i 0.134664 + 0.134664i
\(46\) 4.31255 3.07330i 0.635850 0.453133i
\(47\) 2.91136 0.424666 0.212333 0.977197i \(-0.431894\pi\)
0.212333 + 0.977197i \(0.431894\pi\)
\(48\) 0.630768 + 5.21168i 0.0910435 + 0.752241i
\(49\) 6.79371 0.970530
\(50\) −1.15169 + 0.820740i −0.162873 + 0.116070i
\(51\) 4.66094 + 4.66094i 0.652662 + 0.652662i
\(52\) −4.31395 + 2.09944i −0.598238 + 0.291140i
\(53\) −8.18387 + 8.18387i −1.12414 + 1.12414i −0.133029 + 0.991112i \(0.542470\pi\)
−0.991112 + 0.133029i \(0.957530\pi\)
\(54\) 7.82988 + 1.31375i 1.06551 + 0.178779i
\(55\) 1.00000i 0.134840i
\(56\) 0.363260 + 1.23221i 0.0485427 + 0.164661i
\(57\) 9.28822i 1.23025i
\(58\) 1.29233 7.70218i 0.169691 1.01135i
\(59\) −4.18163 + 4.18163i −0.544402 + 0.544402i −0.924816 0.380415i \(-0.875781\pi\)
0.380415 + 0.924816i \(0.375781\pi\)
\(60\) −0.856714 + 2.48111i −0.110601 + 0.320310i
\(61\) −2.75880 2.75880i −0.353228 0.353228i 0.508081 0.861309i \(-0.330355\pi\)
−0.861309 + 0.508081i \(0.830355\pi\)
\(62\) 0.744819 + 1.04515i 0.0945922 + 0.132735i
\(63\) 0.580242 0.0731036
\(64\) 6.72064 4.33970i 0.840080 0.542462i
\(65\) −2.39885 −0.297540
\(66\) 1.07716 + 1.51151i 0.132589 + 0.186054i
\(67\) −11.5020 11.5020i −1.40519 1.40519i −0.782349 0.622840i \(-0.785979\pi\)
−0.622840 0.782349i \(-0.714021\pi\)
\(68\) 3.27849 9.49476i 0.397575 1.15141i
\(69\) 3.47504 3.47504i 0.418345 0.418345i
\(70\) −0.106287 + 0.633465i −0.0127038 + 0.0757136i
\(71\) 9.03904i 1.07274i −0.843984 0.536368i \(-0.819796\pi\)
0.843984 0.536368i \(-0.180204\pi\)
\(72\) −1.02177 3.46594i −0.120417 0.408465i
\(73\) 14.5363i 1.70135i 0.525693 + 0.850674i \(0.323806\pi\)
−0.525693 + 0.850674i \(0.676194\pi\)
\(74\) 5.43164 + 0.911359i 0.631415 + 0.105943i
\(75\) −0.928026 + 0.928026i −0.107159 + 0.107159i
\(76\) 12.7271 6.19382i 1.45990 0.710479i
\(77\) 0.321160 + 0.321160i 0.0365996 + 0.0365996i
\(78\) −3.62587 + 2.58394i −0.410549 + 0.292574i
\(79\) 6.29965 0.708766 0.354383 0.935100i \(-0.384691\pi\)
0.354383 + 0.935100i \(0.384691\pi\)
\(80\) 3.97102 0.480612i 0.443974 0.0537340i
\(81\) 3.53530 0.392811
\(82\) 6.82726 4.86539i 0.753945 0.537292i
\(83\) 6.58447 + 6.58447i 0.722740 + 0.722740i 0.969162 0.246423i \(-0.0792551\pi\)
−0.246423 + 0.969162i \(0.579255\pi\)
\(84\) 0.521691 + 1.07198i 0.0569211 + 0.116962i
\(85\) 3.55139 3.55139i 0.385202 0.385202i
\(86\) 3.23848 + 0.543374i 0.349214 + 0.0585935i
\(87\) 7.24774i 0.777039i
\(88\) 1.35283 2.48392i 0.144212 0.264787i
\(89\) 16.3014i 1.72795i 0.503535 + 0.863975i \(0.332032\pi\)
−0.503535 + 0.863975i \(0.667968\pi\)
\(90\) 0.298963 1.78180i 0.0315134 0.187818i
\(91\) −0.770413 + 0.770413i −0.0807613 + 0.0807613i
\(92\) −7.07896 2.44433i −0.738033 0.254839i
\(93\) 0.842181 + 0.842181i 0.0873301 + 0.0873301i
\(94\) −2.38947 3.35298i −0.246455 0.345834i
\(95\) 7.07713 0.726098
\(96\) 5.48453 5.00388i 0.559763 0.510707i
\(97\) −0.511104 −0.0518947 −0.0259474 0.999663i \(-0.508260\pi\)
−0.0259474 + 0.999663i \(0.508260\pi\)
\(98\) −5.57587 7.82424i −0.563248 0.790367i
\(99\) −0.903353 0.903353i −0.0907904 0.0907904i
\(100\) 1.89047 + 0.652771i 0.189047 + 0.0652771i
\(101\) −7.56974 + 7.56974i −0.753218 + 0.753218i −0.975078 0.221861i \(-0.928787\pi\)
0.221861 + 0.975078i \(0.428787\pi\)
\(102\) 1.54253 9.19337i 0.152733 0.910279i
\(103\) 11.1719i 1.10080i 0.834900 + 0.550401i \(0.185525\pi\)
−0.834900 + 0.550401i \(0.814475\pi\)
\(104\) 5.95853 + 3.24523i 0.584282 + 0.318221i
\(105\) 0.596090i 0.0581724i
\(106\) 16.1421 + 2.70844i 1.56786 + 0.263066i
\(107\) −9.37542 + 9.37542i −0.906356 + 0.906356i −0.995976 0.0896198i \(-0.971435\pi\)
0.0896198 + 0.995976i \(0.471435\pi\)
\(108\) −4.91326 10.0958i −0.472779 0.971471i
\(109\) −2.49283 2.49283i −0.238770 0.238770i 0.577571 0.816341i \(-0.304001\pi\)
−0.816341 + 0.577571i \(0.804001\pi\)
\(110\) 1.15169 0.820740i 0.109809 0.0782545i
\(111\) 5.11117 0.485131
\(112\) 1.12098 1.42969i 0.105923 0.135093i
\(113\) 13.0610 1.22867 0.614336 0.789045i \(-0.289424\pi\)
0.614336 + 0.789045i \(0.289424\pi\)
\(114\) 10.6971 7.62321i 1.00188 0.713979i
\(115\) −2.64779 2.64779i −0.246908 0.246908i
\(116\) −9.93117 + 4.83313i −0.922086 + 0.448745i
\(117\) 2.16700 2.16700i 0.200340 0.200340i
\(118\) 8.24796 + 1.38390i 0.759286 + 0.127398i
\(119\) 2.28113i 0.209111i
\(120\) 3.56060 1.04968i 0.325037 0.0958221i
\(121\) 1.00000i 0.0909091i
\(122\) −0.913020 + 5.44154i −0.0826609 + 0.492654i
\(123\) 5.50139 5.50139i 0.496043 0.496043i
\(124\) 0.592388 1.71560i 0.0531980 0.154065i
\(125\) 0.707107 + 0.707107i 0.0632456 + 0.0632456i
\(126\) −0.476228 0.668258i −0.0424258 0.0595331i
\(127\) −17.2492 −1.53062 −0.765310 0.643662i \(-0.777414\pi\)
−0.765310 + 0.643662i \(0.777414\pi\)
\(128\) −10.5139 4.17832i −0.929304 0.369315i
\(129\) 3.04740 0.268309
\(130\) 1.96883 + 2.76272i 0.172678 + 0.242307i
\(131\) −6.75979 6.75979i −0.590605 0.590605i 0.347190 0.937795i \(-0.387136\pi\)
−0.937795 + 0.347190i \(0.887136\pi\)
\(132\) 0.856714 2.48111i 0.0745674 0.215953i
\(133\) 2.27289 2.27289i 0.197085 0.197085i
\(134\) −3.80655 + 22.6868i −0.328836 + 1.95984i
\(135\) 5.61395i 0.483172i
\(136\) −13.6258 + 4.01693i −1.16840 + 0.344449i
\(137\) 11.9178i 1.01821i −0.860706 0.509103i \(-0.829977\pi\)
0.860706 0.509103i \(-0.170023\pi\)
\(138\) −6.85426 1.15006i −0.583473 0.0978992i
\(139\) 0.303240 0.303240i 0.0257205 0.0257205i −0.694130 0.719850i \(-0.744211\pi\)
0.719850 + 0.694130i \(0.244211\pi\)
\(140\) 0.816789 0.397501i 0.0690312 0.0335949i
\(141\) −2.70182 2.70182i −0.227534 0.227534i
\(142\) −10.4102 + 7.41870i −0.873601 + 0.622564i
\(143\) 2.39885 0.200602
\(144\) −3.15307 + 4.02140i −0.262756 + 0.335116i
\(145\) −5.52239 −0.458610
\(146\) 16.7413 11.9305i 1.38552 0.987379i
\(147\) −6.30474 6.30474i −0.520006 0.520006i
\(148\) −3.40837 7.00355i −0.280166 0.575688i
\(149\) −15.3850 + 15.3850i −1.26039 + 1.26039i −0.309484 + 0.950904i \(0.600156\pi\)
−0.950904 + 0.309484i \(0.899844\pi\)
\(150\) 1.83047 + 0.307128i 0.149457 + 0.0250769i
\(151\) 18.4666i 1.50279i −0.659854 0.751394i \(-0.729382\pi\)
0.659854 0.751394i \(-0.270618\pi\)
\(152\) −17.5790 9.57416i −1.42585 0.776567i
\(153\) 6.41632i 0.518729i
\(154\) 0.106287 0.633465i 0.00856487 0.0510461i
\(155\) 0.641697 0.641697i 0.0515424 0.0515424i
\(156\) 5.95180 + 2.05513i 0.476525 + 0.164542i
\(157\) 6.21339 + 6.21339i 0.495883 + 0.495883i 0.910154 0.414271i \(-0.135963\pi\)
−0.414271 + 0.910154i \(0.635963\pi\)
\(158\) −5.17037 7.25523i −0.411333 0.577195i
\(159\) 15.1897 1.20462
\(160\) −3.81269 4.17892i −0.301420 0.330373i
