Properties

Label 880.2.cd.b.609.3
Level $880$
Weight $2$
Character 880.609
Analytic conductor $7.027$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [880,2,Mod(49,880)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("880.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(880, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 5, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 880.cd (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.02683537787\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 8 x^{14} + 10 x^{13} - 109 x^{12} + 280 x^{11} - 198 x^{10} - 1168 x^{9} + \cdots + 390625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 110)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 609.3
Root \(-2.23122 + 0.147217i\) of defining polynomial
Character \(\chi\) \(=\) 880.609
Dual form 880.2.cd.b.289.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.53884 + 0.500000i) q^{3} +(-1.43058 + 1.71856i) q^{5} +(3.59321 - 1.16751i) q^{7} +(-0.309017 - 0.224514i) q^{9} +(2.64861 - 1.99621i) q^{11} +(1.82151 - 2.50710i) q^{13} +(-3.06071 + 1.92930i) q^{15} +(1.93806 + 2.66751i) q^{17} +(0.400863 - 1.23373i) q^{19} +6.11314 q^{21} +0.556884i q^{23} +(-0.906896 - 4.91707i) q^{25} +(-3.21644 - 4.42705i) q^{27} +(2.95763 + 9.10264i) q^{29} +(4.32760 + 3.14419i) q^{31} +(5.07390 - 1.74755i) q^{33} +(-3.13394 + 7.84536i) q^{35} +(-7.52785 + 2.44595i) q^{37} +(4.05657 - 2.94727i) q^{39} +(1.94312 - 5.98030i) q^{41} +3.61803i q^{43} +(0.827913 - 0.209880i) q^{45} +(5.08740 + 1.65300i) q^{47} +(5.88499 - 4.27570i) q^{49} +(1.64861 + 5.07390i) q^{51} +(-6.47398 + 8.91067i) q^{53} +(-0.358428 + 7.40753i) q^{55} +(1.23373 - 1.69808i) q^{57} +(1.63693 + 5.03795i) q^{59} +(-1.98801 + 1.44437i) q^{61} +(-1.37249 - 0.445947i) q^{63} +(1.70278 + 6.71698i) q^{65} -9.21247i q^{67} +(-0.278442 + 0.856956i) q^{69} +(8.81173 - 6.40210i) q^{71} +(-3.22994 + 1.04947i) q^{73} +(1.06296 - 8.02003i) q^{75} +(7.18643 - 10.2651i) q^{77} +(-13.2383 - 9.61817i) q^{79} +(-2.38197 - 7.33094i) q^{81} +(-0.108199 - 0.148923i) q^{83} +(-7.35681 - 0.485408i) q^{85} +15.4863i q^{87} -6.09017 q^{89} +(3.61803 - 11.1352i) q^{91} +(5.08740 + 7.00220i) q^{93} +(1.54677 + 2.45385i) q^{95} +(7.26384 - 9.99782i) q^{97} +(-1.26664 + 0.0222142i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{5} + 4 q^{9} + 20 q^{11} - 2 q^{15} + 16 q^{19} - 16 q^{21} + 16 q^{29} + 4 q^{31} + 48 q^{35} + 8 q^{39} + 40 q^{41} - 4 q^{45} + 84 q^{49} + 4 q^{51} - 32 q^{55} + 20 q^{61} + 72 q^{65} + 56 q^{71}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.53884 + 0.500000i 0.888451 + 0.288675i 0.717462 0.696598i \(-0.245304\pi\)
0.170989 + 0.985273i \(0.445304\pi\)
\(4\) 0 0
\(5\) −1.43058 + 1.71856i −0.639774 + 0.768563i
\(6\) 0 0
\(7\) 3.59321 1.16751i 1.35811 0.441276i 0.462696 0.886517i \(-0.346882\pi\)
0.895411 + 0.445241i \(0.146882\pi\)
\(8\) 0 0
\(9\) −0.309017 0.224514i −0.103006 0.0748380i
\(10\) 0 0
\(11\) 2.64861 1.99621i 0.798586 0.601881i
\(12\) 0 0
\(13\) 1.82151 2.50710i 0.505197 0.695344i −0.477903 0.878412i \(-0.658603\pi\)
0.983100 + 0.183069i \(0.0586031\pi\)
\(14\) 0 0
\(15\) −3.06071 + 1.92930i −0.790273 + 0.498144i
\(16\) 0 0
\(17\) 1.93806 + 2.66751i 0.470048 + 0.646965i 0.976554 0.215271i \(-0.0690634\pi\)
−0.506507 + 0.862236i \(0.669063\pi\)
\(18\) 0 0
\(19\) 0.400863 1.23373i 0.0919642 0.283037i −0.894486 0.447095i \(-0.852459\pi\)
0.986451 + 0.164058i \(0.0524586\pi\)
\(20\) 0 0
\(21\) 6.11314 1.33400
\(22\) 0 0
\(23\) 0.556884i 0.116118i 0.998313 + 0.0580591i \(0.0184912\pi\)
−0.998313 + 0.0580591i \(0.981509\pi\)
\(24\) 0 0
\(25\) −0.906896 4.91707i −0.181379 0.983413i
\(26\) 0 0
\(27\) −3.21644 4.42705i −0.619004 0.851986i
\(28\) 0 0
\(29\) 2.95763 + 9.10264i 0.549217 + 1.69032i 0.710746 + 0.703449i \(0.248358\pi\)
−0.161528 + 0.986868i \(0.551642\pi\)
\(30\) 0 0
\(31\) 4.32760 + 3.14419i 0.777260 + 0.564712i 0.904155 0.427204i \(-0.140501\pi\)
−0.126896 + 0.991916i \(0.540501\pi\)
\(32\) 0 0
\(33\) 5.07390 1.74755i 0.883252 0.304210i
\(34\) 0 0
\(35\) −3.13394 + 7.84536i −0.529733 + 1.32611i
\(36\) 0 0
\(37\) −7.52785 + 2.44595i −1.23757 + 0.402111i −0.853452 0.521172i \(-0.825495\pi\)
−0.384120 + 0.923283i \(0.625495\pi\)
\(38\) 0 0
\(39\) 4.05657 2.94727i 0.649571 0.471941i
\(40\) 0 0
\(41\) 1.94312 5.98030i 0.303464 0.933966i −0.676782 0.736183i \(-0.736626\pi\)
0.980246 0.197782i \(-0.0633739\pi\)
\(42\) 0 0
\(43\) 3.61803i 0.551745i 0.961194 + 0.275873i \(0.0889668\pi\)
−0.961194 + 0.275873i \(0.911033\pi\)
\(44\) 0 0
\(45\) 0.827913 0.209880i 0.123418 0.0312870i
\(46\) 0 0
\(47\) 5.08740 + 1.65300i 0.742073 + 0.241114i 0.655567 0.755137i \(-0.272430\pi\)
0.0865064 + 0.996251i \(0.472430\pi\)
\(48\) 0 0
\(49\) 5.88499 4.27570i 0.840713 0.610814i
\(50\) 0 0
\(51\) 1.64861 + 5.07390i 0.230851 + 0.710488i
\(52\) 0 0
\(53\) −6.47398 + 8.91067i −0.889270 + 1.22397i 0.0844964 + 0.996424i \(0.473072\pi\)
−0.973766 + 0.227551i \(0.926928\pi\)
\(54\) 0 0
\(55\) −0.358428 + 7.40753i −0.0483304 + 0.998831i
\(56\) 0 0
\(57\) 1.23373 1.69808i 0.163411 0.224916i
\(58\) 0 0
\(59\) 1.63693 + 5.03795i 0.213110 + 0.655886i 0.999282 + 0.0378782i \(0.0120599\pi\)
−0.786172 + 0.618008i \(0.787940\pi\)
\(60\) 0 0
\(61\) −1.98801 + 1.44437i −0.254538 + 0.184933i −0.707736 0.706477i \(-0.750283\pi\)
0.453197 + 0.891410i \(0.350283\pi\)
\(62\) 0 0
\(63\) −1.37249 0.445947i −0.172917 0.0561841i
\(64\) 0 0
\(65\) 1.70278 + 6.71698i 0.211204 + 0.833139i
\(66\) 0 0
\(67\) 9.21247i 1.12548i −0.826633 0.562741i \(-0.809747\pi\)
0.826633 0.562741i \(-0.190253\pi\)
\(68\) 0 0
