Properties

Label 880.2.bo.k.641.2
Level $880$
Weight $2$
Character 880.641
Analytic conductor $7.027$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [880,2,Mod(81,880)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(880, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("880.81"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 880.bo (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,3,0,-4,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.02683537787\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 3 x^{15} + 14 x^{14} - 32 x^{13} + 141 x^{12} - 220 x^{11} + 1105 x^{10} - 1935 x^{9} + \cdots + 10000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 440)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 641.2
Root \(-0.220438 - 0.678438i\) of defining polynomial
Character \(\chi\) \(=\) 880.641
Dual form 880.2.bo.k.81.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.220438 - 0.678438i) q^{3} +(-0.809017 - 0.587785i) q^{5} +(-0.116244 + 0.357761i) q^{7} +(2.01537 - 1.46425i) q^{9} +(0.107091 + 3.31490i) q^{11} +(2.28815 - 1.66244i) q^{13} +(-0.220438 + 0.678438i) q^{15} +(3.91377 + 2.84352i) q^{17} +(-0.905388 - 2.78650i) q^{19} +0.268343 q^{21} -3.77226 q^{23} +(0.309017 + 0.951057i) q^{25} +(-3.16901 - 2.30242i) q^{27} +(2.60933 - 8.03068i) q^{29} +(6.50458 - 4.72586i) q^{31} +(2.22534 - 0.803383i) q^{33} +(0.304330 - 0.221108i) q^{35} +(0.877578 - 2.70091i) q^{37} +(-1.63226 - 1.18590i) q^{39} +(-1.14965 - 3.53825i) q^{41} +6.48484 q^{43} -2.49113 q^{45} +(-0.800034 - 2.46225i) q^{47} +(5.54864 + 4.03132i) q^{49} +(1.06641 - 3.28207i) q^{51} +(0.0394497 - 0.0286619i) q^{53} +(1.86181 - 2.74475i) q^{55} +(-1.69089 + 1.22850i) q^{57} +(0.509660 - 1.56857i) q^{59} +(-7.03606 - 5.11200i) q^{61} +(0.289578 + 0.891229i) q^{63} -2.82831 q^{65} -11.4395 q^{67} +(0.831550 + 2.55925i) q^{69} +(11.4246 + 8.30046i) q^{71} +(0.158595 - 0.488106i) q^{73} +(0.577114 - 0.419298i) q^{75} +(-1.19839 - 0.347022i) q^{77} +(10.5029 - 7.63082i) q^{79} +(1.44592 - 4.45010i) q^{81} +(2.21418 + 1.60869i) q^{83} +(-1.49493 - 4.60091i) q^{85} -6.02351 q^{87} +12.0195 q^{89} +(0.328773 + 1.01186i) q^{91} +(-4.64006 - 3.37120i) q^{93} +(-0.905388 + 2.78650i) q^{95} +(-13.0046 + 9.44836i) q^{97} +(5.06966 + 6.52392i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 3 q^{3} - 4 q^{5} - 8 q^{7} - 7 q^{9} + 7 q^{11} - 11 q^{13} + 3 q^{15} + 9 q^{17} + 2 q^{19} + 12 q^{21} - 20 q^{23} - 4 q^{25} + 9 q^{27} + q^{29} + 2 q^{31} - 32 q^{33} + 2 q^{35} - 16 q^{37}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.220438 0.678438i −0.127270 0.391696i 0.867038 0.498242i \(-0.166021\pi\)
−0.994308 + 0.106546i \(0.966021\pi\)
\(4\) 0 0
\(5\) −0.809017 0.587785i −0.361803 0.262866i
\(6\) 0 0
\(7\) −0.116244 + 0.357761i −0.0439359 + 0.135221i −0.970618 0.240625i \(-0.922648\pi\)
0.926682 + 0.375846i \(0.122648\pi\)
\(8\) 0 0
\(9\) 2.01537 1.46425i 0.671789 0.488083i
\(10\) 0 0
\(11\) 0.107091 + 3.31490i 0.0322892 + 0.999479i
\(12\) 0 0
\(13\) 2.28815 1.66244i 0.634619 0.461077i −0.223379 0.974732i \(-0.571709\pi\)
0.857997 + 0.513654i \(0.171709\pi\)
\(14\) 0 0
\(15\) −0.220438 + 0.678438i −0.0569168 + 0.175172i
\(16\) 0 0
\(17\) 3.91377 + 2.84352i 0.949228 + 0.689655i 0.950624 0.310344i \(-0.100444\pi\)
−0.00139602 + 0.999999i \(0.500444\pi\)
\(18\) 0 0
\(19\) −0.905388 2.78650i −0.207710 0.639267i −0.999591 0.0285910i \(-0.990898\pi\)
0.791881 0.610676i \(-0.209102\pi\)
\(20\) 0 0
\(21\) 0.268343 0.0585573
\(22\) 0 0
\(23\) −3.77226 −0.786571 −0.393285 0.919416i \(-0.628662\pi\)
−0.393285 + 0.919416i \(0.628662\pi\)