\(161\) −1.70073 −0.134036
\(162\) −2.90157 4.07157i −0.227968 0.319892i
\(163\) −2.55397 2.55397i −0.200042 0.200042i 0.599976 0.800018i \(-0.295177\pi\)
−0.800018 + 0.599976i \(0.795177\pi\)
\(164\) −11.2068 3.86966i −0.875106 0.302170i
\(165\) 0.928026 0.928026i 0.0722467 0.0722467i
\(166\) 2.17912 12.9874i 0.169132 1.00802i
\(167\) 4.05865i 0.314068i 0.987593 + 0.157034i \(0.0501932\pi\)
−0.987593 + 0.157034i \(0.949807\pi\)
\(168\) 0.806409 1.48064i 0.0622158 0.114234i
\(169\) 7.24554i 0.557349i
\(170\) −7.00486 1.17532i −0.537248 0.0901433i
\(171\) −6.39315 + 6.39315i −0.488896 + 0.488896i
\(172\) −2.03215 4.17568i −0.154950 0.318393i
\(173\) −4.23452 4.23452i −0.321945 0.321945i 0.527568 0.849513i \(-0.323104\pi\)
−0.849513 + 0.527568i \(0.823104\pi\)
\(174\) −8.34713 + 5.94851i −0.632795 + 0.450955i
\(175\) 0.454189 0.0343335
\(176\) −3.97102 + 0.480612i −0.299327 + 0.0362275i
\(177\) 7.76132 0.583377
\(178\) 18.7742 13.3792i 1.40718 1.00282i
\(179\) −0.352206 0.352206i −0.0263251 0.0263251i 0.693822 0.720147i \(-0.255926\pi\)
−0.720147 + 0.693822i \(0.755926\pi\)
\(180\) −2.29745 + 1.11808i −0.171242 + 0.0833370i
\(181\) −10.3576 + 10.3576i −0.769877 + 0.769877i −0.978085 0.208207i \(-0.933237\pi\)
0.208207 + 0.978085i \(0.433237\pi\)
\(182\) 1.51959 + 0.254967i 0.112639 + 0.0188994i
\(183\) 5.12048i 0.378517i
\(184\) 2.99488 + 10.1589i 0.220786 + 0.748925i
\(185\) 3.89444i 0.286325i
\(186\) 0.278718 1.66114i 0.0204366 0.121801i
\(187\) −3.55139 + 3.55139i −0.259703 + 0.259703i
\(188\) −1.90045 + 5.50385i −0.138605 + 0.401410i
\(189\) −1.80298 1.80298i −0.131147 0.131147i
\(190\) −5.80848 8.15064i −0.421392 0.591310i
\(191\) 23.1351 1.67399 0.836997 0.547207i \(-0.184309\pi\)
0.836997 + 0.547207i \(0.184309\pi\)
\(192\) −10.2643 2.20958i −0.740761 0.159463i
\(193\) −10.4021 −0.748757 −0.374378 0.927276i \(-0.622144\pi\)
−0.374378 + 0.927276i \(0.622144\pi\)
\(194\) 0.419483 + 0.588632i 0.0301172 + 0.0422613i
\(195\) 2.22619 + 2.22619i 0.159421 + 0.159421i
\(196\) −4.43474 + 12.8433i −0.316767 + 0.917381i
\(197\) −4.76688 + 4.76688i −0.339626 + 0.339626i −0.856227 0.516600i \(-0.827197\pi\)
0.516600 + 0.856227i \(0.327197\pi\)
\(198\) −0.298963 + 1.78180i −0.0212464 + 0.126627i
\(199\) 12.2243i 0.866558i −0.901260 0.433279i \(-0.857356\pi\)
0.901260 0.433279i \(-0.142644\pi\)
\(200\) −0.799799 2.71299i −0.0565543 0.191837i
\(201\) 21.3483i 1.50579i
\(202\) 14.9308 + 2.50519i 1.05053 + 0.176265i
\(203\) −1.77357 + 1.77357i −0.124480 + 0.124480i
\(204\) −11.8539 + 5.76886i −0.829940 + 0.403901i
\(205\) −4.19176 4.19176i −0.292765 0.292765i
\(206\) 12.8666 9.16924i 0.896456 0.638852i
\(207\) 4.78378 0.332496
\(208\) −1.15291 9.52587i −0.0799402 0.660500i
\(209\) −7.07713 −0.489535
\(210\) 0.686510 0.489235i 0.0473737 0.0337604i
\(211\) −0.535279 0.535279i −0.0368501 0.0368501i 0.688442 0.725292i \(-0.258295\pi\)
−0.725292 + 0.688442i \(0.758295\pi\)
\(212\) −10.1292 20.8136i −0.695676 1.42948i
\(213\) −8.38847 + 8.38847i −0.574768 + 0.574768i
\(214\) 18.4923 + 3.10278i 1.26411 + 0.212101i
\(215\) 2.32196i 0.158356i
\(216\) −7.59473 + 13.9446i −0.516756 + 0.948810i
\(217\) 0.412175i 0.0279803i
\(218\) −0.824996 + 4.91692i −0.0558758 + 0.333016i
\(219\) 13.4901 13.4901i 0.911576 0.911576i
\(220\) −1.89047 0.652771i −0.127456 0.0440098i
\(221\) −8.51923 8.51923i −0.573066 0.573066i
\(222\) −4.19494 5.88647i −0.281546 0.395074i
\(223\) 18.4911 1.23825 0.619127 0.785291i \(-0.287487\pi\)
0.619127 + 0.785291i \(0.287487\pi\)
\(224\) −2.56659 0.117618i −0.171487 0.00785869i
\(225\) −1.27753 −0.0851690
\(226\) −10.7197 15.0422i −0.713061 1.00059i
\(227\) −10.2982 10.2982i −0.683514 0.683514i 0.277276 0.960790i \(-0.410568\pi\)
−0.960790 + 0.277276i \(0.910568\pi\)
\(228\) −17.5591 6.06308i −1.16288 0.401537i
\(229\) 12.8375 12.8375i 0.848324 0.848324i −0.141600 0.989924i \(-0.545225\pi\)
0.989924 + 0.141600i \(0.0452246\pi\)
\(230\) −0.876281 + 5.22258i −0.0577803 + 0.344367i
\(231\) 0.596090i 0.0392198i
\(232\) 13.7172 + 7.47086i 0.900576 + 0.490486i
\(233\) 1.38063i 0.0904482i −0.998977 0.0452241i \(-0.985600\pi\)
0.998977 0.0452241i \(-0.0144002\pi\)
\(234\) −4.27426 0.717166i −0.279417 0.0468826i
\(235\) −2.05864 + 2.05864i −0.134291 + 0.134291i
\(236\) −5.17561 10.6349i −0.336904 0.692273i
\(237\) −5.84624 5.84624i −0.379754 0.379754i
\(238\) −2.62715 + 1.87221i −0.170293 + 0.121358i
\(239\) −21.2733 −1.37605 −0.688027 0.725686i \(-0.741523\pi\)
−0.688027 + 0.725686i \(0.741523\pi\)
\(240\) −4.13123 3.23919i −0.266670 0.209089i
\(241\) 16.5142 1.06377 0.531887 0.846816i \(-0.321483\pi\)
0.531887 + 0.846816i \(0.321483\pi\)
\(242\) −1.15169 + 0.820740i −0.0740333 + 0.0527592i
\(243\) 8.62814 + 8.62814i 0.553495 + 0.553495i
\(244\) 7.01631 3.41458i 0.449173 0.218596i
\(245\) −4.80388 + 4.80388i −0.306909 + 0.306909i
\(246\) −10.8511 1.82067i −0.691840 0.116082i
\(247\) 16.9769i 1.08022i
\(248\) −2.46203 + 0.725815i −0.156339 + 0.0460893i
\(249\) 12.2211i 0.774483i
\(250\) 0.234015 1.39472i 0.0148004 0.0882097i
\(251\) −1.81985 + 1.81985i −0.114868 + 0.114868i −0.762204 0.647336i \(-0.775883\pi\)
0.647336 + 0.762204i \(0.275883\pi\)
\(252\) −0.378765 + 1.09693i −0.0238600 + 0.0691002i
\(253\) 2.64779 + 2.64779i 0.166465 + 0.166465i
\(254\) 14.1571 + 19.8657i 0.888297 + 1.24649i
\(255\) −6.59156 −0.412780
\(256\) 3.81704 + 15.5380i 0.238565 + 0.971127i
\(257\) −17.5934 −1.09745 −0.548724 0.836004i \(-0.684886\pi\)
−0.548724 + 0.836004i \(0.684886\pi\)
\(258\) −2.50113 3.50966i −0.155713 0.218502i
\(259\) −1.25074 1.25074i −0.0777171 0.0777171i
\(260\) 1.56590 4.53495i 0.0971128 0.281246i
\(261\) 4.98867 4.98867i 0.308791 0.308791i
\(262\) −2.23714 + 13.3332i −0.138211 + 0.823727i
\(263\) 20.7559i 1.27987i −0.768431 0.639933i \(-0.778962\pi\)
0.768431 0.639933i \(-0.221038\pi\)
\(264\) −3.56060 + 1.04968i −0.219140 + 0.0646032i
\(265\) 11.5737i 0.710969i
\(266\) −4.48311 0.752208i −0.274877 0.0461209i
\(267\) 15.1282 15.1282i 0.925829 0.925829i
\(268\) 29.2523 14.2360i 1.78687 0.869603i
\(269\) −14.3643 14.3643i −0.875809 0.875809i 0.117289 0.993098i \(-0.462580\pi\)
−0.993098 + 0.117289i \(0.962580\pi\)
\(270\) −6.46552 + 4.60760i −0.393479 + 0.280409i
\(271\) −13.6663 −0.830170 −0.415085 0.909783i \(-0.636248\pi\)
−0.415085 + 0.909783i \(0.636248\pi\)
\(272\) 15.8095 + 12.3958i 0.958591 + 0.751606i
\(273\) 1.42993 0.0865432
\(274\) −13.7256 + 9.78141i −0.829192 + 0.590917i
\(275\) −0.707107 0.707107i −0.0426401 0.0426401i
\(276\) 4.30106 + 8.83786i 0.258893 + 0.531977i