\(69\) −0.278442 + 0.856956i −0.0335205 + 0.103165i
\(70\) 0 0
\(71\) 8.81173 6.40210i 1.04576 0.759789i 0.0743582 0.997232i \(-0.476309\pi\)
0.971402 + 0.237443i \(0.0763092\pi\)
\(72\) 0 0
\(73\) −3.22994 + 1.04947i −0.378036 + 0.122831i −0.491871 0.870668i \(-0.663687\pi\)
0.113834 + 0.993500i \(0.463687\pi\)
\(74\) 0 0
\(75\) 1.06296 8.02003i 0.122741 0.926074i
\(76\) 0 0
\(77\) 7.18643 10.2651i 0.818969 1.16982i
\(78\) 0 0
\(79\) −13.2383 9.61817i −1.48942 1.08213i −0.974365 0.224972i \(-0.927771\pi\)
−0.515057 0.857156i \(-0.672229\pi\)
\(80\) 0 0
\(81\) −2.38197 7.33094i −0.264663 0.814549i
\(82\) 0 0
\(83\) −0.108199 0.148923i −0.0118764 0.0163464i 0.803038 0.595928i \(-0.203216\pi\)
−0.814914 + 0.579582i \(0.803216\pi\)
\(84\) 0 0
\(85\) −7.35681 0.485408i −0.797958 0.0526499i
\(86\) 0 0
\(87\) 15.4863i 1.66031i
\(88\) 0 0
\(89\) −6.09017 −0.645557 −0.322778 0.946475i \(-0.604617\pi\)
−0.322778 + 0.946475i \(0.604617\pi\)
\(90\) 0 0
\(91\) 3.61803 11.1352i 0.379273 1.16728i
\(92\) 0 0
\(93\) 5.08740 + 7.00220i 0.527539 + 0.726095i
\(94\) 0 0
\(95\) 1.54677 + 2.45385i 0.158695 + 0.251760i
\(96\) 0 0
\(97\) 7.26384 9.99782i 0.737531 1.01512i −0.261226 0.965278i \(-0.584127\pi\)
0.998757 0.0498467i \(-0.0158733\pi\)
\(98\) 0 0
\(99\) −1.26664 + 0.0222142i −0.127302 + 0.00223261i
\(100\) 0 0
\(101\) 7.29264 + 5.29841i 0.725645 + 0.527212i 0.888183 0.459491i \(-0.151968\pi\)
−0.162538 + 0.986702i \(0.551968\pi\)
\(102\) 0 0
\(103\) −10.8743 + 3.53329i −1.07148 + 0.348145i −0.791064 0.611733i \(-0.790473\pi\)
−0.280416 + 0.959878i \(0.590473\pi\)
\(104\) 0 0
\(105\) −8.74532 + 10.5058i −0.853456 + 1.02526i
\(106\) 0 0
\(107\) −14.6031 4.74484i −1.41174 0.458701i −0.498770 0.866734i \(-0.666215\pi\)
−0.912967 + 0.408033i \(0.866215\pi\)
\(108\) 0 0
\(109\) −2.42892 −0.232648 −0.116324 0.993211i \(-0.537111\pi\)
−0.116324 + 0.993211i \(0.537111\pi\)
\(110\) 0 0
\(111\) −12.8071 −1.21560
\(112\) 0 0
\(113\) −7.97113 2.58998i −0.749860 0.243644i −0.0909393 0.995856i \(-0.528987\pi\)
−0.658921 + 0.752212i \(0.728987\pi\)
\(114\) 0 0
\(115\) −0.957038 0.796665i −0.0892442 0.0742894i
\(116\) 0 0
\(117\) −1.12576 + 0.365781i −0.104076 + 0.0338164i
\(118\) 0 0
\(119\) 10.0782 + 7.32222i 0.923865 + 0.671227i
\(120\) 0 0
\(121\) 3.03026 10.5744i 0.275478 0.961307i
\(122\) 0 0
\(123\) 5.98030 8.23117i 0.539225 0.742180i
\(124\) 0 0
\(125\) 9.74766 + 5.47569i 0.871857 + 0.489761i
\(126\) 0 0
\(127\) 4.08713 + 5.62545i 0.362674 + 0.499178i 0.950891 0.309525i \(-0.100170\pi\)
−0.588217 + 0.808703i \(0.700170\pi\)
\(128\) 0 0
\(129\) −1.80902 + 5.56758i −0.159275 + 0.490198i
\(130\) 0 0
\(131\) 5.61741 0.490795 0.245398 0.969423i \(-0.421082\pi\)
0.245398 + 0.969423i \(0.421082\pi\)
\(132\) 0 0
\(133\) 4.90106i 0.424976i
\(134\) 0 0
\(135\) 12.2095 + 0.805594i 1.05083 + 0.0693345i
\(136\) 0 0
\(137\) −4.51887 6.21969i −0.386073 0.531384i 0.571108 0.820875i \(-0.306514\pi\)
−0.957181 + 0.289491i \(0.906514\pi\)
\(138\) 0 0
\(139\) 0.297218 + 0.914744i 0.0252097 + 0.0775876i 0.962870 0.269966i \(-0.0870125\pi\)
−0.937660 + 0.347554i \(0.887012\pi\)
\(140\) 0 0
\(141\) 7.00220 + 5.08740i 0.589692 + 0.428436i
\(142\) 0 0
\(143\) −0.180227 10.2765i −0.0150713 0.859360i
\(144\) 0 0
\(145\) −19.8745 7.93917i −1.65049 0.659312i
\(146\) 0 0
\(147\) 11.1939 3.63712i 0.923259 0.299985i
\(148\) 0 0
\(149\) −7.11314 + 5.16800i −0.582731 + 0.423379i −0.839708 0.543039i \(-0.817274\pi\)
0.256977 + 0.966418i \(0.417274\pi\)
\(150\) 0 0
\(151\) 2.76194 8.50038i 0.224764 0.691751i −0.773552 0.633733i \(-0.781522\pi\)
0.998316 0.0580184i \(-0.0184782\pi\)
\(152\) 0 0
\(153\) 1.25943i 0.101819i
\(154\) 0 0
\(155\) −11.5944 + 2.93924i −0.931288 + 0.236085i
\(156\) 0 0
\(157\) 16.7776 + 5.45137i 1.33900 + 0.435067i 0.888977 0.457952i \(-0.151417\pi\)
0.450020 + 0.893018i \(0.351417\pi\)
\(158\) 0 0
\(159\) −14.4178 + 10.4751i −1.14340 + 0.830731i
\(160\) 0 0
\(161\) 0.650165 + 2.00100i 0.0512402 + 0.157701i
\(162\) 0 0
\(163\) −0.102445 + 0.141003i −0.00802409 + 0.0110442i −0.813010 0.582249i \(-0.802173\pi\)
0.804986 + 0.593294i \(0.202173\pi\)
\(164\) 0 0
\(165\) −4.25533 + 11.2198i −0.331277 + 0.873461i
\(166\) 0 0
\(167\) 3.22478 4.43854i 0.249541 0.343464i −0.665809 0.746122i \(-0.731914\pi\)
0.915351 + 0.402658i \(0.131914\pi\)
\(168\) 0 0
\(169\) 1.04959 + 3.23031i 0.0807378 + 0.248485i
\(170\) 0 0
\(171\) −0.400863 + 0.291244i −0.0306547 + 0.0222720i
\(172\) 0 0
\(173\) −22.8216 7.41518i −1.73509 0.563766i −0.740922 0.671591i \(-0.765611\pi\)
−0.994170 + 0.107825i \(0.965611\pi\)
\(174\) 0 0
\(175\) −8.99937 16.6093i −0.680289 1.25554i
\(176\) 0 0
\(177\) 8.57108i 0.644242i
\(178\) 0 0
\(179\) −0.0658512 + 0.202669i −0.00492195 + 0.0151482i −0.953487 0.301433i \(-0.902535\pi\)
0.948565 + 0.316581i \(0.102535\pi\)
\(180\) 0 0
\(181\) −0.839906 + 0.610228i −0.0624297 + 0.0453579i −0.618562 0.785736i \(-0.712285\pi\)
0.556133 + 0.831094i \(0.312285\pi\)
\(182\) 0 0
\(183\) −3.78141 + 1.22866i −0.279530 + 0.0908249i
\(184\) 0 0
\(185\) 6.56567 16.4362i 0.482718 1.20841i
\(186\) 0 0
\(187\) 10.4581 + 3.19641i 0.764769 + 0.233744i
\(188\) 0 0
\(189\) −16.7260 12.1521i −1.21663 0.883937i
\(190\) 0 0
\(191\) 5.54206 + 17.0567i 0.401009 + 1.23418i 0.924182 + 0.381953i \(0.124748\pi\)
−0.523172 + 0.852227i \(0.675252\pi\)
\(192\) 0 0
\(193\) 5.30174 + 7.29722i 0.381628 + 0.525265i 0.956015 0.293318i \(-0.0947596\pi\)
−0.574387 + 0.818584i \(0.694760\pi\)
\(194\) 0 0
\(195\) −0.738177 + 11.1878i −0.0528620 + 0.801172i
\(196\) 0 0
\(197\) 3.68422i 0.262490i 0.991350 + 0.131245i \(0.0418974\pi\)