\(24\) 0 0
\(25\) 0.309017 + 0.951057i 0.0618034 + 0.190211i
\(26\) 0 0
\(27\) −3.16901 2.30242i −0.609876 0.443101i
\(28\) 0 0
\(29\) 2.60933 8.03068i 0.484540 1.49126i −0.348107 0.937455i \(-0.613175\pi\)
0.832646 0.553805i \(-0.186825\pi\)
\(30\) 0 0
\(31\) 6.50458 4.72586i 1.16826 0.848789i 0.177458 0.984128i \(-0.443213\pi\)
0.990799 + 0.135340i \(0.0432126\pi\)
\(32\) 0 0
\(33\) 2.22534 0.803383i 0.387383 0.139851i
\(34\) 0 0
\(35\) 0.304330 0.221108i 0.0514411 0.0373742i
\(36\) 0 0
\(37\) 0.877578 2.70091i 0.144273 0.444026i −0.852644 0.522492i \(-0.825002\pi\)
0.996917 + 0.0784662i \(0.0250023\pi\)
\(38\) 0 0
\(39\) −1.63226 1.18590i −0.261370 0.189897i
\(40\) 0 0
\(41\) −1.14965 3.53825i −0.179545 0.552583i 0.820267 0.571981i \(-0.193825\pi\)
−0.999812 + 0.0193984i \(0.993825\pi\)
\(42\) 0 0
\(43\) 6.48484 0.988929 0.494465 0.869198i \(-0.335364\pi\)
0.494465 + 0.869198i \(0.335364\pi\)
\(44\) 0 0
\(45\) −2.49113 −0.371356
\(46\) 0 0
\(47\) −0.800034 2.46225i −0.116697 0.359157i 0.875600 0.483037i \(-0.160466\pi\)
−0.992297 + 0.123880i \(0.960466\pi\)
\(48\) 0 0
\(49\) 5.54864 + 4.03132i 0.792663 + 0.575903i
\(50\) 0 0
\(51\) 1.06641 3.28207i 0.149327 0.459582i
\(52\) 0 0
\(53\) 0.0394497 0.0286619i 0.00541884 0.00393702i −0.585073 0.810981i \(-0.698934\pi\)
0.590491 + 0.807044i \(0.298934\pi\)
\(54\) 0 0
\(55\) 1.86181 2.74475i 0.251046 0.370102i
\(56\) 0 0
\(57\) −1.69089 + 1.22850i −0.223963 + 0.162719i
\(58\) 0 0
\(59\) 0.509660 1.56857i 0.0663521 0.204211i −0.912384 0.409336i \(-0.865760\pi\)
0.978736 + 0.205126i \(0.0657603\pi\)
\(60\) 0 0
\(61\) −7.03606 5.11200i −0.900875 0.654524i 0.0378153 0.999285i \(-0.487960\pi\)
−0.938691 + 0.344760i \(0.887960\pi\)
\(62\) 0 0
\(63\) 0.289578 + 0.891229i 0.0364834 + 0.112284i
\(64\) 0 0
\(65\) −2.82831 −0.350809
\(66\) 0 0
\(67\) −11.4395 −1.39756 −0.698779 0.715338i \(-0.746273\pi\)
−0.698779 + 0.715338i \(0.746273\pi\)
\(68\) 0 0
\(69\) 0.831550 + 2.55925i 0.100107 + 0.308097i
\(70\) 0 0
\(71\) 11.4246 + 8.30046i 1.35585 + 0.985084i 0.998697 + 0.0510383i \(0.0162530\pi\)
0.357155 + 0.934045i \(0.383747\pi\)
\(72\) 0 0
\(73\) 0.158595 0.488106i 0.0185622 0.0571284i −0.941346 0.337442i \(-0.890438\pi\)
0.959909 + 0.280313i \(0.0904384\pi\)
\(74\) 0 0
\(75\) 0.577114 0.419298i 0.0666394 0.0484163i
\(76\) 0 0
\(77\) −1.19839 0.347022i −0.136569 0.0395469i
\(78\) 0 0
\(79\) 10.5029 7.63082i 1.18167 0.858534i 0.189312 0.981917i \(-0.439374\pi\)
0.992359 + 0.123383i \(0.0393743\pi\)
\(80\) 0 0
\(81\) 1.44592 4.45010i 0.160658 0.494455i
\(82\) 0 0
\(83\) 2.21418 + 1.60869i 0.243037 + 0.176577i 0.702635 0.711550i \(-0.252007\pi\)
−0.459598 + 0.888127i \(0.652007\pi\)
\(84\) 0 0
\(85\) −1.49493 4.60091i −0.162148 0.499039i
\(86\) 0 0
\(87\) −6.02351 −0.645789
\(88\) 0 0
\(89\) 12.0195 1.27407 0.637034 0.770835i \(-0.280161\pi\)
0.637034 + 0.770835i \(0.280161\pi\)
\(90\) 0 0
\(91\) 0.328773 + 1.01186i 0.0344648 + 0.106072i
\(92\) 0 0
\(93\) −4.64006 3.37120i −0.481152 0.349577i
\(94\) 0 0
\(95\) −0.905388 + 2.78650i −0.0928909 + 0.285889i
\(96\) 0 0
\(97\) −13.0046 + 9.44836i −1.32041 + 0.959336i −0.320486 + 0.947253i \(0.603846\pi\)
−0.999927 + 0.0120825i \(0.996154\pi\)
\(98\) 0 0
\(99\) 5.06966 + 6.52392i 0.509520 + 0.655678i
\(100\) 0 0
\(101\) −12.6112 + 9.16257i −1.25486 + 0.911709i −0.998493 0.0548702i \(-0.982525\pi\)
−0.256367 + 0.966580i \(0.582525\pi\)
\(102\) 0 0
\(103\) 2.86121 8.80590i 0.281923 0.867671i −0.705381 0.708829i \(-0.749224\pi\)
0.987304 0.158842i \(-0.0507761\pi\)
\(104\) 0 0
\(105\) −0.217094 0.157728i −0.0211862 0.0153927i
\(106\) 0 0