\(277\) 2.94540 2.94540i 0.176972 0.176972i −0.613062 0.790034i \(-0.710063\pi\)
0.790034 + 0.613062i \(0.210063\pi\)
\(278\) −0.598119 0.100357i −0.0358728 0.00601899i
\(279\) 1.15936i 0.0694090i
\(280\) −1.12817 0.614441i −0.0674209 0.0367199i
\(281\) 3.42392i 0.204254i 0.994771 + 0.102127i \(0.0325648\pi\)
−0.994771 + 0.102127i \(0.967435\pi\)
\(282\) −0.894162 + 5.32915i −0.0532466 + 0.317346i
\(283\) −2.62336 + 2.62336i −0.155943 + 0.155943i −0.780766 0.624824i \(-0.785171\pi\)
0.624824 + 0.780766i \(0.285171\pi\)
\(284\) 17.0881 + 5.90042i 1.01399 + 0.350126i
\(285\) −6.56776 6.56776i −0.389041 0.389041i
\(286\) −1.96883 2.76272i −0.116419 0.163363i
\(287\) −2.69245 −0.158931
\(288\) 7.21925 + 0.330834i 0.425398 + 0.0194946i
\(289\) 8.22473 0.483807
\(290\) 4.53245 + 6.36007i 0.266155 + 0.373476i
\(291\) 0.474318 + 0.474318i 0.0278050 + 0.0278050i
\(292\) −27.4805 9.48889i −1.60818 0.555295i
\(293\) 17.7813 17.7813i 1.03879 1.03879i 0.0395778 0.999216i \(-0.487399\pi\)
0.999216 0.0395778i \(-0.0126013\pi\)
\(294\) −2.08654 + 12.4357i −0.121690 + 0.725262i
\(295\) 5.91371i 0.344310i
\(296\) −5.26852 + 9.67346i −0.306226 + 0.562259i
\(297\) 5.61395i 0.325755i
\(298\) 30.3458 + 5.09164i 1.75789 + 0.294951i
\(299\) −6.35164 + 6.35164i −0.367325 + 0.367325i
\(300\) −1.14862 2.36020i −0.0663156 0.136266i
\(301\) −0.745720 0.745720i −0.0429826 0.0429826i
\(302\) −21.2677 + 15.1563i −1.22382 + 0.872145i
\(303\) 14.0498 0.807142
\(304\) 3.40135 + 28.1034i 0.195081 + 1.61184i
\(305\) 3.90153 0.223401
\(306\) 7.38960 5.26613i 0.422435 0.301045i
\(307\) −10.2010 10.2010i −0.582201 0.582201i 0.353306 0.935508i \(-0.385057\pi\)
−0.935508 + 0.353306i \(0.885057\pi\)
\(308\) −0.816789 + 0.397501i −0.0465409 + 0.0226497i
\(309\) 10.3678 10.3678i 0.589806 0.589806i
\(310\) −1.26570 0.212368i −0.0718871 0.0120617i
\(311\) 16.2144i 0.919435i 0.888065 + 0.459718i \(0.152049\pi\)
−0.888065 + 0.459718i \(0.847951\pi\)
\(312\) −2.51802 8.54134i −0.142555 0.483558i
\(313\) 17.1100i 0.967112i −0.875313 0.483556i \(-0.839345\pi\)
0.875313 0.483556i \(-0.160655\pi\)
\(314\) 2.05631 12.2555i 0.116044 0.691616i
\(315\) −0.410293 + 0.410293i −0.0231174 + 0.0231174i
\(316\) −4.11223 + 11.9093i −0.231331 + 0.669951i
\(317\) 11.8823 + 11.8823i 0.667374 + 0.667374i 0.957107 0.289733i \(-0.0935666\pi\)
−0.289733 + 0.957107i \(0.593567\pi\)
\(318\) −12.4668 17.4938i −0.699103 0.981003i
\(319\) 5.52239 0.309195
\(320\) −1.68358 + 7.82084i −0.0941152 + 0.437198i
\(321\) 17.4013 0.971244
\(322\) 1.39586 + 1.95871i 0.0777881 + 0.109155i
\(323\) 25.1336 + 25.1336i 1.39847 + 1.39847i
\(324\) −2.30774 + 6.68340i −0.128208 + 0.371300i
\(325\) 1.69624 1.69624i 0.0940904 0.0940904i
\(326\) −0.845230 + 5.03752i −0.0468130 + 0.279002i
\(327\) 4.62682i 0.255864i
\(328\) 4.74125 + 16.0827i 0.261792 + 0.888021i
\(329\) 1.32231i 0.0729012i
\(330\) −1.83047 0.307128i −0.100764 0.0169069i
\(331\) 8.21887 8.21887i 0.451750 0.451750i −0.444185 0.895935i \(-0.646507\pi\)
0.895935 + 0.444185i \(0.146507\pi\)
\(332\) −16.7459 + 8.14962i −0.919052 + 0.447269i
\(333\) 3.51805 + 3.51805i 0.192788 + 0.192788i
\(334\) 4.67430 3.33110i 0.255766 0.182270i
\(335\) 16.2662 0.888720
\(336\) −2.36709 + 0.286488i −0.129135 + 0.0156292i
\(337\) 12.4465 0.678004 0.339002 0.940786i \(-0.389911\pi\)
0.339002 + 0.940786i \(0.389911\pi\)
\(338\) −8.34460 + 5.94671i −0.453887 + 0.323458i
\(339\) −12.1209 12.1209i −0.658318 0.658318i
\(340\) 4.39556 + 9.03205i 0.238383 + 0.489832i
\(341\) −0.641697 + 0.641697i −0.0347499 + 0.0347499i
\(342\) 12.6100 + 2.11580i 0.681872 + 0.114409i
\(343\) 6.26495i 0.338276i
\(344\) −3.14122 + 5.76755i −0.169363 + 0.310966i
\(345\) 4.91444i 0.264585i
\(346\) −1.40141 + 8.35229i −0.0753401 + 0.449022i
\(347\) −11.4171 + 11.4171i −0.612901 + 0.612901i −0.943701 0.330800i \(-0.892682\pi\)
0.330800 + 0.943701i \(0.392682\pi\)
\(348\) 13.7017 + 4.73111i 0.734486 + 0.253614i
\(349\) −19.7743 19.7743i −1.05849 1.05849i −0.998179 0.0603149i \(-0.980790\pi\)
−0.0603149 0.998179i \(-0.519210\pi\)
\(350\) −0.372771 0.523084i −0.0199255 0.0279600i
\(351\) −13.4670 −0.718816
\(352\) 3.81269 + 4.17892i 0.203217 + 0.222737i
\(353\) −19.3850 −1.03176 −0.515881 0.856660i \(-0.672535\pi\)
−0.515881 + 0.856660i \(0.672535\pi\)
\(354\) −6.37003 8.93862i −0.338563 0.475082i
\(355\) 6.39157 + 6.39157i 0.339229 + 0.339229i
\(356\) −30.8174 10.6411i −1.63332 0.563978i
\(357\) −2.11695 + 2.11695i −0.112041 + 0.112041i
\(358\) −0.116562 + 0.694701i −0.00616048 + 0.0367161i
\(359\) 2.92587i 0.154422i −0.997015 0.0772108i \(-0.975399\pi\)
0.997015 0.0772108i \(-0.0246015\pi\)
\(360\) 3.17329 + 1.72829i 0.167247 + 0.0910888i
\(361\) 31.0857i 1.63609i
\(362\) 20.4297 + 3.42784i 1.07376 + 0.180163i
\(363\) −0.928026 + 0.928026i −0.0487087 + 0.0487087i
\(364\) −0.953543 1.95935i −0.0499792 0.102698i
\(365\) −10.2787 10.2787i −0.538014 0.538014i
\(366\) 5.89720 4.20258i 0.308251 0.219673i
\(367\) 23.4950 1.22643 0.613216 0.789916i \(-0.289876\pi\)
0.613216 + 0.789916i \(0.289876\pi\)
\(368\) 9.24188 11.7870i 0.481766 0.614440i
\(369\) 7.57329 0.394250
\(370\) −4.48518 + 3.19632i −0.233173 + 0.166169i
\(371\) −3.71702 3.71702i −0.192978 0.192978i
\(372\) −2.14187 + 1.04237i −0.111051 + 0.0540444i
\(373\) 16.4560 16.4560i 0.852062 0.852062i −0.138325 0.990387i \(-0.544172\pi\)
0.990387 + 0.138325i \(0.0441719\pi\)
\(374\) 7.00486 + 1.17532i 0.362213 + 0.0607746i
\(375\) 1.31243i 0.0677735i
\(376\) 7.89850 2.32850i 0.407334 0.120083i
\(377\) 13.2474i 0.682274i
\(378\) −0.596692 + 3.55624i −0.0306905 + 0.182913i
\(379\) 13.0999 13.0999i 0.672897 0.672897i −0.285486 0.958383i \(-0.592155\pi\)
0.958383 + 0.285486i \(0.0921550\pi\)
\(380\) −4.61974 + 13.3791i −0.236988 + 0.686334i
\(381\) 16.0077 + 16.0077i 0.820100 + 0.820100i
\(382\) −18.9879 26.6444i −0.971505 1.36325i
\(383\) −13.7992 −0.705105 −0.352553 0.935792i \(-0.614686\pi\)
−0.352553 + 0.935792i \(0.614686\pi\)
\(384\) 5.87956 + 13.6347i 0.300040 + 0.695795i
\(385\) −0.454189 −0.0231476
\(386\) 8.53739 + 11.9799i 0.434542 + 0.609762i
\(387\) 2.09755 + 2.09755i 0.106624 + 0.106624i
\(388\) 0.333634 0.966228i 0.0169377 0.0490528i
\(389\) 24.0290 24.0290i 1.21832 1.21832i 0.250100 0.968220i \(-0.419537\pi\)
0.968220 0.250100i \(-0.0804634\pi\)
\(390\) 0.736753 4.39100i 0.0373070 0.222347i
\(391\) 18.8067i 0.951095i
\(392\) 18.4313 5.43361i 0.930920 0.274439i
\(393\) 12.5465i 0.632888i
\(394\) 9.40233 + 1.57759i 0.473683 + 0.0794778i
\(395\) −4.45452 + 4.45452i −0.224131 + 0.224131i
\(396\) 2.29745 1.11808i 0.115451 0.0561858i