−0.991350 + 0.131245i \(0.958103\pi\)
\(198\) 0 0
\(199\) −4.23544 −0.300242 −0.150121 0.988668i \(-0.547966\pi\)
−0.150121 + 0.988668i \(0.547966\pi\)
\(200\) 0 0
\(201\) 4.60624 14.1765i 0.324899 0.999936i
\(202\) 0 0
\(203\) 21.2548 + 29.2547i 1.49179 + 2.05328i
\(204\) 0 0
\(205\) 7.49772 + 11.8946i 0.523663 + 0.830758i
\(206\) 0 0
\(207\) 0.125028 0.172087i 0.00869006 0.0119608i
\(208\) 0 0
\(209\) −1.40106 4.06787i −0.0969131 0.281380i
\(210\) 0 0
\(211\) −11.0596 8.03527i −0.761374 0.553171i 0.137958 0.990438i \(-0.455946\pi\)
−0.899331 + 0.437268i \(0.855946\pi\)
\(212\) 0 0
\(213\) 16.7609 5.44595i 1.14844 0.373150i
\(214\) 0 0
\(215\) −6.21781 5.17588i −0.424051 0.352992i
\(216\) 0 0
\(217\) 19.2208 + 6.24523i 1.30480 + 0.423954i
\(218\) 0 0
\(219\) −5.49511 −0.371325
\(220\) 0 0
\(221\) 10.2179 0.687330
\(222\) 0 0
\(223\) −22.7988 7.40777i −1.52672 0.496061i −0.579043 0.815297i \(-0.696574\pi\)
−0.947675 + 0.319236i \(0.896574\pi\)
\(224\) 0 0
\(225\) −0.823704 + 1.72307i −0.0549136 + 0.114871i
\(226\) 0 0
\(227\) −19.6911 + 6.39803i −1.30695 + 0.424652i −0.877992 0.478675i \(-0.841117\pi\)
−0.428953 + 0.903327i \(0.641117\pi\)
\(228\) 0 0
\(229\) −13.2199 9.60481i −0.873594 0.634704i 0.0579546 0.998319i \(-0.481542\pi\)
−0.931549 + 0.363616i \(0.881542\pi\)
\(230\) 0 0
\(231\) 16.1913 12.2031i 1.06531 0.802907i
\(232\) 0 0
\(233\) 0.282302 0.388556i 0.0184942 0.0254551i −0.799670 0.600440i \(-0.794992\pi\)
0.818164 + 0.574985i \(0.194992\pi\)
\(234\) 0 0
\(235\) −10.1187 + 6.37826i −0.660071 + 0.416072i
\(236\) 0 0
\(237\) −15.5625 21.4200i −1.01089 1.39138i
\(238\) 0 0
\(239\) 0.348754 1.07335i 0.0225590 0.0694295i −0.939143 0.343526i \(-0.888379\pi\)
0.961702 + 0.274096i \(0.0883787\pi\)
\(240\) 0 0
\(241\) −12.7220 −0.819497 −0.409748 0.912199i \(-0.634384\pi\)
−0.409748 + 0.912199i \(0.634384\pi\)
\(242\) 0 0
\(243\) 3.94427i 0.253025i
\(244\) 0 0
\(245\) −1.07090 + 16.2304i −0.0684171 + 1.03692i
\(246\) 0 0
\(247\) −2.36290 3.25225i −0.150348 0.206936i
\(248\) 0 0
\(249\) −0.0920396 0.283269i −0.00583277 0.0179514i
\(250\) 0 0
\(251\) −2.29722 1.66903i −0.144999 0.105348i 0.512921 0.858436i \(-0.328563\pi\)
−0.657920 + 0.753088i \(0.728563\pi\)
\(252\) 0 0
\(253\) 1.11166 + 1.47497i 0.0698894 + 0.0927304i
\(254\) 0 0
\(255\) −11.0783 4.42537i −0.693748 0.277127i
\(256\) 0 0
\(257\) −29.3315 + 9.53038i −1.82965 + 0.594489i −0.830342 + 0.557254i \(0.811855\pi\)
−0.999307 + 0.0372347i \(0.988145\pi\)
\(258\) 0 0
\(259\) −24.1935 + 17.5776i −1.50331 + 1.09222i
\(260\) 0 0
\(261\) 1.12971 3.47690i 0.0699275 0.215215i
\(262\) 0 0
\(263\) 27.7069i 1.70848i −0.519876 0.854242i \(-0.674022\pi\)
0.519876 0.854242i \(-0.325978\pi\)
\(264\) 0 0
\(265\) −6.05199 23.8733i −0.371771 1.46653i
\(266\) 0 0
\(267\) −9.37181 3.04508i −0.573545 0.186356i
\(268\) 0 0
\(269\) 10.3224 7.49966i 0.629367 0.457262i −0.226814 0.973938i \(-0.572831\pi\)
0.856181 + 0.516676i \(0.172831\pi\)
\(270\) 0 0
\(271\) −1.76218 5.42344i −0.107045 0.329450i 0.883160 0.469072i \(-0.155411\pi\)
−0.990205 + 0.139621i \(0.955411\pi\)
\(272\) 0 0
\(273\) 11.1352 15.3262i 0.673931 0.927586i
\(274\) 0 0
\(275\) −12.2175 11.2130i −0.736745 0.676171i
\(276\) 0 0
\(277\) −18.6489 + 25.6680i −1.12050 + 1.54224i −0.315548 + 0.948910i \(0.602188\pi\)
−0.804957 + 0.593333i \(0.797812\pi\)
\(278\) 0 0
\(279\) −0.631388 1.94321i −0.0378002 0.116337i
\(280\) 0 0
\(281\) 1.56805 1.13926i 0.0935423 0.0679624i −0.540031 0.841645i \(-0.681588\pi\)
0.633573 + 0.773683i \(0.281588\pi\)
\(282\) 0 0
\(283\) 4.67528 + 1.51909i 0.277917 + 0.0903006i 0.444659 0.895700i \(-0.353325\pi\)
−0.166742 + 0.986000i \(0.553325\pi\)
\(284\) 0 0
\(285\) 1.15331 + 4.54947i 0.0683162 + 0.269487i
\(286\) 0 0
\(287\) 23.7571i 1.40234i
\(288\) 0 0
\(289\) 1.89376 5.82841i 0.111398 0.342848i
\(290\) 0 0
\(291\) 16.1768 11.7531i 0.948301 0.688981i
\(292\) 0 0
\(293\) −0.179488 + 0.0583193i −0.0104858 + 0.00340705i −0.314255 0.949339i \(-0.601755\pi\)
0.303769 + 0.952746i \(0.401755\pi\)
\(294\) 0 0
\(295\) −10.9998 4.39402i −0.640432 0.255830i
\(296\) 0 0
\(297\) −17.3564 5.30482i −1.00712 0.307817i
\(298\) 0 0
\(299\) 1.39616 + 1.01437i 0.0807421 + 0.0586626i
\(300\) 0 0
\(301\) 4.22408 + 13.0004i 0.243472 + 0.749329i
\(302\) 0 0
\(303\) 8.57301 + 11.7997i 0.492507 + 0.677877i
\(304\) 0 0
\(305\) 0.361759 5.48280i 0.0207143 0.313944i
\(306\) 0 0
\(307\) 12.3820i 0.706676i 0.935496 + 0.353338i \(0.114953\pi\)
−0.935496 + 0.353338i \(0.885047\pi\)
\(308\) 0 0
\(309\) −18.5005 −1.05246
\(310\) 0 0
\(311\) 6.52587 20.0846i 0.370048 1.13889i −0.576711 0.816949i \(-0.695664\pi\)
0.946759 0.321943i \(-0.104336\pi\)
\(312\) 0 0
\(313\) 9.74502 + 13.4129i 0.550821 + 0.758140i 0.990123 0.140199i \(-0.0447742\pi\)
−0.439302 + 0.898339i \(0.644774\pi\)
\(314\) 0 0
\(315\) 2.72983 1.72074i 0.153809 0.0969525i
\(316\) 0 0
\(317\) −11.5424 + 15.8867i −0.648283 + 0.892285i −0.999023 0.0441877i \(-0.985930\pi\)
0.350740 + 0.936473i \(0.385930\pi\)
\(318\) 0 0
\(319\) 26.0044 + 18.2053i 1.45597 + 1.01930i
\(320\) 0 0
\(321\) −20.0995 14.6031i −1.12184 0.815067i
\(322\) 0 0
\(323\) 4.06787 1.32173i 0.226342 0.0735431i
\(324\) 0 0
\(325\) −13.9795 6.68283i −0.775443 0.370696i
\(326\) 0 0
\(327\) −3.73772 1.21446i −0.206697 0.0671598i
\(328\) 0 0
\(329\) 20.2100 1.11421
\(330\) 0 0
\(331\) 23.4826 1.29072 0.645360 0.763879i \(-0.276707\pi\)
0.645360 + 0.763879i \(0.276707\pi\)
\(332\) 0 0
\(333\) 2.87538 + 0.934269i 0.157570 + 0.0511976i
\(334\) 0 0
\(335\) 15.8322 + 13.1792i 0.865004 + 0.720054i
\(336\) 0 0
\(337\) −12.1974 + 3.96317i −0.664434 + 0.215888i −0.621768 0.783202i \(-0.713585\pi\)