\(107\) 0.667222 + 2.05350i 0.0645027 + 0.198519i 0.978114 0.208070i \(-0.0667181\pi\)
−0.913611 + 0.406589i \(0.866718\pi\)
\(108\) 0 0
\(109\) −5.79052 −0.554631 −0.277315 0.960779i \(-0.589445\pi\)
−0.277315 + 0.960779i \(0.589445\pi\)
\(110\) 0 0
\(111\) −2.02585 −0.192285
\(112\) 0 0
\(113\) 5.87590 + 18.0842i 0.552758 + 1.70121i 0.701792 + 0.712382i \(0.252384\pi\)
−0.149034 + 0.988832i \(0.547616\pi\)
\(114\) 0 0
\(115\) 3.05182 + 2.21728i 0.284584 + 0.206762i
\(116\) 0 0
\(117\) 2.17724 6.70084i 0.201285 0.619493i
\(118\) 0 0
\(119\) −1.47225 + 1.06965i −0.134961 + 0.0980549i
\(120\) 0 0
\(121\) −10.9771 + 0.709993i −0.997915 + 0.0645448i
\(122\) 0 0
\(123\) −2.14706 + 1.55993i −0.193594 + 0.140654i
\(124\) 0 0
\(125\) 0.309017 0.951057i 0.0276393 0.0850651i
\(126\) 0 0
\(127\) −8.16891 5.93506i −0.724873 0.526651i 0.163064 0.986615i \(-0.447862\pi\)
−0.887937 + 0.459964i \(0.847862\pi\)
\(128\) 0 0
\(129\) −1.42950 4.39956i −0.125861 0.387360i
\(130\) 0 0
\(131\) 6.29651 0.550128 0.275064 0.961426i \(-0.411301\pi\)
0.275064 + 0.961426i \(0.411301\pi\)
\(132\) 0 0
\(133\) 1.10215 0.0955682
\(134\) 0 0
\(135\) 1.21045 + 3.72539i 0.104179 + 0.320631i
\(136\) 0 0
\(137\) 6.69323 + 4.86292i 0.571842 + 0.415467i 0.835774 0.549074i \(-0.185019\pi\)
−0.263932 + 0.964541i \(0.585019\pi\)
\(138\) 0 0
\(139\) 3.17270 9.76458i 0.269105 0.828221i −0.721614 0.692296i \(-0.756599\pi\)
0.990719 0.135925i \(-0.0434007\pi\)
\(140\) 0 0
\(141\) −1.49413 + 1.08555i −0.125828 + 0.0914196i
\(142\) 0 0
\(143\) 5.75585 + 7.40694i 0.481328 + 0.619400i
\(144\) 0 0
\(145\) −6.83130 + 4.96323i −0.567309 + 0.412174i
\(146\) 0 0
\(147\) 1.51187 4.65306i 0.124697 0.383778i
\(148\) 0 0
\(149\) 3.96547 + 2.88109i 0.324864 + 0.236028i 0.738248 0.674529i \(-0.235653\pi\)
−0.413384 + 0.910557i \(0.635653\pi\)
\(150\) 0 0
\(151\) 2.89124 + 8.89833i 0.235286 + 0.724136i 0.997083 + 0.0763203i \(0.0243171\pi\)
−0.761797 + 0.647815i \(0.775683\pi\)
\(152\) 0 0
\(153\) 12.0513 0.974289
\(154\) 0 0
\(155\) −8.04011 −0.645797
\(156\) 0 0
\(157\) 2.98454 + 9.18547i 0.238192 + 0.733080i 0.996682 + 0.0813952i \(0.0259376\pi\)
−0.758490 + 0.651685i \(0.774062\pi\)
\(158\) 0 0
\(159\) −0.0281416 0.0204460i −0.00223177 0.00162148i
\(160\) 0 0
\(161\) 0.438501 1.34957i 0.0345587 0.106361i
\(162\) 0 0
\(163\) 3.63088 2.63799i 0.284393 0.206623i −0.436438 0.899734i \(-0.643760\pi\)
0.720831 + 0.693111i \(0.243760\pi\)
\(164\) 0 0
\(165\) −2.27256 0.658074i −0.176918 0.0512310i
\(166\) 0 0
\(167\) −18.9889 + 13.7962i −1.46940 + 1.06759i −0.488619 + 0.872497i \(0.662499\pi\)
−0.980786 + 0.195088i \(0.937501\pi\)
\(168\) 0 0
\(169\) −1.54529 + 4.75592i −0.118869 + 0.365840i
\(170\) 0 0
\(171\) −5.90482 4.29010i −0.451553 0.328072i
\(172\) 0 0
\(173\) −4.00204 12.3170i −0.304270 0.936445i −0.979949 0.199250i \(-0.936150\pi\)
0.675679 0.737196i \(-0.263850\pi\)
\(174\) 0 0
\(175\) −0.376172 −0.0284359
\(176\) 0 0
\(177\) −1.17653 −0.0884332
\(178\) 0 0
\(179\) 1.09062 + 3.35659i 0.0815170 + 0.250884i 0.983506 0.180875i \(-0.0578931\pi\)
−0.901989 + 0.431759i \(0.857893\pi\)
\(180\) 0 0
\(181\) −1.44958 1.05318i −0.107746 0.0782824i 0.532607 0.846362i \(-0.321212\pi\)
−0.640354 + 0.768080i \(0.721212\pi\)
\(182\) 0 0
\(183\) −1.91716 + 5.90041i −0.141721 + 0.436171i
\(184\) 0 0
\(185\) −2.29753 + 1.66925i −0.168918 + 0.122726i
\(186\) 0 0
\(187\) −9.00684 + 13.2782i −0.658645 + 0.971002i
\(188\) 0 0
\(189\) 1.19209 0.866106i 0.0867120 0.0629999i
\(190\) 0 0
\(191\) −1.05101 + 3.23466i −0.0760481 + 0.234052i −0.981853 0.189643i \(-0.939267\pi\)
0.905805 + 0.423695i \(0.139267\pi\)
\(192\) 0 0
