Properties

Label 880.2.s
Level $880$
Weight $2$
Character orbit 880.s
Rep. character $\chi_{880}(67,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $240$
Newform subspaces $2$
Sturm bound $288$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 880.s (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 80 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 2 \)
Sturm bound: \(288\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(880, [\chi])\).

Total New Old
Modular forms 296 240 56
Cusp forms 280 240 40
Eisenstein series 16 0 16

Trace form

\( 240 q + 8 q^{4} + 12 q^{8} - 240 q^{9} + 8 q^{16} - 28 q^{18} - 16 q^{19} - 12 q^{20} + 44 q^{28} - 8 q^{30} + 40 q^{32} + 40 q^{34} - 24 q^{35} - 32 q^{36} - 40 q^{38} - 40 q^{40} - 80 q^{42} - 32 q^{46}+ \cdots - 64 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(880, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
880.2.s.a 880.s 80.j $4$ $7.027$ \(\Q(\zeta_{8})\) None 880.2.s.a \(0\) \(0\) \(-8\) \(4\) $\mathrm{SU}(2)[C_{4}]$ \(q+(\zeta_{8}-\zeta_{8}^{3})q^{2}+(\zeta_{8}+\zeta_{8}^{2}+\zeta_{8}^{3})q^{3}+\cdots\)
880.2.s.b 880.s 80.j $236$ $7.027$ None 880.2.s.b \(0\) \(0\) \(8\) \(-4\) $\mathrm{SU}(2)[C_{4}]$

Decomposition of \(S_{2}^{\mathrm{old}}(880, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(880, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 2}\)