−0.0426660 + 0.999089i \(0.513585\pi\)
\(338\) 0 0
\(339\) −10.9713 7.97113i −0.595880 0.432932i
\(340\) 0 0
\(341\) 17.7386 0.311096i 0.960598 0.0168468i
\(342\) 0 0
\(343\) 0.609033 0.838262i 0.0328847 0.0452619i
\(344\) 0 0
\(345\) −1.07440 1.70446i −0.0578436 0.0917651i
\(346\) 0 0
\(347\) 12.1634 + 16.7415i 0.652966 + 0.898730i 0.999223 0.0394093i \(-0.0125476\pi\)
−0.346257 + 0.938140i \(0.612548\pi\)
\(348\) 0 0
\(349\) −6.71104 + 20.6544i −0.359233 + 1.10561i 0.594280 + 0.804258i \(0.297437\pi\)
−0.953514 + 0.301349i \(0.902563\pi\)
\(350\) 0 0
\(351\) −16.9578 −0.905143
\(352\) 0 0
\(353\) 0.260293i 0.0138540i 0.999976 + 0.00692701i \(0.00220495\pi\)
−0.999976 + 0.00692701i \(0.997795\pi\)
\(354\) 0 0
\(355\) −1.60348 + 24.3022i −0.0851037 + 1.28983i
\(356\) 0 0
\(357\) 11.8476 + 16.3068i 0.627042 + 0.863049i
\(358\) 0 0
\(359\) 2.54070 + 7.81947i 0.134093 + 0.412696i 0.995448 0.0953081i \(-0.0303836\pi\)
−0.861355 + 0.508004i \(0.830384\pi\)
\(360\) 0 0
\(361\) 14.0099 + 10.1788i 0.737365 + 0.535727i
\(362\) 0 0
\(363\) 9.95028 14.7572i 0.522254 0.774550i
\(364\) 0 0
\(365\) 2.81710 7.05220i 0.147454 0.369129i
\(366\) 0 0
\(367\) 6.86029 2.22904i 0.358104 0.116355i −0.124439 0.992227i \(-0.539713\pi\)
0.482543 + 0.875872i \(0.339713\pi\)
\(368\) 0 0
\(369\) −1.94312 + 1.41176i −0.101155 + 0.0734931i
\(370\) 0 0
\(371\) −12.8591 + 39.5764i −0.667613 + 2.05470i
\(372\) 0 0
\(373\) 29.9629i 1.55142i −0.631090 0.775709i \(-0.717392\pi\)
0.631090 0.775709i \(-0.282608\pi\)
\(374\) 0 0
\(375\) 12.2623 + 13.3000i 0.633220 + 0.686812i
\(376\) 0 0
\(377\) 28.2086 + 9.16552i 1.45281 + 0.472048i
\(378\) 0 0
\(379\) 29.6962 21.5756i 1.52539 1.10826i 0.566661 0.823951i \(-0.308235\pi\)
0.958732 0.284312i \(-0.0917651\pi\)
\(380\) 0 0
\(381\) 3.47672 + 10.7002i 0.178118 + 0.548190i
\(382\) 0 0
\(383\) −3.79013 + 5.21666i −0.193666 + 0.266559i −0.894796 0.446475i \(-0.852679\pi\)
0.701130 + 0.713034i \(0.252679\pi\)
\(384\) 0 0
\(385\) 7.36043 + 27.0353i 0.375122 + 1.37785i
\(386\) 0 0
\(387\) 0.812299 1.11803i 0.0412915 0.0568329i
\(388\) 0 0
\(389\) 8.83792 + 27.2003i 0.448100 + 1.37911i 0.879048 + 0.476734i \(0.158179\pi\)
−0.430948 + 0.902377i \(0.641821\pi\)
\(390\) 0 0
\(391\) −1.48549 + 1.07927i −0.0751245 + 0.0545811i
\(392\) 0 0
\(393\) 8.64430 + 2.80870i 0.436047 + 0.141680i
\(394\) 0 0
\(395\) 35.4678 8.99123i 1.78458 0.452398i
\(396\) 0 0
\(397\) 24.5049i 1.22987i −0.788579 0.614934i \(-0.789183\pi\)
0.788579 0.614934i \(-0.210817\pi\)
\(398\) 0 0
\(399\) 2.45053 7.54195i 0.122680 0.377570i
\(400\) 0 0
\(401\) 24.8467 18.0522i 1.24079 0.901483i 0.243135 0.969992i \(-0.421824\pi\)
0.997650 + 0.0685091i \(0.0218242\pi\)
\(402\) 0 0
\(403\) 15.7656 5.12254i 0.785338 0.255172i
\(404\) 0 0
\(405\) 16.0062 + 6.39392i 0.795357 + 0.317717i
\(406\) 0 0
\(407\) −15.0557 + 21.5056i −0.746284 + 1.06599i
\(408\) 0 0
\(409\) 17.6836 + 12.8479i 0.874397 + 0.635287i 0.931763 0.363066i \(-0.118270\pi\)
−0.0573660 + 0.998353i \(0.518270\pi\)
\(410\) 0 0
\(411\) −3.84398 11.8306i −0.189609 0.583558i
\(412\) 0 0
\(413\) 11.7637 + 16.1913i 0.578853 + 0.796723i
\(414\) 0 0
\(415\) 0.410721 + 0.0270997i 0.0201615 + 0.00133027i
\(416\) 0 0
\(417\) 1.55626i 0.0762102i
\(418\) 0 0
\(419\) 4.17764 0.204091 0.102046 0.994780i \(-0.467461\pi\)
0.102046 + 0.994780i \(0.467461\pi\)
\(420\) 0 0
\(421\) 3.92266 12.0727i 0.191179 0.588388i −0.808821 0.588055i \(-0.799894\pi\)
1.00000 0.000333393i \(-0.000106122\pi\)
\(422\) 0 0
\(423\) −1.20097 1.65300i −0.0583932 0.0803714i
\(424\) 0 0
\(425\) 11.3587 11.9487i 0.550977 0.579597i
\(426\) 0 0
\(427\) −5.45702 + 7.51095i −0.264084 + 0.363480i
\(428\) 0 0
\(429\) 4.86089 15.9039i 0.234686 0.767850i
\(430\) 0 0
\(431\) −0.591217 0.429545i −0.0284779 0.0206904i 0.573455 0.819237i \(-0.305603\pi\)
−0.601933 + 0.798546i \(0.705603\pi\)
\(432\) 0 0
\(433\) −5.36947 + 1.74465i −0.258040 + 0.0838424i −0.435180 0.900343i \(-0.643315\pi\)
0.177140 + 0.984186i \(0.443315\pi\)
\(434\) 0 0
\(435\) −26.6142 22.1544i −1.27605 1.06222i
\(436\) 0 0
\(437\) 0.687043 + 0.223234i 0.0328657 + 0.0106787i
\(438\) 0 0
\(439\) 13.7074 0.654220 0.327110 0.944986i \(-0.393925\pi\)
0.327110 + 0.944986i \(0.393925\pi\)
\(440\) 0 0
\(441\) −2.77852 −0.132310
\(442\) 0 0
\(443\) −13.3561 4.33967i −0.634568 0.206184i −0.0259707 0.999663i \(-0.508268\pi\)
−0.608598 + 0.793479i \(0.708268\pi\)
\(444\) 0 0
\(445\) 8.71246 10.4663i 0.413010 0.496151i
\(446\) 0 0
\(447\) −13.5300 + 4.39616i −0.639947 + 0.207931i
\(448\) 0 0
\(449\) 7.81141 + 5.67532i 0.368643 + 0.267835i 0.756648 0.653822i \(-0.226836\pi\)
−0.388005 + 0.921657i \(0.626836\pi\)
\(450\) 0 0
\(451\) −6.79140 19.7183i −0.319794 0.928501i
\(452\) 0 0
\(453\) 8.50038 11.6998i 0.399383 0.549703i
\(454\) 0 0
\(455\) 13.9606 + 22.1475i 0.654481 + 1.03829i
\(456\) 0 0
\(457\) −0.604702 0.832300i −0.0282867 0.0389334i 0.794639 0.607082i \(-0.207660\pi\)
−0.822926 + 0.568148i \(0.807660\pi\)
\(458\) 0 0
\(459\) 5.57554 17.1597i 0.260244 0.800948i
\(460\) 0 0
\(461\) −8.05882 −0.375336 −0.187668 0.982232i \(-0.560093\pi\)
−0.187668 + 0.982232i \(0.560093\pi\)
\(462\) 0 0
\(463\) 7.46633i 0.346990i 0.984835 + 0.173495i \(0.0555060\pi\)
−0.984835 + 0.173495i \(0.944494\pi\)
\(464\) 0 0
\(465\) −19.3116 1.27420i −0.895555 0.0590894i
\(466\) 0 0
\(467\) −6.57694 9.05238i −0.304344 0.418894i 0.629263 0.777193i \(-0.283357\pi\)
−0.933607 + 0.358299i \(0.883357\pi\)
\(468\) 0 0
\(469\) −10.7556 33.1024i −0.496648 1.52853i
\(470\) 0 0
\(471\) 23.0924 + 16.7776i 1.06404 + 0.773071i
\(472\) 0 0