\(193\) 6.29046 + 4.57028i 0.452797 + 0.328976i 0.790699 0.612205i \(-0.209717\pi\)
−0.337902 + 0.941181i \(0.609717\pi\)
\(194\) 0 0
\(195\) 0.623466 + 1.91883i 0.0446474 + 0.137410i
\(196\) 0 0
\(197\) −7.09410 −0.505434 −0.252717 0.967540i \(-0.581324\pi\)
−0.252717 + 0.967540i \(0.581324\pi\)
\(198\) 0 0
\(199\) −12.7734 −0.905481 −0.452740 0.891642i \(-0.649554\pi\)
−0.452740 + 0.891642i \(0.649554\pi\)
\(200\) 0 0
\(201\) 2.52170 + 7.76100i 0.177867 + 0.547418i
\(202\) 0 0
\(203\) 2.56975 + 1.86703i 0.180361 + 0.131040i
\(204\) 0 0
\(205\) −1.14965 + 3.53825i −0.0802949 + 0.247122i
\(206\) 0 0
\(207\) −7.60249 + 5.52353i −0.528409 + 0.383912i
\(208\) 0 0
\(209\) 9.13999 3.29968i 0.632227 0.228243i
\(210\) 0 0
\(211\) 5.93856 4.31462i 0.408828 0.297031i −0.364299 0.931282i \(-0.618692\pi\)
0.773127 + 0.634251i \(0.218692\pi\)
\(212\) 0 0
\(213\) 3.11293 9.58062i 0.213295 0.656454i
\(214\) 0 0
\(215\) −5.24635 3.81169i −0.357798 0.259955i
\(216\) 0 0
\(217\) 0.934611 + 2.87644i 0.0634455 + 0.195265i
\(218\) 0 0
\(219\) −0.366110 −0.0247394
\(220\) 0 0
\(221\) 13.6825 0.920382
\(222\) 0 0
\(223\) −2.02059 6.21872i −0.135308 0.416436i 0.860329 0.509738i \(-0.170258\pi\)
−0.995638 + 0.0933019i \(0.970258\pi\)
\(224\) 0 0
\(225\) 2.01537 + 1.46425i 0.134358 + 0.0976166i
\(226\) 0 0
\(227\) −6.34910 + 19.5405i −0.421405 + 1.29695i 0.484990 + 0.874520i \(0.338823\pi\)
−0.906395 + 0.422431i \(0.861177\pi\)
\(228\) 0 0
\(229\) 3.50380 2.54566i 0.231538 0.168222i −0.465967 0.884802i \(-0.654294\pi\)
0.697505 + 0.716580i \(0.254294\pi\)
\(230\) 0 0
\(231\) 0.0287372 + 0.889530i 0.00189077 + 0.0585268i
\(232\) 0 0
\(233\) −23.1860 + 16.8456i −1.51897 + 1.10360i −0.556973 + 0.830531i \(0.688037\pi\)
−0.961996 + 0.273064i \(0.911963\pi\)
\(234\) 0 0
\(235\) −0.800034 + 2.46225i −0.0521885 + 0.160620i
\(236\) 0 0
\(237\) −7.49228 5.44346i −0.486676 0.353591i
\(238\) 0 0
\(239\) 3.23746 + 9.96387i 0.209414 + 0.644509i 0.999503 + 0.0315175i \(0.0100340\pi\)
−0.790090 + 0.612991i \(0.789966\pi\)
\(240\) 0 0
\(241\) 15.5202 0.999745 0.499873 0.866099i \(-0.333380\pi\)
0.499873 + 0.866099i \(0.333380\pi\)
\(242\) 0 0
\(243\) −15.0892 −0.967971
\(244\) 0 0
\(245\) −2.11939 6.52282i −0.135403 0.416727i
\(246\) 0 0
\(247\) −6.70405 4.87077i −0.426568 0.309920i
\(248\) 0 0
\(249\) 0.603310 1.85680i 0.0382332 0.117670i
\(250\) 0 0
\(251\) −9.68403 + 7.03586i −0.611251 + 0.444100i −0.849854 0.527017i \(-0.823310\pi\)
0.238604 + 0.971117i \(0.423310\pi\)
\(252\) 0 0
\(253\) −0.403976 12.5047i −0.0253978 0.786161i
\(254\) 0 0
\(255\) −2.79189 + 2.02843i −0.174835 + 0.127025i
\(256\) 0 0
\(257\) −2.61843 + 8.05870i −0.163333 + 0.502688i −0.998910 0.0466864i \(-0.985134\pi\)
0.835576 + 0.549374i \(0.185134\pi\)
\(258\) 0 0
\(259\) 0.864266 + 0.627926i 0.0537029 + 0.0390174i
\(260\) 0 0
\(261\) −6.50017 20.0055i −0.402350 1.23831i
\(262\) 0 0
\(263\) −12.5189 −0.771950 −0.385975 0.922509i \(-0.626135\pi\)
−0.385975 + 0.922509i \(0.626135\pi\)
\(264\) 0 0
\(265\) −0.0487626 −0.00299546
\(266\) 0 0
\(267\) −2.64956 8.15451i −0.162151 0.499048i
\(268\) 0 0
\(269\) 19.4689 + 14.1450i 1.18704 + 0.862434i 0.992948 0.118549i \(-0.0378244\pi\)
0.194091 + 0.980984i \(0.437824\pi\)
\(270\) 0 0
\(271\) 2.91162 8.96105i 0.176868 0.544345i −0.822845 0.568265i \(-0.807615\pi\)
0.999714 + 0.0239201i \(0.00761474\pi\)
\(272\) 0 0
\(273\) 0.614009 0.446104i 0.0371615 0.0269994i
\(274\) 0 0
\(275\) −3.11956 + 1.12621i −0.188117 + 0.0679129i
\(276\) 0 0
\(277\) −19.2393 + 13.9782i −1.15598 + 0.839867i −0.989264 0.146138i \(-0.953316\pi\)
−0.166714 + 0.986005i \(0.553316\pi\)