\(397\) −2.16678 2.16678i −0.108748 0.108748i 0.650639 0.759387i \(-0.274501\pi\)
−0.759387 + 0.650639i \(0.774501\pi\)
\(398\) −14.0786 + 10.0330i −0.705696 + 0.502908i
\(399\) −4.21861 −0.211194
\(400\) −2.46809 + 3.14778i −0.123405 + 0.157389i
\(401\) −0.773436 −0.0386236 −0.0193118 0.999814i \(-0.506148\pi\)
−0.0193118 + 0.999814i \(0.506148\pi\)
\(402\) 24.5865 17.5214i 1.22627 0.873887i
\(403\) −1.53933 1.53933i −0.0766796 0.0766796i
\(404\) −9.36909 19.2517i −0.466130 0.957808i
\(405\) −2.49984 + 2.49984i −0.124218 + 0.124218i
\(406\) 3.49824 + 0.586960i 0.173615 + 0.0291303i
\(407\) 3.89444i 0.193040i
\(408\) 16.3729 + 8.91727i 0.810580 + 0.441471i
\(409\) 31.5893i 1.56199i 0.624538 + 0.780994i \(0.285287\pi\)
−0.624538 + 0.780994i \(0.714713\pi\)
\(410\) −1.38726 + 8.26795i −0.0685117 + 0.408325i
\(411\) −11.0600 + 11.0600i −0.545551 + 0.545551i
\(412\) −21.1202 7.29271i −1.04052 0.359286i
\(413\) −1.89925 1.89925i −0.0934559 0.0934559i
\(414\) −3.92624 5.50943i −0.192964 0.270774i
\(415\) −9.31185 −0.457101
\(416\) −10.0246 + 9.14606i −0.491496 + 0.448422i
\(417\) −0.562829 −0.0275619
\(418\) 5.80848 + 8.15064i 0.284102 + 0.398661i
\(419\) 18.9633 + 18.9633i 0.926420 + 0.926420i 0.997473 0.0710526i \(-0.0226358\pi\)
−0.0710526 + 0.997473i \(0.522636\pi\)
\(420\) −1.12689 0.389110i −0.0549867 0.0189866i
\(421\) −7.22822 + 7.22822i −0.352282 + 0.352282i −0.860958 0.508676i \(-0.830135\pi\)
0.508676 + 0.860958i \(0.330135\pi\)
\(422\) −0.177149 + 1.05580i −0.00862350 + 0.0513955i
\(423\) 3.71937i 0.180842i
\(424\) −15.6573 + 28.7482i −0.760387 + 1.39614i
\(425\) 5.02242i 0.243623i
\(426\) 16.5456 + 2.77615i 0.801639 + 0.134505i
\(427\) 1.25302 1.25302i 0.0606378 0.0606378i
\(428\) −11.6040 23.8440i −0.560900 1.15254i
\(429\) −2.22619 2.22619i −0.107482 0.107482i
\(430\) −2.67417 + 1.90572i −0.128960 + 0.0919022i
\(431\) 18.8166 0.906363 0.453181 0.891418i \(-0.350289\pi\)
0.453181 + 0.891418i \(0.350289\pi\)
\(432\) 22.2931 2.69813i 1.07258 0.129814i
\(433\) 11.8666 0.570271 0.285136 0.958487i \(-0.407961\pi\)
0.285136 + 0.958487i \(0.407961\pi\)
\(434\) −0.474697 + 0.338289i −0.0227862 + 0.0162384i
\(435\) 5.12492 + 5.12492i 0.245721 + 0.245721i
\(436\) 6.33987 3.08538i 0.303625 0.147763i
\(437\) 18.7388 18.7388i 0.896397 0.896397i
\(438\) −26.6082 4.46452i −1.27139 0.213323i
\(439\) 2.33769i 0.111572i −0.998443 0.0557858i \(-0.982234\pi\)
0.998443 0.0557858i \(-0.0177664\pi\)
\(440\) 0.799799 + 2.71299i 0.0381289 + 0.129337i
\(441\) 8.67920i 0.413295i
\(442\) −2.81942 + 16.8036i −0.134106 + 0.799265i
\(443\) −21.7373 + 21.7373i −1.03277 + 1.03277i −0.0333275 + 0.999444i \(0.510610\pi\)
−0.999444 + 0.0333275i \(0.989390\pi\)
\(444\) −3.33642 + 9.66253i −0.158340 + 0.458563i
\(445\) −11.5269 11.5269i −0.546426 0.546426i
\(446\) −15.1764 21.2959i −0.718622 1.00839i
\(447\) 28.5554 1.35062
\(448\) 1.97104 + 3.05244i 0.0931230 + 0.144214i
\(449\) 21.3050 1.00545 0.502723 0.864447i \(-0.332331\pi\)
0.502723 + 0.864447i \(0.332331\pi\)
\(450\) 1.04852 + 1.47132i 0.0494279 + 0.0693587i
\(451\) 4.19176 + 4.19176i 0.197382 + 0.197382i
\(452\) −8.52582 + 24.6914i −0.401021 + 1.16139i
\(453\) −17.1375 + 17.1375i −0.805188 + 0.805188i
\(454\) −3.40816 + 20.3124i −0.159953 + 0.953309i
\(455\) 1.08953i 0.0510779i
\(456\) 7.42871 + 25.1988i 0.347881 + 1.18004i
\(457\) 11.2058i 0.524185i −0.965043 0.262093i \(-0.915587\pi\)
0.965043 0.262093i \(-0.0844126\pi\)
\(458\) −25.3210 4.24854i −1.18317 0.198521i
\(459\) 19.9373 19.9373i 0.930595 0.930595i
\(460\) 6.73398 3.27718i 0.313974 0.152799i
\(461\) −7.25592 7.25592i −0.337942 0.337942i 0.517650 0.855592i \(-0.326807\pi\)
−0.855592 + 0.517650i \(0.826807\pi\)
\(462\) −0.686510 + 0.489235i −0.0319393 + 0.0227613i
\(463\) 12.5166 0.581698 0.290849 0.956769i \(-0.406062\pi\)
0.290849 + 0.956769i \(0.406062\pi\)
\(464\) −2.65413 21.9295i −0.123215 1.01805i
\(465\) −1.19102 −0.0552324
\(466\) −1.59006 + 1.13314i −0.0736580 + 0.0524917i
\(467\) 2.64800 + 2.64800i 0.122535 + 0.122535i 0.765715 0.643180i \(-0.222385\pi\)
−0.643180 + 0.765715i \(0.722385\pi\)
\(468\) 2.68211 + 5.51122i 0.123980 + 0.254756i
\(469\) 5.22407 5.22407i 0.241225 0.241225i
\(470\) 4.06053 + 0.681304i 0.187298 + 0.0314262i
\(471\) 11.5324i 0.531384i
\(472\) −8.00026 + 14.6892i −0.368242 + 0.676124i
\(473\) 2.32196i 0.106764i
\(474\) −1.93480 + 11.5313i −0.0888683 + 0.529650i
\(475\) −5.00428 + 5.00428i −0.229612 + 0.229612i
\(476\) 4.31241 + 1.48905i 0.197659 + 0.0682507i
\(477\) 10.4552 + 10.4552i 0.478710 + 0.478710i
\(478\) 17.4598 + 24.5002i 0.798594 + 1.12061i
\(479\) −27.3409 −1.24924 −0.624620 0.780929i \(-0.714746\pi\)
−0.624620 + 0.780929i \(0.714746\pi\)
\(480\) −0.339870 + 7.41643i −0.0155129 + 0.338512i
\(481\) −9.34215 −0.425966
\(482\) −13.5539 19.0192i −0.617362 0.866301i
\(483\) 1.57832 + 1.57832i 0.0718162 + 0.0718162i
\(484\) 1.89047 + 0.652771i 0.0859306 + 0.0296714i
\(485\) 0.361405 0.361405i 0.0164106 0.0164106i
\(486\) 2.85546 17.0184i 0.129526 0.771970i
\(487\) 4.44679i 0.201503i −0.994912 0.100752i \(-0.967875\pi\)
0.994912 0.100752i \(-0.0321247\pi\)
\(488\) −9.69109 5.27812i −0.438695 0.238929i
\(489\) 4.74030i 0.214364i
\(490\) 9.47531 + 1.58983i 0.428051 + 0.0718214i
\(491\) −12.5327 + 12.5327i −0.565591 + 0.565591i −0.930890 0.365299i \(-0.880967\pi\)
0.365299 + 0.930890i \(0.380967\pi\)
\(492\) 6.80908 + 13.9914i 0.306977 + 0.630780i
\(493\) −19.6122 19.6122i −0.883287 0.883287i
\(494\) −19.5521 + 13.9337i −0.879692 + 0.626905i
\(495\) 1.27753 0.0574209
\(496\) 2.85660 + 2.23979i 0.128265 + 0.100569i
\(497\) 4.10543 0.184154
\(498\) −14.0749 + 10.0304i −0.630713 + 0.449472i
\(499\) −24.2554 24.2554i −1.08582 1.08582i −0.995954 0.0898672i \(-0.971356\pi\)
−0.0898672 0.995954i \(-0.528644\pi\)
\(500\) −1.79835 + 0.875188i −0.0804245 + 0.0391396i
\(501\) 3.76654 3.76654i 0.168276 0.168276i
\(502\) 3.58953 + 0.602276i 0.160208 + 0.0268809i
\(503\) 37.6186i 1.67733i 0.544647 + 0.838665i \(0.316664\pi\)
−0.544647 + 0.838665i \(0.683336\pi\)
\(504\) 1.57419 0.464077i 0.0701201 0.0206716i
\(505\) 10.7052i 0.476377i
\(506\) 0.876281 5.22258i 0.0389555 0.232172i
\(507\) −6.72405 + 6.72405i −0.298626 + 0.298626i
\(508\) 11.2598 32.6092i 0.499572 1.44680i
\(509\) 18.6045 + 18.6045i 0.824631 + 0.824631i 0.986768 0.162138i \(-0.0518388\pi\)
−0.162138 + 0.986768i \(0.551839\pi\)
\(510\) 5.40996 + 7.59143i 0.239557 + 0.336154i
\(511\) −6.60224 −0.292066
\(512\) 14.7622 17.1487i 0.652401 0.757874i
\(513\) 39.7307 1.75415