\(473\) 7.22237 + 9.58276i 0.332085 + 0.440616i
\(474\) 0 0
\(475\) −6.42986 0.852205i −0.295022 0.0391018i
\(476\) 0 0
\(477\) 4.00114 1.30005i 0.183200 0.0595252i
\(478\) 0 0
\(479\) −21.6571 + 15.7348i −0.989536 + 0.718940i −0.959819 0.280618i \(-0.909461\pi\)
−0.0297167 + 0.999558i \(0.509461\pi\)
\(480\) 0 0
\(481\) −7.57985 + 23.3284i −0.345612 + 1.06368i
\(482\) 0 0
\(483\) 3.40431i 0.154901i
\(484\) 0 0
\(485\) 6.79036 + 26.7860i 0.308334 + 1.21629i
\(486\) 0 0
\(487\) 17.4787 + 5.67918i 0.792037 + 0.257348i 0.676971 0.736009i \(-0.263292\pi\)
0.115066 + 0.993358i \(0.463292\pi\)
\(488\) 0 0
\(489\) −0.228148 + 0.165759i −0.0103172 + 0.00749589i
\(490\) 0 0
\(491\) 8.02923 + 24.7114i 0.362354 + 1.11521i 0.951622 + 0.307273i \(0.0994164\pi\)
−0.589268 + 0.807938i \(0.700584\pi\)
\(492\) 0 0
\(493\) −18.5493 + 25.5309i −0.835418 + 1.14985i
\(494\) 0 0
\(495\) 1.77385 2.20858i 0.0797288 0.0992683i
\(496\) 0 0
\(497\) 24.1879 33.2918i 1.08498 1.49334i
\(498\) 0 0
\(499\) 5.24736 + 16.1497i 0.234904 + 0.722960i 0.997134 + 0.0756541i \(0.0241045\pi\)
−0.762230 + 0.647306i \(0.775896\pi\)
\(500\) 0 0
\(501\) 7.18170 5.21781i 0.320855 0.233115i
\(502\) 0 0
\(503\) 12.7362 + 4.13825i 0.567880 + 0.184515i 0.578864 0.815424i \(-0.303496\pi\)
−0.0109840 + 0.999940i \(0.503496\pi\)
\(504\) 0 0
\(505\) −19.5383 + 4.95305i −0.869444 + 0.220408i
\(506\) 0 0
\(507\) 5.49573i 0.244074i
\(508\) 0 0
\(509\) 6.18963 19.0497i 0.274351 0.844365i −0.715040 0.699084i \(-0.753591\pi\)
0.989390 0.145281i \(-0.0464086\pi\)
\(510\) 0 0
\(511\) −10.3806 + 7.54195i −0.459211 + 0.333636i
\(512\) 0 0
\(513\) −6.75113 + 2.19357i −0.298070 + 0.0968487i
\(514\) 0 0
\(515\) 9.48442 23.7428i 0.417933 1.04623i
\(516\) 0 0
\(517\) 16.7743 5.77739i 0.737731 0.254090i
\(518\) 0 0
\(519\) −31.4112 22.8216i −1.37880 1.00176i
\(520\) 0 0
\(521\) 0.718847 + 2.21238i 0.0314933 + 0.0969263i 0.965568 0.260152i \(-0.0837728\pi\)
−0.934074 + 0.357079i \(0.883773\pi\)
\(522\) 0 0
\(523\) −11.2376 15.4672i −0.491386 0.676335i 0.489257 0.872140i \(-0.337268\pi\)
−0.980643 + 0.195805i \(0.937268\pi\)
\(524\) 0 0
\(525\) −5.54398 30.0587i −0.241959 1.31187i
\(526\) 0 0
\(527\) 17.6375i 0.768302i
\(528\) 0 0
\(529\) 22.6899 0.986517
\(530\) 0 0
\(531\) 0.625252 1.92433i 0.0271336 0.0835087i
\(532\) 0 0
\(533\) −11.4538 15.7648i −0.496118 0.682848i
\(534\) 0 0
\(535\) 29.0452 18.3085i 1.25573 0.791544i
\(536\) 0 0
\(537\) −0.202669 + 0.278950i −0.00874581 + 0.0120376i
\(538\) 0 0
\(539\) 7.05184 23.0723i 0.303744 0.993796i
\(540\) 0 0
\(541\) −24.1108 17.5175i −1.03660 0.753136i −0.0669831 0.997754i \(-0.521337\pi\)
−0.969619 + 0.244618i \(0.921337\pi\)
\(542\) 0 0
\(543\) −1.59760 + 0.519091i −0.0685594 + 0.0222763i
\(544\) 0 0
\(545\) 3.47476 4.17425i 0.148842 0.178805i
\(546\) 0 0
\(547\) 18.0221 + 5.85573i 0.770569 + 0.250373i 0.667808 0.744333i \(-0.267233\pi\)
0.102760 + 0.994706i \(0.467233\pi\)
\(548\) 0 0
\(549\) 0.938610 0.0400589
\(550\) 0 0
\(551\) 12.4158 0.528930
\(552\) 0 0
\(553\) −58.7972 19.1044i −2.50031 0.812400i
\(554\) 0 0
\(555\) 18.3216 22.0098i 0.777709 0.934266i
\(556\) 0 0
\(557\) 6.35647 2.06534i 0.269332 0.0875114i −0.171237 0.985230i \(-0.554776\pi\)
0.440570 + 0.897718i \(0.354776\pi\)
\(558\) 0 0
\(559\) 9.07077 + 6.59030i 0.383652 + 0.278740i
\(560\) 0 0
\(561\) 14.4951 + 10.1478i 0.611984 + 0.428440i
\(562\) 0 0
\(563\) −5.59814 + 7.70518i −0.235933 + 0.324735i −0.910523 0.413459i \(-0.864321\pi\)
0.674589 + 0.738193i \(0.264321\pi\)
\(564\) 0 0
\(565\) 15.8543 9.99370i 0.666997 0.420438i
\(566\) 0 0
\(567\) −17.1178 23.5607i −0.718881 0.989455i
\(568\) 0 0
\(569\) −8.67150 + 26.6881i −0.363528 + 1.11883i 0.587369 + 0.809319i \(0.300164\pi\)
−0.950897 + 0.309506i \(0.899836\pi\)
\(570\) 0 0
\(571\) 1.61429 0.0675561 0.0337781 0.999429i \(-0.489246\pi\)
0.0337781 + 0.999429i \(0.489246\pi\)
\(572\) 0 0
\(573\) 29.0186i 1.21227i
\(574\) 0 0
\(575\) 2.73823 0.505035i 0.114192 0.0210614i
\(576\) 0 0
\(577\) −1.92182 2.64516i −0.0800066 0.110120i 0.767138 0.641482i \(-0.221680\pi\)
−0.847145 + 0.531363i \(0.821680\pi\)
\(578\) 0 0
\(579\) 4.50993 + 13.8801i 0.187426 + 0.576839i
\(580\) 0 0
\(581\) −0.562651 0.408790i −0.0233427 0.0169595i
\(582\) 0 0
\(583\) 0.640558 + 36.5243i 0.0265292 + 1.51268i
\(584\) 0 0
\(585\) 0.981867 2.45796i 0.0405952 0.101624i
\(586\) 0 0
\(587\) 3.33276 1.08288i 0.137558 0.0446952i −0.239429 0.970914i \(-0.576960\pi\)
0.376987 + 0.926219i \(0.376960\pi\)
\(588\) 0 0
\(589\) 5.61384 4.07869i 0.231314 0.168060i
\(590\) 0 0
\(591\) −1.84211 + 5.66943i −0.0757742 + 0.233209i
\(592\) 0 0
\(593\) 27.6283i 1.13456i 0.823526 + 0.567278i \(0.192004\pi\)
−0.823526 + 0.567278i \(0.807996\pi\)
\(594\) 0 0
\(595\) −27.0013 + 6.84494i −1.10695 + 0.280615i
\(596\) 0 0
\(597\) −6.51767 2.11772i −0.266751 0.0866725i
\(598\) 0 0
\(599\) 6.43434 4.67482i 0.262900 0.191008i −0.448524 0.893771i \(-0.648050\pi\)
0.711425 + 0.702762i \(0.248050\pi\)
\(600\) 0 0
\(601\) 2.01909 + 6.21412i 0.0823604 + 0.253479i 0.983754 0.179521i \(-0.0574548\pi\)
−0.901394 + 0.433000i \(0.857455\pi\)
\(602\) 0 0
\(603\) −2.06833 + 2.84681i −0.0842288 + 0.115931i
\(604\) 0 0
\(605\) 13.8377 + 20.3352i 0.562582 + 0.826742i
\(606\) 0 0
\(607\) 4.92460 6.77813i 0.199883 0.275116i −0.697295 0.716784i \(-0.745613\pi\)
0.897178 + 0.441668i \(0.145613\pi\)
\(608\) 0 0
\(609\) 18.0804 + 55.6457i 0.732654 + 2.25488i
\(610\) 0 0
\(611\) 13.4110 9.74365i 0.542550 0.394186i
\(612\) 0 0
\(613\) 17.0358 + 5.53528i 0.688071 + 0.223568i 0.632125 0.774866i \(-0.282183\pi\)
0.0559453 + 0.998434i \(0.482183\pi\)
\(614\) 0 0