\(278\) 0 0
\(279\) 6.18928 19.0487i 0.370543 1.14041i
\(280\) 0 0
\(281\) −0.402004 0.292073i −0.0239815 0.0174236i 0.575730 0.817640i \(-0.304718\pi\)
−0.599711 + 0.800216i \(0.704718\pi\)
\(282\) 0 0
\(283\) −1.44629 4.45123i −0.0859732 0.264598i 0.898823 0.438312i \(-0.144423\pi\)
−0.984796 + 0.173713i \(0.944423\pi\)
\(284\) 0 0
\(285\) 2.09005 0.123804
\(286\) 0 0
\(287\) 1.39949 0.0826092
\(288\) 0 0
\(289\) 1.97869 + 6.08979i 0.116394 + 0.358223i
\(290\) 0 0
\(291\) 9.27683 + 6.74001i 0.543817 + 0.395106i
\(292\) 0 0
\(293\) 5.22865 16.0921i 0.305461 0.940112i −0.674044 0.738691i \(-0.735444\pi\)
0.979505 0.201421i \(-0.0645559\pi\)
\(294\) 0 0
\(295\) −1.33431 + 0.969431i −0.0776864 + 0.0564424i
\(296\) 0 0
\(297\) 7.29290 10.7515i 0.423177 0.623865i
\(298\) 0 0
\(299\) −8.63150 + 6.27115i −0.499173 + 0.362670i
\(300\) 0 0
\(301\) −0.753821 + 2.32002i −0.0434495 + 0.133724i
\(302\) 0 0
\(303\) 8.99622 + 6.53614i 0.516819 + 0.375491i
\(304\) 0 0
\(305\) 2.68754 + 8.27139i 0.153888 + 0.473618i
\(306\) 0 0
\(307\) 34.3667 1.96141 0.980707 0.195486i \(-0.0626283\pi\)
0.980707 + 0.195486i \(0.0626283\pi\)
\(308\) 0 0
\(309\) −6.60497 −0.375744
\(310\) 0 0
\(311\) −2.27681 7.00729i −0.129106 0.397347i 0.865521 0.500873i \(-0.166988\pi\)
−0.994627 + 0.103526i \(0.966988\pi\)
\(312\) 0 0
\(313\) 20.2744 + 14.7302i 1.14598 + 0.832602i 0.987941 0.154831i \(-0.0494834\pi\)
0.158037 + 0.987433i \(0.449483\pi\)
\(314\) 0 0
\(315\) 0.289578 0.891229i 0.0163159 0.0502150i
\(316\) 0 0
\(317\) −22.7114 + 16.5008i −1.27560 + 0.926777i −0.999411 0.0343263i \(-0.989071\pi\)
−0.276189 + 0.961103i \(0.589071\pi\)
\(318\) 0 0
\(319\) 26.9003 + 7.78963i 1.50613 + 0.436135i
\(320\) 0 0
\(321\) 1.24609 0.905337i 0.0695499 0.0505310i
\(322\) 0 0
\(323\) 4.37998 13.4802i 0.243709 0.750058i
\(324\) 0 0
\(325\) 2.28815 + 1.66244i 0.126924 + 0.0922155i
\(326\) 0 0
\(327\) 1.27645 + 3.92851i 0.0705878 + 0.217247i
\(328\) 0 0
\(329\) 0.973897 0.0536927
\(330\) 0 0
\(331\) −21.9644 −1.20727 −0.603637 0.797259i \(-0.706282\pi\)
−0.603637 + 0.797259i \(0.706282\pi\)
\(332\) 0 0
\(333\) −2.18616 6.72830i −0.119801 0.368709i
\(334\) 0 0
\(335\) 9.25475 + 6.72397i 0.505641 + 0.367370i
\(336\) 0 0
\(337\) 6.91576 21.2845i 0.376726 1.15944i −0.565581 0.824693i \(-0.691348\pi\)
0.942307 0.334750i \(-0.108652\pi\)
\(338\) 0 0
\(339\) 10.9737 7.97287i 0.596010 0.433027i
\(340\) 0 0
\(341\) 16.3623 + 21.0559i 0.886068 + 1.14024i
\(342\) 0 0
\(343\) −4.21755 + 3.06423i −0.227726 + 0.165453i
\(344\) 0 0
\(345\) 0.831550 2.55925i 0.0447691 0.137785i
\(346\) 0 0
\(347\) −20.0465 14.5646i −1.07615 0.781869i −0.0991431 0.995073i \(-0.531610\pi\)
−0.977008 + 0.213204i \(0.931610\pi\)
\(348\) 0 0
\(349\) −6.89978 21.2354i −0.369337 1.13670i −0.947220 0.320583i \(-0.896121\pi\)
0.577883 0.816119i \(-0.303879\pi\)
\(350\) 0 0
\(351\) −11.0788 −0.591342
\(352\) 0 0
\(353\) −5.79232 −0.308294 −0.154147 0.988048i \(-0.549263\pi\)
−0.154147 + 0.988048i \(0.549263\pi\)
\(354\) 0 0
\(355\) −4.36381 13.4304i −0.231607 0.712813i
\(356\) 0 0
\(357\) 1.05023 + 0.763039i 0.0555842 + 0.0403843i
\(358\) 0 0
\(359\) −6.50069 + 20.0071i −0.343094 + 1.05593i 0.619503 + 0.784994i \(0.287334\pi\)
−0.962597 + 0.270939i \(0.912666\pi\)
\(360\) 0 0
\(361\) 8.42648 6.12219i 0.443499 0.322221i
\(362\) 0 0
\(363\) 2.90145 + 7.29075i 0.152286 + 0.382665i
\(364\) 0 0
\(365\) −0.415207 + 0.301666i −0.0217330 + 0.0157899i
\(366\) 0 0
\(367\) 7.30007 22.4673i 0.381061 1.17278i −0.558237 0.829681i \(-0.688522\pi\)
0.939298 0.343103i \(-0.111478\pi\)
\(368\) 0 0
\(369\) −7.49785 5.44750i −0.390322 0.283586i