\(514\) 14.4396 + 20.2621i 0.636904 + 0.893724i
\(515\) −7.89974 7.89974i −0.348104 0.348104i
\(516\) −1.98926 + 5.76103i −0.0875721 + 0.253615i
\(517\) 2.05864 2.05864i 0.0905391 0.0905391i
\(518\) −0.413929 + 2.46699i −0.0181870 + 0.108393i
\(519\) 7.85950i 0.344994i
\(520\) −6.50805 + 1.91859i −0.285397 + 0.0841359i
\(521\) 19.2499i 0.843355i −0.906746 0.421677i \(-0.861441\pi\)
0.906746 0.421677i \(-0.138559\pi\)
\(522\) −9.83979 1.65099i −0.430676 0.0722619i
\(523\) −15.5301 + 15.5301i −0.679084 + 0.679084i −0.959793 0.280709i \(-0.909430\pi\)
0.280709 + 0.959793i \(0.409430\pi\)
\(524\) 17.1918 8.36660i 0.751027 0.365497i
\(525\) −0.421499 0.421499i −0.0183957 0.0183957i
\(526\) −23.9044 + 17.0352i −1.04228 + 0.742771i
\(527\) 4.55783 0.198542
\(528\) 4.13123 + 3.23919i 0.179789 + 0.140968i
\(529\) 8.97839 0.390365
\(530\) −13.3293 + 9.49904i −0.578990 + 0.412612i
\(531\) 5.34217 + 5.34217i 0.231831 + 0.231831i
\(532\) 2.81316 + 5.78052i 0.121966 + 0.250617i
\(533\) −10.0554 + 10.0554i −0.435547 + 0.435547i
\(534\) −29.8392 5.00663i −1.29127 0.216658i
\(535\) 13.2588i 0.573230i
\(536\) −40.4040 22.0055i −1.74519 0.950492i
\(537\) 0.653713i 0.0282098i
\(538\) −4.75385 + 28.3326i −0.204953 + 1.22151i
\(539\) 4.80388 4.80388i 0.206918 0.206918i
\(540\) 10.6130 + 3.66463i 0.456712 + 0.157700i
\(541\) 14.1657 + 14.1657i 0.609031 + 0.609031i 0.942693 0.333662i \(-0.108284\pi\)
−0.333662 + 0.942693i \(0.608284\pi\)
\(542\) 11.2165 + 15.7393i 0.481790 + 0.676062i
\(543\) 19.2243 0.824995
\(544\) 1.30062 28.3813i 0.0557637 1.21684i
\(545\) 3.52539 0.151011
\(546\) −1.17360 1.64683i −0.0502254 0.0704779i
\(547\) 5.21958 + 5.21958i 0.223173 + 0.223173i 0.809833 0.586660i \(-0.199558\pi\)
−0.586660 + 0.809833i \(0.699558\pi\)
\(548\) 22.5303 + 7.77959i 0.962445 + 0.332327i
\(549\) −3.52446 + 3.52446i −0.150420 + 0.150420i
\(550\) −0.234015 + 1.39472i −0.00997845 + 0.0594710i
\(551\) 39.0827i 1.66498i
\(552\) 6.64841 12.2071i 0.282975 0.519567i
\(553\) 2.86123i 0.121672i
\(554\) −5.80959 0.974775i −0.246826 0.0414142i
\(555\) −3.61414 + 3.61414i −0.153412 + 0.153412i
\(556\) 0.375321 + 0.771214i 0.0159172 + 0.0327067i
\(557\) 21.7128 + 21.7128i 0.920000 + 0.920000i 0.997029 0.0770293i \(-0.0245435\pi\)
−0.0770293 + 0.997029i \(0.524543\pi\)
\(558\) 1.33522 0.951532i 0.0565244 0.0402816i
\(559\) −5.57002 −0.235587
\(560\) 0.218289 + 1.80359i 0.00922438 + 0.0762158i
\(561\) 6.59156 0.278296
\(562\) 3.94329 2.81015i 0.166337 0.118539i
\(563\) 12.7314 + 12.7314i 0.536565 + 0.536565i 0.922518 0.385953i \(-0.126127\pi\)
−0.385953 + 0.922518i \(0.626127\pi\)
\(564\) 6.87139 3.34405i 0.289338 0.140810i
\(565\) −9.23549 + 9.23549i −0.388540 + 0.388540i
\(566\) 5.17439 + 0.868195i 0.217496 + 0.0364930i
\(567\) 1.60570i 0.0674329i
\(568\) −7.22942 24.5228i −0.303340 1.02896i
\(569\) 6.24485i 0.261798i 0.991396 + 0.130899i \(0.0417863\pi\)
−0.991396 + 0.130899i \(0.958214\pi\)
\(570\) −2.17359 + 12.9544i −0.0910415 + 0.542602i
\(571\) −14.8963 + 14.8963i −0.623390 + 0.623390i −0.946397 0.323007i \(-0.895306\pi\)
0.323007 + 0.946397i \(0.395306\pi\)
\(572\) −1.56590 + 4.53495i −0.0654734 + 0.189616i
\(573\) −21.4700 21.4700i −0.896920 0.896920i
\(574\) 2.20981 + 3.10087i 0.0922355 + 0.129428i
\(575\) 3.74454 0.156158
\(576\) −5.54411 8.58585i −0.231005 0.357744i
\(577\) −34.3799 −1.43125 −0.715627 0.698483i \(-0.753859\pi\)
−0.715627 + 0.698483i \(0.753859\pi\)
\(578\) −6.75036 9.47232i −0.280778 0.393997i
\(579\) 9.65339 + 9.65339i 0.401181 + 0.401181i
\(580\) 3.60486 10.4399i 0.149684 0.433495i
\(581\) −2.99060 + 2.99060i −0.124071 + 0.124071i
\(582\) 0.156974 0.935558i 0.00650680 0.0387801i
\(583\) 11.5737i 0.479335i
\(584\) 11.6261 + 39.4369i 0.481093 + 1.63191i
\(585\) 3.06461i 0.126706i
\(586\) −35.0723 5.88468i −1.44882 0.243094i
\(587\) 27.5457 27.5457i 1.13693 1.13693i 0.147934 0.988997i \(-0.452738\pi\)
0.988997 0.147934i \(-0.0472624\pi\)
\(588\) 16.0345 7.80340i 0.661252 0.321807i
\(589\) 4.54137 + 4.54137i 0.187124 + 0.187124i
\(590\) −6.81075 + 4.85362i −0.280394 + 0.199821i
\(591\) 8.84758 0.363941
\(592\) 15.4649 1.87171i 0.635603 0.0769269i
\(593\) −35.7603 −1.46850 −0.734250 0.678879i \(-0.762466\pi\)
−0.734250 + 0.678879i \(0.762466\pi\)
\(594\) 6.46552 4.60760i 0.265284 0.189052i
\(595\) 1.61300 + 1.61300i 0.0661266 + 0.0661266i
\(596\) −19.0421 39.1278i −0.779993 1.60274i
\(597\) −11.3445 + 11.3445i −0.464299 + 0.464299i
\(598\) 12.5282 + 2.10206i 0.512315 + 0.0859598i
\(599\) 3.63349i 0.148460i 0.997241 + 0.0742302i \(0.0236499\pi\)
−0.997241 + 0.0742302i \(0.976350\pi\)
\(600\) −1.77549 + 3.25996i −0.0724842 + 0.133087i
\(601\) 24.0797i 0.982232i 0.871094 + 0.491116i \(0.163411\pi\)
−0.871094 + 0.491116i \(0.836589\pi\)
\(602\) −0.246795 + 1.47088i −0.0100586 + 0.0599486i
\(603\) −14.6942 + 14.6942i −0.598393 + 0.598393i
\(604\) 34.9106 + 12.0544i 1.42049 + 0.490488i
\(605\) 0.707107 + 0.707107i 0.0287480 + 0.0287480i
\(606\) −11.5313 16.1810i −0.468426 0.657310i
\(607\) −35.7604 −1.45147 −0.725735 0.687974i \(-0.758500\pi\)
−0.725735 + 0.687974i \(0.758500\pi\)
\(608\) 29.5748 26.9829i 1.19941 1.09430i
\(609\) 3.29184 0.133392
\(610\) −3.20215 4.49335i −0.129651 0.181930i
\(611\) 4.93837 + 4.93837i 0.199785 + 0.199785i
\(612\) −12.1299 4.18839i −0.490321 0.169305i
\(613\) 11.0611 11.0611i 0.446755 0.446755i −0.447519 0.894274i \(-0.647692\pi\)
0.894274 + 0.447519i \(0.147692\pi\)
\(614\) −3.37600 + 20.1207i −0.136244 + 0.812006i
\(615\) 7.78013i 0.313725i
\(616\) 1.12817 + 0.614441i 0.0454552 + 0.0247565i
\(617\) 10.3895i 0.418265i −0.977887 0.209133i \(-0.932936\pi\)
0.977887 0.209133i \(-0.0670640\pi\)
\(618\) −20.4498 3.43121i −0.822612 0.138024i
\(619\) −11.0692 + 11.0692i −0.444907 + 0.444907i −0.893657 0.448750i \(-0.851869\pi\)
0.448750 + 0.893657i \(0.351869\pi\)
\(620\) 0.794231 + 1.63199i 0.0318971 + 0.0655424i
\(621\) −14.8646 14.8646i −0.596495 0.596495i
\(622\) 18.6740 13.3078i 0.748757 0.533595i
\(623\) −7.40394 −0.296632
\(624\) −7.77032 + 9.91019i −0.311062 + 0.396725i
\(625\) −1.00000 −0.0400000
\(626\) −19.7053 + 14.0428i −0.787583 + 0.561264i
\(627\) 6.56776 + 6.56776i 0.262291 + 0.262291i
\(628\) −15.8022 + 7.69033i −0.630575 + 0.306878i
\(629\) 13.8307 13.8307i 0.551465 0.551465i
\(630\) 0.809274 + 0.135786i 0.0322422 + 0.00540983i
\(631\) 36.7114i 1.46146i 0.682667 + 0.730729i \(0.260820\pi\)
−0.682667 + 0.730729i \(0.739180\pi\)
\(632\) 17.0909 5.03845i 0.679839 0.200419i
\(633\) 0.993506i 0.0394883i
\(634\) 3.93241 23.4369i 0.156176 0.930798i
\(635\) 12.1970 12.1970i 0.484024 0.484024i