\(615\) 5.59048 + 22.0528i 0.225430 + 0.889256i
\(616\) 0 0
\(617\) 21.3999i 0.861529i 0.902464 + 0.430765i \(0.141756\pi\)
−0.902464 + 0.430765i \(0.858244\pi\)
\(618\) 0 0
\(619\) −1.82954 + 5.63076i −0.0735356 + 0.226319i −0.981068 0.193662i \(-0.937963\pi\)
0.907533 + 0.419981i \(0.137963\pi\)
\(620\) 0 0
\(621\) 2.46535 1.79118i 0.0989312 0.0718777i
\(622\) 0 0
\(623\) −21.8833 + 7.11031i −0.876735 + 0.284868i
\(624\) 0 0
\(625\) −23.3551 + 8.91853i −0.934203 + 0.356741i
\(626\) 0 0
\(627\) −0.122069 6.96034i −0.00487497 0.277969i
\(628\) 0 0
\(629\) −21.1140 15.3402i −0.841870 0.611654i
\(630\) 0 0
\(631\) −5.62521 17.3126i −0.223936 0.689204i −0.998398 0.0565834i \(-0.981979\pi\)
0.774462 0.632620i \(-0.218021\pi\)
\(632\) 0 0
\(633\) −13.0013 17.8948i −0.516757 0.711254i
\(634\) 0 0
\(635\) −15.5146 1.02367i −0.615679 0.0406230i
\(636\) 0 0
\(637\) 22.5425i 0.893166i
\(638\) 0 0
\(639\) −4.16033 −0.164580
\(640\) 0 0
\(641\) 5.44931 16.7712i 0.215235 0.662424i −0.783902 0.620884i \(-0.786774\pi\)
0.999137 0.0415398i \(-0.0132263\pi\)
\(642\) 0 0
\(643\) −25.8329 35.5559i −1.01875 1.40219i −0.913077 0.407788i \(-0.866300\pi\)
−0.105673 0.994401i \(-0.533700\pi\)
\(644\) 0 0
\(645\) −6.98028 11.0738i −0.274848 0.436029i
\(646\) 0 0
\(647\) 0.291613 0.401371i 0.0114645 0.0157795i −0.803246 0.595647i \(-0.796896\pi\)
0.814711 + 0.579868i \(0.196896\pi\)
\(648\) 0 0
\(649\) 14.3924 + 10.0759i 0.564952 + 0.395514i
\(650\) 0 0
\(651\) 26.4552 + 19.2208i 1.03686 + 0.753324i
\(652\) 0 0
\(653\) −17.2685 + 5.61086i −0.675767 + 0.219570i −0.626741 0.779228i \(-0.715612\pi\)
−0.0490258 + 0.998798i \(0.515612\pi\)
\(654\) 0 0
\(655\) −8.03613 + 9.65385i −0.313998 + 0.377207i
\(656\) 0 0
\(657\) 1.23373 + 0.400863i 0.0481323 + 0.0156391i
\(658\) 0 0
\(659\) −14.4974 −0.564739 −0.282370 0.959306i \(-0.591120\pi\)
−0.282370 + 0.959306i \(0.591120\pi\)
\(660\) 0 0
\(661\) −11.6178 −0.451880 −0.225940 0.974141i \(-0.572545\pi\)
−0.225940 + 0.974141i \(0.572545\pi\)
\(662\) 0 0
\(663\) 15.7237 + 5.10895i 0.610659 + 0.198415i
\(664\) 0 0
\(665\) 8.42276 + 7.01134i 0.326621 + 0.271888i
\(666\) 0 0
\(667\) −5.06911 + 1.64705i −0.196277 + 0.0637742i
\(668\) 0 0
\(669\) −31.3798 22.7988i −1.21321 0.881451i
\(670\) 0 0
\(671\) −2.38218 + 7.79406i −0.0919630 + 0.300886i
\(672\) 0 0
\(673\) 20.9418 28.8239i 0.807246 1.11108i −0.184497 0.982833i \(-0.559066\pi\)
0.991743 0.128245i \(-0.0409344\pi\)
\(674\) 0 0
\(675\) −18.8511 + 19.8303i −0.725580 + 0.763270i
\(676\) 0 0
\(677\) 14.4064 + 19.8288i 0.553684 + 0.762081i 0.990506 0.137467i \(-0.0438961\pi\)
−0.436822 + 0.899548i \(0.643896\pi\)
\(678\) 0 0
\(679\) 14.4280 44.4049i 0.553696 1.70410i
\(680\) 0 0
\(681\) −33.5005 −1.28374
\(682\) 0 0
\(683\) 25.5212i 0.976540i 0.872693 + 0.488270i \(0.162372\pi\)
−0.872693 + 0.488270i \(0.837628\pi\)
\(684\) 0 0
\(685\) 17.1535 + 1.13180i 0.655401 + 0.0432439i
\(686\) 0 0
\(687\) −15.5409 21.3902i −0.592922 0.816088i
\(688\) 0 0
\(689\) 10.5475 + 32.4618i 0.401827 + 1.23670i
\(690\) 0 0
\(691\) −36.7992 26.7362i −1.39991 1.01709i −0.994695 0.102872i \(-0.967197\pi\)
−0.405215 0.914222i \(-0.632803\pi\)
\(692\) 0 0
\(693\) −4.52538 + 1.55863i −0.171905 + 0.0592076i
\(694\) 0 0
\(695\) −1.99724 0.797825i −0.0757595 0.0302632i
\(696\) 0 0
\(697\) 19.7183 6.40688i 0.746886 0.242678i
\(698\) 0 0
\(699\) 0.628696 0.456775i 0.0237795 0.0172768i
\(700\) 0 0
\(701\) −9.00678 + 27.7200i −0.340182 + 1.04697i 0.623932 + 0.781479i \(0.285534\pi\)
−0.964113 + 0.265492i \(0.914466\pi\)
\(702\) 0 0
\(703\) 10.2678i 0.387258i
\(704\) 0 0
\(705\) −18.7602 + 4.75579i −0.706550 + 0.179113i
\(706\) 0 0
\(707\) 32.3899 + 10.5241i 1.21815 + 0.395800i
\(708\) 0 0
\(709\) 25.0122 18.1724i 0.939353 0.682480i −0.00891175 0.999960i \(-0.502837\pi\)
0.948265 + 0.317480i \(0.102837\pi\)
\(710\) 0 0
\(711\) 1.93144 + 5.94435i 0.0724346 + 0.222931i
\(712\) 0 0
\(713\) −1.75095 + 2.40997i −0.0655734 + 0.0902541i
\(714\) 0 0
\(715\) 17.9185 + 14.3915i 0.670115 + 0.538213i
\(716\) 0 0
\(717\) 1.07335 1.47734i 0.0400851 0.0551725i
\(718\) 0 0
\(719\) −5.42235 16.6883i −0.202220 0.622368i −0.999816 0.0191765i \(-0.993896\pi\)
0.797597 0.603191i \(-0.206104\pi\)
\(720\) 0 0
\(721\) −34.9487 + 25.3917i −1.30156 + 0.945636i
\(722\) 0 0
\(723\) −19.5772 6.36101i −0.728083 0.236568i
\(724\) 0 0
\(725\) 42.0760 22.7980i 1.56266 0.846696i
\(726\) 0 0
\(727\) 16.7731i 0.622080i −0.950397 0.311040i \(-0.899323\pi\)
0.950397 0.311040i \(-0.100677\pi\)
\(728\) 0 0
\(729\) −9.11803 + 28.0624i −0.337705 + 1.03935i
\(730\) 0 0
\(731\) −9.65113 + 7.01195i −0.356960 + 0.259346i
\(732\) 0 0
\(733\) 8.79812 2.85868i 0.324966 0.105588i −0.141991 0.989868i \(-0.545350\pi\)
0.466957 + 0.884280i \(0.345350\pi\)
\(734\) 0 0
\(735\) −9.76315 + 24.4406i −0.360119 + 0.901505i
\(736\) 0 0
\(737\) −18.3901 24.4002i −0.677407 0.898794i
\(738\) 0 0
\(739\) −6.06468 4.40625i −0.223093 0.162087i 0.470625 0.882333i \(-0.344029\pi\)
−0.693718 + 0.720247i \(0.744029\pi\)
\(740\) 0 0
\(741\) −2.01000 6.18615i −0.0738393 0.227254i
\(742\) 0 0
\(743\) −3.82251 5.26124i −0.140234 0.193016i 0.733123 0.680096i \(-0.238062\pi\)
−0.873357 + 0.487080i \(0.838062\pi\)
\(744\) 0 0
\(745\) 1.29438 19.6176i 0.0474225 0.718732i
\(746\) 0 0
\(747\) 0.0703120i 0.00257258i
\(748\) 0 0
\(749\) −58.0118 −2.11970
\(750\) 0 0
\(751\) −6.27064 + 19.2991i −0.228819 + 0.704232i 0.769062 + 0.639174i \(0.220723\pi\)
−0.997881 + 0.0650587i \(0.979277\pi\)
\(752\) 0 0
\(753\) −2.70054 3.71698i −0.0984132 0.135454i
\(754\) 0 0
\(755\) 10.6572 + 16.9070i 0.387857 + 0.615310i
\(756\) 0 0