\(370\) 0 0
\(371\) 0.00566834 + 0.0174453i 0.000294285 + 0.000905717i
\(372\) 0 0
\(373\) −12.7740 −0.661411 −0.330705 0.943734i \(-0.607287\pi\)
−0.330705 + 0.943734i \(0.607287\pi\)
\(374\) 0 0
\(375\) −0.713352 −0.0368373
\(376\) 0 0
\(377\) −7.37998 22.7132i −0.380088 1.16979i
\(378\) 0 0
\(379\) 20.0453 + 14.5637i 1.02966 + 0.748089i 0.968240 0.250023i \(-0.0804381\pi\)
0.0614167 + 0.998112i \(0.480438\pi\)
\(380\) 0 0
\(381\) −2.22583 + 6.85041i −0.114033 + 0.350957i
\(382\) 0 0
\(383\) 30.8810 22.4363i 1.57794 1.14644i 0.658941 0.752195i \(-0.271005\pi\)
0.919004 0.394249i \(-0.128995\pi\)
\(384\) 0 0
\(385\) 0.765542 + 0.985142i 0.0390157 + 0.0502075i
\(386\) 0 0
\(387\) 13.0693 9.49542i 0.664351 0.482679i
\(388\) 0 0
\(389\) 0.744648 2.29179i 0.0377551 0.116198i −0.930403 0.366539i \(-0.880543\pi\)
0.968158 + 0.250341i \(0.0805426\pi\)
\(390\) 0 0
\(391\) −14.7638 10.7265i −0.746635 0.542462i
\(392\) 0 0
\(393\) −1.38799 4.27179i −0.0700148 0.215483i
\(394\) 0 0
\(395\) −12.9823 −0.653212
\(396\) 0 0
\(397\) −11.5456 −0.579459 −0.289729 0.957109i \(-0.593565\pi\)
−0.289729 + 0.957109i \(0.593565\pi\)
\(398\) 0 0
\(399\) −0.242955 0.747738i −0.0121630 0.0374337i
\(400\) 0 0
\(401\) −20.7114 15.0477i −1.03428 0.751445i −0.0651157 0.997878i \(-0.520742\pi\)
−0.969160 + 0.246432i \(0.920742\pi\)
\(402\) 0 0
\(403\) 7.02702 21.6269i 0.350041 1.07731i
\(404\) 0 0
\(405\) −3.78548 + 2.75031i −0.188102 + 0.136664i
\(406\) 0 0
\(407\) 9.04720 + 2.61983i 0.448453 + 0.129860i
\(408\) 0 0
\(409\) −7.57539 + 5.50384i −0.374579 + 0.272147i −0.759107 0.650966i \(-0.774364\pi\)
0.384528 + 0.923113i \(0.374364\pi\)
\(410\) 0 0
\(411\) 1.82375 5.61292i 0.0899588 0.276865i
\(412\) 0 0
\(413\) 0.501929 + 0.364673i 0.0246983 + 0.0179444i
\(414\) 0 0
\(415\) −0.845740 2.60292i −0.0415157 0.127772i
\(416\) 0 0
\(417\) −7.32405 −0.358660
\(418\) 0 0
\(419\) 21.3716 1.04407 0.522035 0.852924i \(-0.325173\pi\)
0.522035 + 0.852924i \(0.325173\pi\)
\(420\) 0 0
\(421\) 8.50429 + 26.1735i 0.414474 + 1.27562i 0.912721 + 0.408584i \(0.133977\pi\)
−0.498247 + 0.867035i \(0.666023\pi\)
\(422\) 0 0
\(423\) −5.21771 3.79089i −0.253694 0.184319i
\(424\) 0 0
\(425\) −1.49493 + 4.60091i −0.0725146 + 0.223177i
\(426\) 0 0
\(427\) 2.64677 1.92299i 0.128086 0.0930601i
\(428\) 0 0
\(429\) 3.75635 5.53776i 0.181358 0.267366i
\(430\) 0 0
\(431\) 2.12962 1.54726i 0.102580 0.0745290i −0.535313 0.844654i \(-0.679806\pi\)
0.637893 + 0.770125i \(0.279806\pi\)
\(432\) 0 0
\(433\) 3.08722 9.50147i 0.148362 0.456612i −0.849066 0.528287i \(-0.822835\pi\)
0.997428 + 0.0716753i \(0.0228345\pi\)
\(434\) 0 0
\(435\) 4.87313 + 3.54053i 0.233648 + 0.169756i
\(436\) 0 0
\(437\) 3.41536 + 10.5114i 0.163379 + 0.502829i
\(438\) 0 0
\(439\) −2.85957 −0.136480 −0.0682400 0.997669i \(-0.521738\pi\)
−0.0682400 + 0.997669i \(0.521738\pi\)
\(440\) 0 0
\(441\) 17.0854 0.813590
\(442\) 0 0
\(443\) 12.4551 + 38.3329i 0.591761 + 1.82125i 0.570232 + 0.821484i \(0.306853\pi\)
0.0215292 + 0.999768i \(0.493147\pi\)
\(444\) 0 0
\(445\) −9.72401 7.06491i −0.460962 0.334909i
\(446\) 0 0
\(447\) 1.08050 3.32543i 0.0511058 0.157287i
\(448\) 0 0
\(449\) 1.57792 1.14642i 0.0744665 0.0541031i −0.549929 0.835211i \(-0.685345\pi\)
0.624396 + 0.781108i \(0.285345\pi\)
\(450\) 0 0
\(451\) 11.6058 4.18988i 0.546497 0.197294i
\(452\) 0 0
\(453\) 5.39963 3.92306i 0.253697 0.184321i
\(454\) 0 0
\(455\) 0.328773 1.01186i 0.0154131 0.0474367i
\(456\) 0 0
\(457\) −28.9438 21.0289i −1.35393 0.983691i −0.998805 0.0488733i \(-0.984437\pi\)
−0.355129 0.934817i \(-0.615563\pi\)
\(458\) 0 0