\(636\) −9.91539 + 28.7157i −0.393171 + 1.13865i
\(637\) 11.5238 + 11.5238i 0.456588 + 0.456588i
\(638\) −4.53245 6.36007i −0.179441 0.251798i
\(639\) −11.5477 −0.456819
\(640\) 10.3890 4.47992i 0.410659 0.177084i
\(641\) 41.1262 1.62439 0.812194 0.583387i \(-0.198273\pi\)
0.812194 + 0.583387i \(0.198273\pi\)
\(642\) −14.2819 20.0408i −0.563663 0.790949i
\(643\) 13.3711 + 13.3711i 0.527305 + 0.527305i 0.919768 0.392463i \(-0.128377\pi\)
−0.392463 + 0.919768i \(0.628377\pi\)
\(644\) 1.11019 3.21519i 0.0437475 0.126696i
\(645\) −2.15484 + 2.15484i −0.0848467 + 0.0848467i
\(646\) 8.31792 49.5743i 0.327264 1.95047i
\(647\) 7.67070i 0.301566i −0.988567 0.150783i \(-0.951820\pi\)
0.988567 0.150783i \(-0.0481795\pi\)
\(648\) 9.59124 2.82753i 0.376780 0.111076i
\(649\) 5.91371i 0.232134i
\(650\) −3.34571 0.561367i −0.131230 0.0220186i
\(651\) −0.382509 + 0.382509i −0.0149917 + 0.0149917i
\(652\) 6.49536 3.16105i 0.254378 0.123796i
\(653\) −29.7807 29.7807i −1.16541 1.16541i −0.983273 0.182136i \(-0.941699\pi\)
−0.182136 0.983273i \(-0.558301\pi\)
\(654\) 5.32865 3.79742i 0.208367 0.148491i
\(655\) 9.55978 0.373532
\(656\) 14.6310 18.6602i 0.571243 0.728558i
\(657\) 18.5707 0.724510
\(658\) 1.52289 1.08527i 0.0593683 0.0423083i
\(659\) −32.5013 32.5013i −1.26607 1.26607i −0.948100 0.317972i \(-0.896998\pi\)
−0.317972 0.948100i \(-0.603002\pi\)
\(660\) 1.14862 + 2.36020i 0.0447100 + 0.0918706i
\(661\) 7.27185 7.27185i 0.282842 0.282842i −0.551399 0.834241i \(-0.685906\pi\)
0.834241 + 0.551399i \(0.185906\pi\)
\(662\) −16.2111 2.72002i −0.630063 0.105716i
\(663\) 15.8121i 0.614093i
\(664\) 23.1299 + 12.5974i 0.897613 + 0.488873i
\(665\) 3.21435i 0.124647i
\(666\) 1.16429 6.93911i 0.0451154 0.268885i
\(667\) −14.6221 + 14.6221i −0.566172 + 0.566172i
\(668\) −7.67277 2.64937i −0.296868 0.102507i
\(669\) −17.1602 17.1602i −0.663452 0.663452i
\(670\) −13.3504 18.7336i −0.515769 0.723744i
\(671\) −3.90153 −0.150617
\(672\) 2.27271 + 2.49101i 0.0876716 + 0.0960929i
\(673\) −18.2470 −0.703371 −0.351686 0.936118i \(-0.614391\pi\)
−0.351686 + 0.936118i \(0.614391\pi\)
\(674\) −10.2153 14.3345i −0.393481 0.552144i
\(675\) 3.96966 + 3.96966i 0.152792 + 0.152792i
\(676\) 13.6975 + 4.72968i 0.526827 + 0.181911i
\(677\) 20.8326 20.8326i 0.800662 0.800662i −0.182537 0.983199i \(-0.558431\pi\)
0.983199 + 0.182537i \(0.0584308\pi\)
\(678\) −4.01139 + 23.9076i −0.154057 + 0.918167i
\(679\) 0.232138i 0.00890863i
\(680\) 6.79449 12.4753i 0.260557 0.478405i
\(681\) 19.1140i 0.732448i
\(682\) 1.26570 + 0.212368i 0.0484662 + 0.00813201i
\(683\) 16.9267 16.9267i 0.647683 0.647683i −0.304749 0.952433i \(-0.598573\pi\)
0.952433 + 0.304749i \(0.0985726\pi\)
\(684\) −7.91281 16.2593i −0.302554 0.621691i
\(685\) 8.42715 + 8.42715i 0.321985 + 0.321985i
\(686\) 7.21527 5.14190i 0.275480 0.196319i
\(687\) −23.8270 −0.909058
\(688\) 9.22055 1.11596i 0.351530 0.0425456i
\(689\) −27.7636 −1.05771
\(690\) 5.65990 4.03348i 0.215469 0.153552i
\(691\) 0.172548 + 0.172548i 0.00656404 + 0.00656404i 0.710381 0.703817i \(-0.248523\pi\)
−0.703817 + 0.710381i \(0.748523\pi\)
\(692\) 10.7694 5.24108i 0.409392 0.199236i
\(693\) 0.410293 0.410293i 0.0155857 0.0155857i
\(694\) 22.5194 + 3.77846i 0.854824 + 0.143428i
\(695\) 0.428846i 0.0162671i
\(696\) −5.79673 19.6630i −0.219725 0.745326i
\(697\) 29.7732i 1.12774i
\(698\) −6.54426 + 39.0034i −0.247704 + 1.47630i
\(699\) −1.28126 + 1.28126i −0.0484618 + 0.0484618i
\(700\) −0.296481 + 0.858632i −0.0112059 + 0.0324533i
\(701\) −15.5559 15.5559i −0.587538 0.587538i 0.349426 0.936964i \(-0.386377\pi\)
−0.936964 + 0.349426i \(0.886377\pi\)
\(702\) 11.0529 + 15.5098i 0.417165 + 0.585379i
\(703\) 27.5614 1.03950
\(704\) 1.68358 7.82084i 0.0634524 0.294759i
\(705\) 3.82095 0.143905
\(706\) 15.9101 + 22.3255i 0.598784 + 0.840232i
\(707\) −3.43809 3.43809i −0.129303 0.129303i
\(708\) −5.06636 + 14.6726i −0.190406 + 0.551429i
\(709\) 22.4989 22.4989i 0.844963 0.844963i −0.144536 0.989500i \(-0.546169\pi\)
0.989500 + 0.144536i \(0.0461690\pi\)
\(710\) 2.11528 12.6069i 0.0793849 0.473129i
\(711\) 8.04802i 0.301824i
\(712\) 13.0379 + 44.2257i 0.488615 + 1.65743i
\(713\) 3.39816i 0.127262i
\(714\) 4.17553 + 0.700599i 0.156265 + 0.0262193i
\(715\) −1.69624 + 1.69624i −0.0634358 + 0.0634358i
\(716\) 0.895746 0.435926i 0.0334756 0.0162913i
\(717\) 19.7421 + 19.7421i 0.737284 + 0.737284i
\(718\) −3.36969 + 2.40138i −0.125756 + 0.0896188i
\(719\) 34.1219 1.27253 0.636265 0.771470i \(-0.280478\pi\)
0.636265 + 0.771470i \(0.280478\pi\)
\(720\) −0.613998 5.07312i −0.0228824 0.189064i
\(721\) −5.07416 −0.188972
\(722\) 35.8011 25.5133i 1.33238 0.949507i
\(723\) −15.3256 15.3256i −0.569966 0.569966i
\(724\) −12.8197 26.3420i −0.476440 0.978993i
\(725\) 3.90492 3.90492i 0.145025 0.145025i
\(726\) 1.83047 + 0.307128i 0.0679349 + 0.0113986i
\(727\) 12.8599i 0.476949i 0.971149 + 0.238474i \(0.0766473\pi\)
−0.971149 + 0.238474i \(0.923353\pi\)
\(728\) −1.47395 + 2.70630i −0.0546282 + 0.100302i
\(729\) 26.6202i 0.985933i
\(730\) −3.40173 + 20.2741i −0.125904 + 0.750377i
\(731\) 8.24618 8.24618i 0.304996 0.304996i
\(732\) −9.68013 3.34250i −0.357788 0.123542i
\(733\) −14.0410 14.0410i −0.518618 0.518618i 0.398535 0.917153i \(-0.369519\pi\)
−0.917153 + 0.398535i \(0.869519\pi\)
\(734\) −19.2833 27.0590i −0.711761 0.998765i
\(735\) 8.91625 0.328881
\(736\) −21.1601 0.969698i −0.779973 0.0357435i
\(737\) −16.2662 −0.599175
\(738\) −6.21570 8.72206i −0.228803 0.321064i
\(739\) −0.778891 0.778891i −0.0286520 0.0286520i 0.692636 0.721288i \(-0.256449\pi\)
−0.721288 + 0.692636i \(0.756449\pi\)
\(740\) 7.36233 + 2.54218i 0.270645 + 0.0934523i
\(741\) −15.7550 + 15.7550i −0.578776 + 0.578776i
\(742\) −1.23014 + 7.33157i −0.0451599 + 0.269150i
\(743\) 19.6788i 0.721944i 0.932577 + 0.360972i \(0.117555\pi\)
−0.932577 + 0.360972i \(0.882445\pi\)
\(744\) 2.95841 + 1.61125i 0.108460 + 0.0590715i
\(745\) 21.7577i 0.797140i
\(746\) −32.4584 5.44609i −1.18839 0.199396i
\(747\) 8.41189 8.41189i 0.307775 0.307775i
\(748\) −4.39556 9.03205i −0.160718 0.330244i
\(749\) −4.25821 4.25821i −0.155592 0.155592i
\(750\) −1.51151 + 1.07716i −0.0551924 + 0.0393324i
\(751\) −31.0413 −1.13271 −0.566357 0.824160i \(-0.691648\pi\)
−0.566357 + 0.824160i \(0.691648\pi\)
\(752\) −9.16433 7.18551i −0.334189 0.262029i
\(753\) 3.37774 0.123092
\(754\) 15.2568 10.8726i 0.555621 0.395958i
\(755\) 13.0578 + 13.0578i 0.475223 + 0.475223i
\(756\) 4.58541 2.23155i 0.166770 0.0811607i
\(757\) 10.3912 10.3912i 0.377675 0.377675i −0.492588 0.870263i \(-0.663949\pi\)