\(757\) −10.8452 + 14.9271i −0.394174 + 0.542534i −0.959270 0.282492i \(-0.908839\pi\)
0.565096 + 0.825025i \(0.308839\pi\)
\(758\) 0 0
\(759\) 0.973183 + 2.82557i 0.0353243 + 0.102562i
\(760\) 0 0
\(761\) 11.0383 + 8.01981i 0.400139 + 0.290718i 0.769598 0.638529i \(-0.220457\pi\)
−0.369459 + 0.929247i \(0.620457\pi\)
\(762\) 0 0
\(763\) −8.72763 + 2.83578i −0.315961 + 0.102662i
\(764\) 0 0
\(765\) 2.16440 + 1.80171i 0.0782540 + 0.0651408i
\(766\) 0 0
\(767\) 15.6123 + 5.07275i 0.563729 + 0.183167i
\(768\) 0 0
\(769\) 6.77400 0.244277 0.122138 0.992513i \(-0.461025\pi\)
0.122138 + 0.992513i \(0.461025\pi\)
\(770\) 0 0
\(771\) −49.9017 −1.79717
\(772\) 0 0
\(773\) 17.8559 + 5.80173i 0.642231 + 0.208674i 0.611986 0.790869i \(-0.290371\pi\)
0.0302456 + 0.999542i \(0.490371\pi\)
\(774\) 0 0
\(775\) 11.5355 24.1305i 0.414367 0.866795i
\(776\) 0 0
\(777\) −46.0188 + 14.9524i −1.65092 + 0.536415i
\(778\) 0 0
\(779\) −6.59914 4.79455i −0.236439 0.171783i
\(780\) 0 0
\(781\) 10.5589 34.5467i 0.377826 1.23618i
\(782\) 0 0
\(783\) 30.7848 42.3717i 1.10016 1.51424i
\(784\) 0 0
\(785\) −33.3702 + 21.0347i −1.19103 + 0.750760i
\(786\) 0 0
\(787\) −16.1285 22.1990i −0.574921 0.791310i 0.418206 0.908352i \(-0.362659\pi\)
−0.993127 + 0.117042i \(0.962659\pi\)
\(788\) 0 0
\(789\) 13.8535 42.6366i 0.493197 1.51790i
\(790\) 0 0
\(791\) −31.6658 −1.12590
\(792\) 0 0
\(793\) 7.61507i 0.270419i
\(794\) 0 0
\(795\) 2.62361 39.7633i 0.0930500 1.41026i
\(796\) 0 0
\(797\) −31.6667 43.5855i −1.12169 1.54388i −0.802960 0.596032i \(-0.796743\pi\)
−0.318732 0.947845i \(-0.603257\pi\)
\(798\) 0 0
\(799\) 5.45029 + 16.7743i 0.192817 + 0.593431i
\(800\) 0 0
\(801\) 1.88197 + 1.36733i 0.0664960 + 0.0483122i
\(802\) 0 0
\(803\) −6.45988 + 9.22729i −0.227964 + 0.325624i
\(804\) 0 0
\(805\) −4.36895 1.74524i −0.153985 0.0615117i
\(806\) 0 0
\(807\) 19.6344 6.37959i 0.691162 0.224572i
\(808\) 0 0
\(809\) 26.1612 19.0073i 0.919781 0.668260i −0.0236888 0.999719i \(-0.507541\pi\)
0.943469 + 0.331460i \(0.107541\pi\)
\(810\) 0 0
\(811\) −14.1920 + 43.6785i −0.498349 + 1.53376i 0.313322 + 0.949647i \(0.398558\pi\)
−0.811671 + 0.584114i \(0.801442\pi\)
\(812\) 0 0
\(813\) 9.22691i 0.323602i
\(814\) 0 0
\(815\) −0.0957671 0.377773i −0.00335458 0.0132328i
\(816\) 0 0
\(817\) 4.46367 + 1.45033i 0.156164 + 0.0507408i
\(818\) 0 0
\(819\) −3.61803 + 2.62866i −0.126424 + 0.0918527i
\(820\) 0 0
\(821\) 8.78690 + 27.0433i 0.306665 + 0.943818i 0.979051 + 0.203617i \(0.0652697\pi\)
−0.672386 + 0.740201i \(0.734730\pi\)
\(822\) 0 0
\(823\) 6.09146 8.38417i 0.212335 0.292254i −0.689543 0.724245i \(-0.742189\pi\)
0.901878 + 0.431991i \(0.142189\pi\)
\(824\) 0 0
\(825\) −13.1943 23.3638i −0.459367 0.813425i
\(826\) 0 0
\(827\) 11.5254 15.8634i 0.400779 0.551625i −0.560161 0.828384i \(-0.689261\pi\)
0.960939 + 0.276760i \(0.0892605\pi\)
\(828\) 0 0
\(829\) −15.4118 47.4327i −0.535275 1.64741i −0.743054 0.669231i \(-0.766624\pi\)
0.207780 0.978176i \(-0.433376\pi\)
\(830\) 0 0
\(831\) −41.5317 + 30.1746i −1.44072 + 1.04674i
\(832\) 0 0
\(833\) 22.8109 + 7.41171i 0.790350 + 0.256800i
\(834\) 0 0
\(835\) 3.01458 + 11.8917i 0.104324 + 0.411528i
\(836\) 0 0
\(837\) 29.2716i 1.01177i
\(838\) 0 0
\(839\) −3.25249 + 10.0101i −0.112289 + 0.345589i −0.991372 0.131080i \(-0.958156\pi\)
0.879083 + 0.476668i \(0.158156\pi\)
\(840\) 0 0
\(841\) −50.6490 + 36.7986i −1.74652 + 1.26892i
\(842\) 0 0
\(843\) 2.98262 0.969111i 0.102727 0.0333779i
\(844\) 0 0
\(845\) −7.05300 2.81742i −0.242631 0.0969223i
\(846\) 0 0
\(847\) −1.45728 41.5338i −0.0500726 1.42712i
\(848\) 0 0
\(849\) 6.43497 + 4.67528i 0.220848 + 0.160455i
\(850\) 0 0
\(851\) −1.36211 4.19214i −0.0466925 0.143705i
\(852\) 0 0
\(853\) 9.24016 + 12.7180i 0.316377 + 0.435456i 0.937357 0.348371i \(-0.113265\pi\)
−0.620980 + 0.783827i \(0.713265\pi\)
\(854\) 0 0
\(855\) 0.0729453 1.10555i 0.00249468 0.0378091i
\(856\) 0 0
\(857\) 37.8967i 1.29453i 0.762267 + 0.647263i \(0.224086\pi\)
−0.762267 + 0.647263i \(0.775914\pi\)
\(858\) 0 0
\(859\) 20.5913 0.702567 0.351283 0.936269i \(-0.385745\pi\)
0.351283 + 0.936269i \(0.385745\pi\)
\(860\) 0 0
\(861\) 11.8785 36.5584i 0.404820 1.24591i
\(862\) 0 0
\(863\) −5.05094 6.95203i −0.171936 0.236650i 0.714349 0.699789i \(-0.246723\pi\)
−0.886285 + 0.463140i \(0.846723\pi\)
\(864\) 0 0
\(865\) 45.3915 28.6122i 1.54336 0.972846i
\(866\) 0 0
\(867\) 5.82841 8.02212i 0.197943 0.272445i
\(868\) 0 0
\(869\) −54.2629 + 0.951654i −1.84074 + 0.0322826i
\(870\) 0 0
\(871\) −23.0966 16.7806i −0.782597 0.568590i
\(872\) 0 0
\(873\) −4.48930 + 1.45866i −0.151940 + 0.0493682i
\(874\) 0 0
\(875\) 41.4183 + 8.29488i 1.40019 + 0.280418i
\(876\) 0 0
\(877\) 42.9395 + 13.9519i 1.44996 + 0.471122i 0.924989 0.379995i \(-0.124074\pi\)
0.524976 + 0.851117i \(0.324074\pi\)
\(878\) 0 0
\(879\) −0.305364 −0.0102997
\(880\) 0 0
\(881\) −38.4847 −1.29658 −0.648291 0.761393i \(-0.724516\pi\)
−0.648291 + 0.761393i \(0.724516\pi\)
\(882\) 0 0
\(883\) 37.3951 + 12.1504i 1.25845 + 0.408894i 0.860940 0.508706i \(-0.169876\pi\)
0.397505 + 0.917600i \(0.369876\pi\)
\(884\) 0 0
\(885\) −14.7299 12.2616i −0.495141 0.412169i
\(886\) 0 0
\(887\) 7.46016 2.42395i 0.250488 0.0813883i −0.181082 0.983468i \(-0.557960\pi\)
0.431570 + 0.902080i \(0.357960\pi\)
\(888\) 0 0
\(889\) 21.2537 + 15.4417i 0.712825 + 0.517897i
\(890\) 0 0
\(891\) −20.9430 14.6619i −0.701617 0.491191i
\(892\) 0 0
\(893\) 4.07869 5.61384i 0.136488 0.187860i
\(894\) 0 0
\(895\) −0.254094 0.403103i −0.00849341 0.0134742i
\(896\) 0 0
\(897\) 1.64129 + 2.25904i 0.0548010 + 0.0754271i
\(898\) 0 0