\(459\) −5.85579 18.0223i −0.273325 0.841207i
\(460\) 0 0
\(461\) 15.1433 0.705295 0.352648 0.935756i \(-0.385281\pi\)
0.352648 + 0.935756i \(0.385281\pi\)
\(462\) 0 0
\(463\) 12.6301 0.586972 0.293486 0.955963i \(-0.405185\pi\)
0.293486 + 0.955963i \(0.405185\pi\)
\(464\) 0 0
\(465\) 1.77234 + 5.45471i 0.0821905 + 0.252956i
\(466\) 0 0
\(467\) 25.3664 + 18.4298i 1.17382 + 0.852829i 0.991461 0.130403i \(-0.0416271\pi\)
0.182358 + 0.983232i \(0.441627\pi\)
\(468\) 0 0
\(469\) 1.32977 4.09261i 0.0614030 0.188979i
\(470\) 0 0
\(471\) 5.57387 4.04965i 0.256830 0.186598i
\(472\) 0 0
\(473\) 0.694470 + 21.4966i 0.0319318 + 0.988413i
\(474\) 0 0
\(475\) 2.37034 1.72215i 0.108759 0.0790177i
\(476\) 0 0
\(477\) 0.0375375 0.115528i 0.00171872 0.00528969i
\(478\) 0 0
\(479\) −9.97966 7.25064i −0.455982 0.331290i 0.335971 0.941872i \(-0.390936\pi\)
−0.791953 + 0.610582i \(0.790936\pi\)
\(480\) 0 0
\(481\) −2.48206 7.63900i −0.113172 0.348308i
\(482\) 0 0
\(483\) −1.01226 −0.0460595
\(484\) 0 0
\(485\) 16.0745 0.729906
\(486\) 0 0
\(487\) 6.77063 + 20.8379i 0.306807 + 0.944254i 0.978997 + 0.203875i \(0.0653537\pi\)
−0.672190 + 0.740378i \(0.734646\pi\)
\(488\) 0 0
\(489\) −2.59010 1.88182i −0.117128 0.0850987i
\(490\) 0 0
\(491\) 8.45266 26.0146i 0.381463 1.17402i −0.557551 0.830143i \(-0.688259\pi\)
0.939014 0.343880i \(-0.111741\pi\)
\(492\) 0 0
\(493\) 33.0477 24.0106i 1.48839 1.08138i
\(494\) 0 0
\(495\) −0.266778 8.25783i −0.0119908 0.371162i
\(496\) 0 0
\(497\) −4.29762 + 3.12240i −0.192775 + 0.140059i
\(498\) 0 0
\(499\) 3.21316 9.88908i 0.143841 0.442696i −0.853019 0.521879i \(-0.825231\pi\)
0.996860 + 0.0791832i \(0.0252312\pi\)
\(500\) 0 0
\(501\) 13.5458 + 9.84158i 0.605180 + 0.439689i
\(502\) 0 0
\(503\) 3.20969 + 9.87840i 0.143113 + 0.440456i 0.996763 0.0803900i \(-0.0256166\pi\)
−0.853651 + 0.520846i \(0.825617\pi\)
\(504\) 0 0
\(505\) 15.5883 0.693670
\(506\) 0 0
\(507\) 3.56724 0.158427
\(508\) 0 0
\(509\) 7.13139 + 21.9482i 0.316093 + 0.972835i 0.975302 + 0.220875i \(0.0708913\pi\)
−0.659209 + 0.751960i \(0.729109\pi\)
\(510\) 0 0
\(511\) 0.156189 + 0.113478i 0.00690942 + 0.00501998i
\(512\) 0 0
\(513\) −3.54650 + 10.9150i −0.156582 + 0.481910i
\(514\) 0 0
\(515\) −7.49074 + 5.44234i −0.330082 + 0.239818i
\(516\) 0 0
\(517\) 8.07643 2.91572i 0.355201 0.128233i
\(518\) 0 0
\(519\) −7.47413 + 5.43027i −0.328078 + 0.238363i
\(520\) 0 0
\(521\) 10.9451 33.6855i 0.479513 1.47579i −0.360260 0.932852i \(-0.617312\pi\)
0.839773 0.542938i \(-0.182688\pi\)
\(522\) 0 0
\(523\) −14.6855 10.6697i −0.642153 0.466551i 0.218436 0.975851i \(-0.429904\pi\)
−0.860589 + 0.509300i \(0.829904\pi\)
\(524\) 0 0
\(525\) 0.0829226 + 0.255210i 0.00361904 + 0.0111383i
\(526\) 0 0
\(527\) 38.8955 1.69431
\(528\) 0 0
\(529\) −8.77004 −0.381306
\(530\) 0 0
\(531\) −1.26963 3.90751i −0.0550972 0.169572i
\(532\) 0 0
\(533\) −8.51270 6.18484i −0.368726 0.267895i
\(534\) 0 0
\(535\) 0.667222 2.05350i 0.0288465 0.0887804i
\(536\) 0 0
\(537\) 2.03683 1.47984i 0.0878956 0.0638599i
\(538\) 0 0
\(539\) −12.7692 + 18.8249i −0.550008 + 0.810845i
\(540\) 0 0
\(541\) −13.1542 + 9.55711i −0.565545 + 0.410892i −0.833484 0.552543i \(-0.813657\pi\)
0.267939 + 0.963436i \(0.413657\pi\)
\(542\) 0 0
\(543\) −0.394976 + 1.21561i −0.0169500 + 0.0521669i
\(544\) 0 0
\(545\) 4.68463 + 3.40358i 0.200667 + 0.145793i
\(546\) 0 0
\(547\) −4.81979 14.8338i −0.206079 0.634246i −0.999667 0.0257912i \(-0.991790\pi\)
0.793588 0.608455i \(-0.208210\pi\)
\(548\) 0 0
\(549\) −21.6655 −0.924660
\(550\) 0 0
\(551\) −24.7399 −1.05396
\(552\) 0 0
\(553\) 1.50911 + 4.64457i 0.0641740 + 0.197507i