0.870263 + 0.492588i \(0.163949\pi\)
\(758\) −25.8386 4.33539i −0.938501 0.157468i
\(759\) 4.91444i 0.178383i
\(760\) 19.2002 5.66028i 0.696464 0.205320i
\(761\) 20.2454i 0.733897i 0.930241 + 0.366948i \(0.119597\pi\)
−0.930241 + 0.366948i \(0.880403\pi\)
\(762\) 5.29772 31.5741i 0.191916 1.14381i
\(763\) 1.13221 1.13221i 0.0409889 0.0409889i
\(764\) −15.1019 + 43.7362i −0.546368 + 1.58232i
\(765\) −4.53702 4.53702i −0.164036 0.164036i
\(766\) 11.3255 + 15.8924i 0.409209 + 0.574214i
\(767\) −14.1861 −0.512230
\(768\) 10.8774 17.9620i 0.392504 0.648148i
\(769\) −52.8361 −1.90532 −0.952659 0.304040i \(-0.901664\pi\)
−0.952659 + 0.304040i \(0.901664\pi\)
\(770\) 0.372771 + 0.523084i 0.0134337 + 0.0188506i
\(771\) 16.3272 + 16.3272i 0.588008 + 0.588008i
\(772\) 6.79016 19.6648i 0.244383 0.707753i
\(773\) −17.9112 + 17.9112i −0.644221 + 0.644221i −0.951590 0.307370i \(-0.900551\pi\)
0.307370 + 0.951590i \(0.400551\pi\)
\(774\) 0.694179 4.13726i 0.0249518 0.148711i
\(775\) 0.907497i 0.0325983i
\(776\) −1.38662 + 0.408780i −0.0497768 + 0.0146744i
\(777\) 2.32144i 0.0832811i
\(778\) −47.3955 7.95235i −1.69921 0.285106i
\(779\) 29.6656 29.6656i 1.06288 1.06288i
\(780\) −5.66175 + 2.75536i −0.202723 + 0.0986578i
\(781\) −6.39157 6.39157i −0.228708 0.228708i
\(782\) −21.6594 + 15.4354i −0.774540 + 0.551969i
\(783\) −31.0024 −1.10794
\(784\) −21.3851 16.7675i −0.763754 0.598840i
\(785\) −8.78706 −0.313624
\(786\) 14.4497 10.2974i 0.515403 0.367297i
\(787\) −8.11455 8.11455i −0.289252 0.289252i 0.547532 0.836785i \(-0.315567\pi\)
−0.836785 + 0.547532i \(0.815567\pi\)
\(788\) −5.89998 12.1233i −0.210178 0.431876i
\(789\) −19.2621 + 19.2621i −0.685747 + 0.685747i
\(790\) 8.78623 + 1.47422i 0.312600 + 0.0524502i
\(791\) 5.93214i 0.210923i
\(792\) −3.17329 1.72829i −0.112758 0.0614121i
\(793\) 9.35918i 0.332354i
\(794\) −0.717091 + 4.27382i −0.0254486 + 0.151672i
\(795\) −10.7407 + 10.7407i −0.380935 + 0.380935i
\(796\) 23.1097 + 7.97967i 0.819103 + 0.282832i
\(797\) −12.0758 12.0758i −0.427746 0.427746i 0.460114 0.887860i \(-0.347808\pi\)
−0.887860 + 0.460114i \(0.847808\pi\)
\(798\) 3.46238 + 4.85852i 0.122567 + 0.171990i
\(799\) −14.6221 −0.517292
\(800\) 5.65092 + 0.258963i 0.199790 + 0.00915572i
\(801\) 20.8257 0.735838
\(802\) 0.634790 + 0.890757i 0.0224152 + 0.0314537i
\(803\) 10.2787 + 10.2787i 0.362729 + 0.362729i
\(804\) −40.3583 13.9355i −1.42333 0.491468i
\(805\) 1.20260 1.20260i 0.0423860 0.0423860i
\(806\) −0.509439 + 3.03622i −0.0179442 + 0.106946i
\(807\) 26.6610i 0.938510i
\(808\) −14.4824 + 26.5909i −0.509488 + 0.935465i
\(809\) 9.68982i 0.340676i −0.985386 0.170338i \(-0.945514\pi\)
0.985386 0.170338i \(-0.0544859\pi\)
\(810\) 4.93075 + 0.827316i 0.173249 + 0.0290689i
\(811\) −30.7246 + 30.7246i −1.07889 + 1.07889i −0.0822783 + 0.996609i \(0.526220\pi\)
−0.996609 + 0.0822783i \(0.973780\pi\)
\(812\) −2.19515 4.51063i −0.0770348 0.158292i
\(813\) 12.6827 + 12.6827i 0.444802 + 0.444802i
\(814\) 4.48518 3.19632i 0.157205 0.112031i
\(815\) 3.61186 0.126518
\(816\) −3.16798 26.1752i −0.110902 0.916317i
\(817\) 16.4328 0.574911
\(818\) 36.3810 25.9266i 1.27203 0.906501i
\(819\) 0.984230 + 0.984230i 0.0343918 + 0.0343918i
\(820\) 10.6607 5.18816i 0.372287 0.181178i
\(821\) −26.4623 + 26.4623i −0.923542 + 0.923542i −0.997278 0.0737359i \(-0.976508\pi\)
0.0737359 + 0.997278i \(0.476508\pi\)
\(822\) 21.8151 + 3.66029i 0.760889 + 0.127667i
\(823\) 6.48749i 0.226140i −0.993587 0.113070i \(-0.963932\pi\)
0.993587 0.113070i \(-0.0360684\pi\)
\(824\) 8.93529 + 30.3093i 0.311276 + 1.05588i
\(825\) 1.31243i 0.0456929i
\(826\) −0.628552 + 3.74613i −0.0218701 + 0.130345i
\(827\) −14.3758 + 14.3758i −0.499897 + 0.499897i −0.911406 0.411509i \(-0.865002\pi\)
0.411509 + 0.911406i \(0.365002\pi\)
\(828\) −3.12272 + 9.04362i −0.108522 + 0.314287i
\(829\) −22.1397 22.1397i −0.768943 0.768943i 0.208977 0.977921i \(-0.432987\pi\)
−0.977921 + 0.208977i \(0.932987\pi\)
\(830\) 7.64261 + 10.7244i 0.265279 + 0.372248i
\(831\) −5.46682 −0.189642
\(832\) 18.7610 + 4.03866i 0.650420 + 0.140015i
\(833\) −34.1209 −1.18222
\(834\) 0.461937 + 0.648204i 0.0159956 + 0.0224455i
\(835\) −2.86990 2.86990i −0.0993170 0.0993170i
\(836\) 4.61974 13.3791i 0.159777 0.462727i
\(837\) 3.60246 3.60246i 0.124519 0.124519i
\(838\) 6.27588 37.4038i 0.216797 1.29209i
\(839\) 25.6088i 0.884114i 0.896987 + 0.442057i \(0.145751\pi\)
−0.896987 + 0.442057i \(0.854249\pi\)
\(840\) 0.476752 + 1.61719i 0.0164495 + 0.0557983i
\(841\) 1.49681i 0.0516140i
\(842\) 14.2571 + 2.39216i 0.491334 + 0.0824394i
\(843\) 3.17749 3.17749i 0.109438 0.109438i
\(844\) 1.36134 0.662516i 0.0468594 0.0228047i
\(845\) 5.12337 + 5.12337i 0.176249 + 0.176249i
\(846\) −4.28355 + 3.05263i −0.147271 + 0.104952i
\(847\) 0.454189 0.0156061
\(848\) 45.9596 5.56248i 1.57826 0.191016i
\(849\) 4.86909 0.167107
\(850\) 5.78426 4.12210i 0.198399 0.141387i
\(851\) −10.3117 10.3117i −0.353479 0.353479i
\(852\) −10.3824 21.3339i −0.355696 0.730888i
\(853\) 8.00247 8.00247i 0.273999 0.273999i −0.556709 0.830708i \(-0.687936\pi\)
0.830708 + 0.556709i \(0.187936\pi\)
\(854\) −2.47149 0.414683i −0.0845725 0.0141902i
\(855\) 9.04127i 0.309205i
\(856\) −17.9370 + 32.9339i −0.613073 + 1.12566i
\(857\) 27.8203i 0.950324i 0.879898 + 0.475162i \(0.157611\pi\)
−0.879898 + 0.475162i \(0.842389\pi\)
\(858\) −0.736753 + 4.39100i −0.0251523 + 0.149906i
\(859\) 0.841849 0.841849i 0.0287235 0.0287235i −0.692599 0.721323i \(-0.743534\pi\)
0.721323 + 0.692599i \(0.243534\pi\)
\(860\) 4.38960 + 1.51571i 0.149684 + 0.0516852i
\(861\) 2.49867 + 2.49867i 0.0851544 + 0.0851544i
\(862\) −15.4435 21.6708i −0.526009 0.738112i
\(863\) −32.4604 −1.10497 −0.552483 0.833524i \(-0.686319\pi\)
−0.552483 + 0.833524i \(0.686319\pi\)
\(864\) −21.4043 23.4603i −0.728188 0.798134i
\(865\) 5.98852 0.203616
\(866\) −9.73938 13.6666i −0.330957 0.464410i
\(867\) −7.63276 7.63276i −0.259222 0.259222i
\(868\) 0.779206 + 0.269056i 0.0264480 + 0.00913236i
\(869\) 4.45452 4.45452i 0.151109 0.151109i
\(870\) 1.69608 10.1085i 0.0575026 0.342712i
\(871\) 39.0202i 1.32215i
\(872\) −8.75678 4.76926i −0.296542 0.161507i
\(873\) 0.652953i 0.0220991i
\(874\) −36.9609 6.20155i −1.25022 0.209771i
\(875\) −0.321160 + 0.321160i −0.0108572 + 0.0108572i
\(876\) 16.6967 + 34.3086i 0.564130 + 1.15918i
\(877\) 33.9328 + 33.9328i 1.14583 + 1.14583i 0.987365 + 0.158464i \(0.0506542\pi\)
0.158464 + 0.987365i \(0.449346\pi\)
\(878\) −2.69229 + 1.91863i −0.0908602 + 0.0647507i
\(879\) −33.0030 −1.11316
\(880\) 2.46809 3.14778i 0.0831994 0.106112i