\(899\) −15.8210 + 48.6919i −0.527658 + 1.62397i
\(900\) 0 0
\(901\) −36.3162 −1.20987
\(902\) 0 0
\(903\) 22.1175i 0.736026i
\(904\) 0 0
\(905\) 0.152838 2.31641i 0.00508052 0.0770000i
\(906\) 0 0
\(907\) 26.0762 + 35.8908i 0.865845 + 1.19173i 0.980144 + 0.198287i \(0.0635379\pi\)
−0.114299 + 0.993446i \(0.536462\pi\)
\(908\) 0 0
\(909\) −1.06398 3.27460i −0.0352900 0.108612i
\(910\) 0 0
\(911\) 11.2063 + 8.14186i 0.371282 + 0.269752i 0.757742 0.652554i \(-0.226302\pi\)
−0.386460 + 0.922306i \(0.626302\pi\)
\(912\) 0 0
\(913\) −0.583860 0.178451i −0.0193229 0.00590587i
\(914\) 0 0
\(915\) 3.29809 8.25627i 0.109031 0.272944i
\(916\) 0 0
\(917\) 20.1845 6.55835i 0.666552 0.216576i
\(918\) 0 0
\(919\) 12.3286 8.95726i 0.406684 0.295473i −0.365574 0.930782i \(-0.619127\pi\)
0.772258 + 0.635309i \(0.219127\pi\)
\(920\) 0 0
\(921\) −6.19098 + 19.0539i −0.204000 + 0.627847i
\(922\) 0 0
\(923\) 33.7534i 1.11101i
\(924\) 0 0
\(925\) 18.8539 + 34.7967i 0.619911 + 1.14411i
\(926\) 0 0
\(927\) 4.15363 + 1.34960i 0.136423 + 0.0443265i
\(928\) 0 0
\(929\) 30.6793 22.2898i 1.00656 0.731306i 0.0430721 0.999072i \(-0.486285\pi\)
0.963484 + 0.267766i \(0.0862855\pi\)
\(930\) 0 0
\(931\) −2.91597 8.97444i −0.0955672 0.294126i
\(932\) 0 0
\(933\) 20.0846 27.6440i 0.657540 0.905025i
\(934\) 0 0
\(935\) −20.4543 + 13.4001i −0.668927 + 0.438230i
\(936\) 0 0
\(937\) 3.21963 4.43144i 0.105181 0.144769i −0.753182 0.657812i \(-0.771482\pi\)
0.858363 + 0.513043i \(0.171482\pi\)
\(938\) 0 0
\(939\) 8.28961 + 25.5128i 0.270521 + 0.832579i
\(940\) 0 0
\(941\) −37.5713 + 27.2971i −1.22479 + 0.889861i −0.996489 0.0837293i \(-0.973317\pi\)
−0.228301 + 0.973591i \(0.573317\pi\)
\(942\) 0 0
\(943\) 3.33033 + 1.08209i 0.108450 + 0.0352377i
\(944\) 0 0
\(945\) 44.8119 11.3600i 1.45773 0.369541i
\(946\) 0 0
\(947\) 22.7220i 0.738366i −0.929357 0.369183i \(-0.879638\pi\)
0.929357 0.369183i \(-0.120362\pi\)
\(948\) 0 0
\(949\) −3.25225 + 10.0094i −0.105573 + 0.324919i
\(950\) 0 0
\(951\) −25.7052 + 18.6759i −0.833548 + 0.605608i
\(952\) 0 0
\(953\) 34.2554 11.1302i 1.10964 0.360544i 0.303835 0.952725i \(-0.401733\pi\)
0.805805 + 0.592181i \(0.201733\pi\)
\(954\) 0 0
\(955\) −37.2413 14.8766i −1.20510 0.481395i
\(956\) 0 0
\(957\) 30.9140 + 41.0172i 0.999309 + 1.32590i
\(958\) 0 0
\(959\) −23.4988 17.0729i −0.758815 0.551311i
\(960\) 0 0
\(961\) −0.737310 2.26921i −0.0237842 0.0732002i
\(962\) 0 0
\(963\) 3.44733 + 4.74484i 0.111089 + 0.152900i
\(964\) 0 0
\(965\) −20.1253 1.32788i −0.647855 0.0427460i
\(966\) 0 0
\(967\) 23.8349i 0.766479i −0.923649 0.383240i \(-0.874808\pi\)
0.923649 0.383240i \(-0.125192\pi\)
\(968\) 0 0
\(969\) 6.92067 0.222324
\(970\) 0 0
\(971\) 10.9297 33.6381i 0.350750 1.07950i −0.607682 0.794180i \(-0.707901\pi\)
0.958433 0.285319i \(-0.0920994\pi\)
\(972\) 0 0
\(973\) 2.13594 + 2.93987i 0.0684750 + 0.0942478i
\(974\) 0 0
\(975\) −18.1708 17.2736i −0.581932 0.553196i
\(976\) 0 0
\(977\) 6.63066 9.12632i 0.212134 0.291977i −0.689669 0.724124i \(-0.742244\pi\)
0.901803 + 0.432148i \(0.142244\pi\)
\(978\) 0 0
\(979\) −16.1305 + 12.1573i −0.515532 + 0.388548i
\(980\) 0 0
\(981\) 0.750578 + 0.545327i 0.0239641 + 0.0174109i
\(982\) 0 0
\(983\) −8.14486 + 2.64643i −0.259781 + 0.0844079i −0.436012 0.899941i \(-0.643609\pi\)
0.176231 + 0.984349i \(0.443609\pi\)
\(984\) 0 0
\(985\) −6.33155 5.27056i −0.201740 0.167934i
\(986\) 0 0
\(987\) 31.1000 + 10.1050i 0.989923 + 0.321645i
\(988\) 0 0
\(989\) −2.01482 −0.0640677
\(990\) 0 0
\(991\) 15.9978 0.508185 0.254093 0.967180i \(-0.418223\pi\)
0.254093 + 0.967180i \(0.418223\pi\)
\(992\) 0 0
\(993\) 36.1360 + 11.7413i 1.14674 + 0.372599i
\(994\) 0 0
\(995\) 6.05913 7.27886i 0.192087 0.230755i
\(996\) 0 0
\(997\) −27.0137 + 8.77729i −0.855533 + 0.277979i −0.703762 0.710436i \(-0.748498\pi\)
−0.151771 + 0.988416i \(0.548498\pi\)
\(998\) 0 0
\(999\) 35.0412 + 25.4589i 1.10866 + 0.805485i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 880.2.cd.b.609.3 16
4.3 odd 2 110.2.j.b.59.1 16
5.4 even 2 inner 880.2.cd.b.609.1 16
11.3 even 5 inner 880.2.cd.b.289.1 16
12.11 even 2 990.2.ba.h.829.4 16
20.3 even 4 550.2.h.n.301.2 8
20.7 even 4 550.2.h.j.301.1 8
20.19 odd 2 110.2.j.b.59.3 yes 16
44.3 odd 10 110.2.j.b.69.3 yes 16
44.27 odd 10 1210.2.b.k.969.2 8
44.39 even 10 1210.2.b.l.969.6 8
55.14 even 10 inner 880.2.cd.b.289.3 16
60.59 even 2 990.2.ba.h.829.2 16
132.47 even 10 990.2.ba.h.289.2 16
220.3 even 20 550.2.h.n.201.2 8
220.27 even 20 6050.2.a.di.1.1 4
220.39 even 10 1210.2.b.l.969.4 8
220.47 even 20 550.2.h.j.201.1 8
220.83 odd 20 6050.2.a.dl.1.3 4
220.127 odd 20 6050.2.a.da.1.2 4
220.159 odd 10 1210.2.b.k.969.8 8
220.179 odd 10 110.2.j.b.69.1 yes 16
220.203 even 20 6050.2.a.dd.1.4 4
660.179 even 10 990.2.ba.h.289.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.2.j.b.59.1 16 4.3 odd 2
110.2.j.b.59.3 yes 16 20.19 odd 2
110.2.j.b.69.1 yes 16 220.179 odd 10
110.2.j.b.69.3 yes 16 44.3 odd 10
550.2.h.j.201.1 8 220.47 even 20
550.2.h.j.301.1 8 20.7 even 4
550.2.h.n.201.2 8 220.3 even 20
550.2.h.n.301.2 8 20.3 even 4
880.2.cd.b.289.1 16 11.3 even 5 inner
880.2.cd.b.289.3 16 55.14 even 10 inner
880.2.cd.b.609.1 16 5.4 even 2 inner
880.2.cd.b.609.3 16 1.1 even 1 trivial
990.2.ba.h.289.2 16 132.47 even 10
990.2.ba.h.289.4 16 660.179 even 10
990.2.ba.h.829.2 16 60.59 even 2
990.2.ba.h.829.4 16 12.11 even 2
1210.2.b.k.969.2 8 44.27 odd 10
1210.2.b.k.969.8 8 220.159 odd 10
1210.2.b.l.969.4 8 220.39 even 10
1210.2.b.l.969.6 8 44.39 even 10
6050.2.a.da.1.2 4 220.127 odd 20
6050.2.a.dd.1.4 4 220.203 even 20
6050.2.a.di.1.1 4 220.27 even 20
6050.2.a.dl.1.3 4 220.83 odd 20