\(881\) 57.7416 1.94536 0.972682 0.232143i \(-0.0745737\pi\)
0.972682 + 0.232143i \(0.0745737\pi\)
\(882\) −9.99573 + 7.12337i −0.336574 + 0.239856i
\(883\) −23.0370 23.0370i −0.775257 0.775257i 0.203763 0.979020i \(-0.434683\pi\)
−0.979020 + 0.203763i \(0.934683\pi\)
\(884\) 21.6665 10.5443i 0.728723 0.354642i
\(885\) −5.48808 + 5.48808i −0.184480 + 0.184480i
\(886\) 42.8753 + 7.19393i 1.44043 + 0.241685i
\(887\) 29.3168i 0.984362i −0.870493 0.492181i \(-0.836200\pi\)
0.870493 0.492181i \(-0.163800\pi\)
\(888\) 13.8666 4.08791i 0.465331 0.137181i
\(889\) 7.83440i 0.262757i
\(890\) −3.81479 + 22.7359i −0.127872 + 0.762109i
\(891\) 2.49984 2.49984i 0.0837477 0.0837477i
\(892\) −12.0704 + 34.9569i −0.404148 + 1.17044i
\(893\) −14.5693 14.5693i −0.487543 0.487543i
\(894\) −23.4366 32.8869i −0.783836 1.09990i
\(895\) 0.498094 0.0166495
\(896\) 1.89775 4.77529i 0.0633993 0.159531i
\(897\) 11.7890 0.393623
\(898\) −17.4859 24.5368i −0.583512 0.818802i
\(899\) −3.54370 3.54370i −0.118189 0.118189i
\(900\) 0.833937 2.41514i 0.0277979 0.0805048i
\(901\) 41.1029 41.1029i 1.36933 1.36933i
\(902\) 1.38726 8.26795i 0.0461905 0.275293i
\(903\) 1.38410i 0.0460598i
\(904\) 35.4343 10.4461i 1.17853 0.347434i
\(905\) 14.6479i 0.486913i
\(906\) 33.8024 + 5.67161i 1.12301 + 0.188427i
\(907\) −27.1029 + 27.1029i −0.899936 + 0.899936i −0.995430 0.0954936i \(-0.969557\pi\)
0.0954936 + 0.995430i \(0.469557\pi\)
\(908\) 26.1908 12.7461i 0.869171 0.422993i
\(909\) 9.67061 + 9.67061i 0.320754 + 0.320754i
\(910\) −1.25480 + 0.894220i −0.0415961 + 0.0296431i
\(911\) 28.7942 0.953994 0.476997 0.878905i \(-0.341725\pi\)
0.476997 + 0.878905i \(0.341725\pi\)
\(912\) 22.9242 29.2373i 0.759095 0.968142i
\(913\) 9.31185 0.308177
\(914\) −12.9056 + 9.19705i −0.426879 + 0.304212i
\(915\) −3.62073 3.62073i −0.119698 0.119698i
\(916\) 15.8890 + 32.6488i 0.524987 + 1.07875i
\(917\) 3.07022 3.07022i 0.101388 0.101388i
\(918\) −39.3250 6.59822i −1.29792 0.217774i
\(919\) 21.1685i 0.698285i 0.937070 + 0.349142i \(0.113527\pi\)
−0.937070 + 0.349142i \(0.886473\pi\)
\(920\) −9.30114 5.06574i −0.306649 0.167012i
\(921\) 18.9336i 0.623883i
\(922\) −2.40133 + 14.3118i −0.0790836 + 0.471333i
\(923\) 15.3324 15.3324i 0.504671 0.504671i
\(924\) 1.12689 + 0.389110i 0.0370720 + 0.0128008i
\(925\) 2.75378 + 2.75378i 0.0905438 + 0.0905438i
\(926\) −10.2729 14.4153i −0.337589 0.473715i
\(927\) 14.2725 0.468771
\(928\) −23.0776 + 21.0552i −0.757561 + 0.691170i
\(929\) −11.1111 −0.364545 −0.182272 0.983248i \(-0.558345\pi\)
−0.182272 + 0.983248i \(0.558345\pi\)
\(930\) 0.977521 + 1.37169i 0.0320542 + 0.0449794i
\(931\) −33.9977 33.9977i −1.11423 1.11423i
\(932\) 2.61005 + 0.901236i 0.0854949 + 0.0295210i
\(933\) 15.0474 15.0474i 0.492630 0.492630i
\(934\) 0.876351 5.22300i 0.0286751 0.170902i
\(935\) 5.02242i 0.164251i
\(936\) 4.14590 7.61223i 0.135513 0.248814i
\(937\) 15.3123i 0.500230i 0.968216 + 0.250115i \(0.0804684\pi\)
−0.968216 + 0.250115i \(0.919532\pi\)
\(938\) −10.3041 1.72889i −0.336441 0.0564504i
\(939\) −15.8785 + 15.8785i −0.518175 + 0.518175i
\(940\) −2.54799 5.23563i −0.0831062 0.170768i
\(941\) −25.6305 25.6305i −0.835530 0.835530i 0.152737 0.988267i \(-0.451191\pi\)
−0.988267 + 0.152737i \(0.951191\pi\)
\(942\) −13.2817 + 9.46509i −0.432741 + 0.308389i
\(943\) −22.1978 −0.722861
\(944\) 23.4835 2.84220i 0.764322 0.0925058i
\(945\) 2.54980 0.0829449
\(946\) 2.67417 1.90572i 0.0869448 0.0619605i
\(947\) 41.5553 + 41.5553i 1.35037 + 1.35037i 0.885250 + 0.465115i \(0.153987\pi\)
0.465115 + 0.885250i \(0.346013\pi\)
\(948\) 14.8684 7.23590i 0.482904 0.235011i
\(949\) −24.6571 + 24.6571i −0.800403 + 0.800403i
\(950\) 9.87059 + 1.65616i 0.320244 + 0.0537328i
\(951\) 22.0541i 0.715153i
\(952\) −1.82444 6.18868i −0.0591306 0.200576i
\(953\) 26.0458i 0.843705i −0.906664 0.421853i \(-0.861380\pi\)
0.906664 0.421853i \(-0.138620\pi\)
\(954\) 3.46012 20.6221i 0.112025 0.667665i
\(955\) −16.3590 + 16.3590i −0.529364 + 0.529364i
\(956\) 13.8866 40.2165i 0.449124 1.30070i
\(957\) −5.12492 5.12492i −0.165665 0.165665i
\(958\) 22.4398 + 31.4882i 0.724997 + 1.01734i
\(959\) 5.41293 0.174793
\(960\) 8.82036 5.69554i 0.284676 0.183823i
\(961\) −30.1764 −0.973434
\(962\) 7.66748 + 10.7592i 0.247210 + 0.346892i
\(963\) 11.9774 + 11.9774i 0.385967 + 0.385967i
\(964\) −10.7800 + 31.2197i −0.347200 + 1.00552i
\(965\) 7.35537 7.35537i 0.236778 0.236778i
\(966\) 0.522343 3.11313i 0.0168061 0.100163i
\(967\) 30.0505i 0.966358i 0.875522 + 0.483179i \(0.160518\pi\)
−0.875522 + 0.483179i \(0.839482\pi\)
\(968\) −0.799799 2.71299i −0.0257065 0.0871988i
\(969\) 46.6493i 1.49859i
\(970\) −0.712845 0.119606i −0.0228881 0.00384032i
\(971\) −25.8874 + 25.8874i −0.830768 + 0.830768i −0.987622 0.156854i \(-0.949865\pi\)
0.156854 + 0.987622i \(0.449865\pi\)
\(972\) −21.9435 + 10.6791i −0.703837 + 0.342531i
\(973\) 0.137728 + 0.137728i 0.00441537 + 0.00441537i
\(974\) −5.12131 + 3.64966i −0.164097 + 0.116943i
\(975\) −3.14831 −0.100827
\(976\) 1.87512 + 15.4931i 0.0600213 + 0.495921i
\(977\) −55.1436 −1.76420 −0.882101 0.471061i \(-0.843871\pi\)
−0.882101 + 0.471061i \(0.843871\pi\)
\(978\) 5.45935 3.89055i 0.174571 0.124406i
\(979\) 11.5269 + 11.5269i 0.368400 + 0.368400i
\(980\) −5.94577 12.2174i −0.189931 0.390272i
\(981\) −3.18467 + 3.18467i −0.101679 + 0.101679i
\(982\) 24.7198 + 4.14766i 0.788839 + 0.132357i
\(983\) 39.1650i 1.24917i 0.780957 + 0.624585i \(0.214732\pi\)
−0.780957 + 0.624585i \(0.785268\pi\)
\(984\) 10.5252 19.3252i 0.335531 0.616065i
\(985\) 6.74139i 0.214798i
\(986\) −6.49060 + 38.6836i −0.206703 + 1.23194i
\(987\) 1.22714 1.22714i 0.0390602 0.0390602i
\(988\) 32.0944 + 11.0820i 1.02106 + 0.352567i
\(989\) −6.14806 6.14806i −0.195497 0.195497i
\(990\) −1.04852 1.47132i −0.0333243 0.0467617i
\(991\) −32.1343 −1.02078 −0.510390 0.859943i \(-0.670499\pi\)
−0.510390 + 0.859943i \(0.670499\pi\)
\(992\) 0.235008 5.12820i 0.00746151 0.162820i
\(993\) −15.2547 −0.484092
\(994\) −3.36949 4.72818i −0.106874 0.149969i
\(995\) 8.64389 + 8.64389i 0.274030 + 0.274030i
\(996\) 23.1037 + 7.97760i 0.732069 + 0.252780i
\(997\) 12.0934 12.0934i 0.383001 0.383001i −0.489181 0.872182i \(-0.662704\pi\)
0.872182 + 0.489181i \(0.162704\pi\)
\(998\) −8.02727 + 47.8420i −0.254099 + 1.51441i
\(999\) 21.8632i 0.691721i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 880.2.w.a.221.13 72
16.5 even 4 inner 880.2.w.a.661.13 yes 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
880.2.w.a.221.13 72 1.1 even 1 trivial
880.2.w.a.661.13 yes 72 16.5 even 4 inner