\(554\) 0 0
\(555\) 1.63895 + 1.19076i 0.0695694 + 0.0505451i
\(556\) 0 0
\(557\) 3.25243 10.0099i 0.137810 0.424135i −0.858207 0.513304i \(-0.828421\pi\)
0.996016 + 0.0891695i \(0.0284213\pi\)
\(558\) 0 0
\(559\) 14.8383 10.7806i 0.627593 0.455973i
\(560\) 0 0
\(561\) 10.9939 + 3.18355i 0.464164 + 0.134410i
\(562\) 0 0
\(563\) 9.48416 6.89065i 0.399710 0.290406i −0.369713 0.929146i \(-0.620544\pi\)
0.769423 + 0.638740i \(0.220544\pi\)
\(564\) 0 0
\(565\) 5.87590 18.0842i 0.247201 0.760806i
\(566\) 0 0
\(567\) 1.42399 + 1.03459i 0.0598020 + 0.0434487i
\(568\) 0 0
\(569\) −2.95887 9.10646i −0.124042 0.381763i 0.869683 0.493610i \(-0.164323\pi\)
−0.993725 + 0.111848i \(0.964323\pi\)
\(570\) 0 0
\(571\) −44.0439 −1.84318 −0.921589 0.388166i \(-0.873109\pi\)
−0.921589 + 0.388166i \(0.873109\pi\)
\(572\) 0 0
\(573\) 2.42620 0.101356
\(574\) 0 0
\(575\) −1.16569 3.58763i −0.0486128 0.149615i
\(576\) 0 0
\(577\) 22.6902 + 16.4854i 0.944604 + 0.686295i 0.949525 0.313693i \(-0.101566\pi\)
−0.00492032 + 0.999988i \(0.501566\pi\)
\(578\) 0 0
\(579\) 1.71400 5.27515i 0.0712314 0.219228i
\(580\) 0 0
\(581\) −0.832911 + 0.605145i −0.0345550 + 0.0251057i
\(582\) 0 0
\(583\) 0.0992360 + 0.127702i 0.00410993 + 0.00528889i
\(584\) 0 0
\(585\) −5.70008 + 4.14135i −0.235669 + 0.171224i
\(586\) 0 0
\(587\) 0.837247 2.57678i 0.0345569 0.106355i −0.932290 0.361711i \(-0.882193\pi\)
0.966847 + 0.255356i \(0.0821927\pi\)
\(588\) 0 0
\(589\) −19.0578 13.8463i −0.785261 0.570526i
\(590\) 0 0
\(591\) 1.56381 + 4.81291i 0.0643265 + 0.197977i
\(592\) 0 0
\(593\) −35.1817 −1.44474 −0.722369 0.691508i \(-0.756947\pi\)
−0.722369 + 0.691508i \(0.756947\pi\)
\(594\) 0 0
\(595\) 1.81980 0.0746046
\(596\) 0 0
\(597\) 2.81574 + 8.66595i 0.115240 + 0.354674i
\(598\) 0 0
\(599\) −38.2343 27.7788i −1.56221 1.13501i −0.934167 0.356835i \(-0.883856\pi\)
−0.628044 0.778178i \(-0.716144\pi\)
\(600\) 0 0
\(601\) 3.59792 11.0733i 0.146762 0.451687i −0.850471 0.526022i \(-0.823683\pi\)
0.997233 + 0.0743341i \(0.0236831\pi\)
\(602\) 0 0
\(603\) −23.0548 + 16.7503i −0.938863 + 0.682124i
\(604\) 0 0
\(605\) 9.29795 + 5.87776i 0.378016 + 0.238965i
\(606\) 0 0
\(607\) −37.1632 + 27.0006i −1.50841 + 1.09592i −0.541528 + 0.840683i \(0.682154\pi\)
−0.966878 + 0.255238i \(0.917846\pi\)
\(608\) 0 0
\(609\) 0.700195 2.15498i 0.0283733 0.0873241i
\(610\) 0 0
\(611\) −5.92394 4.30400i −0.239657 0.174121i
\(612\) 0 0
\(613\) 1.03724 + 3.19229i 0.0418937 + 0.128935i 0.969816 0.243839i \(-0.0784067\pi\)
−0.927922 + 0.372774i \(0.878407\pi\)
\(614\) 0 0
\(615\) 2.65391 0.107016
\(616\) 0 0
\(617\) −16.4880 −0.663783 −0.331892 0.943318i \(-0.607687\pi\)
−0.331892 + 0.943318i \(0.607687\pi\)
\(618\) 0 0
\(619\) −0.635849 1.95694i −0.0255569 0.0786561i 0.937465 0.348081i \(-0.113166\pi\)
−0.963021 + 0.269425i \(0.913166\pi\)
\(620\) 0 0
\(621\) 11.9543 + 8.68533i 0.479711 + 0.348530i
\(622\) 0 0
\(623\) −1.39719 + 4.30012i −0.0559774 + 0.172281i
\(624\) 0 0
\(625\) −0.809017 + 0.587785i −0.0323607 + 0.0235114i
\(626\) 0 0
\(627\) −4.25343 5.47355i −0.169866 0.218592i
\(628\) 0 0
\(629\) 11.1147 8.07531i 0.443173 0.321984i
\(630\) 0 0
\(631\) −10.8822 + 33.4918i −0.433212 + 1.33329i 0.461696 + 0.887038i \(0.347241\pi\)
−0.894908 + 0.446251i \(0.852759\pi\)
\(632\) 0 0
\(633\) −4.23629 3.07784i −0.168377 0.122333i
\(634\) 0 0
\(635\) 3.12025 + 9.60313i 0.123823 + 0.381088i
\(636\) 0 0
\(637\) 19.3979 0.768574
\(638\) 0 0
\(639\) 35.1787 1.39165
\(640\) 0 0
\(641\) −10.4016 32.0128i −0.410838 1.26443i −0.915921 0.401359i \(-0.868538\pi\)
0.505083 0.863071i \(-0.331462\pi\)
\(642\) 0 0
\(643\) −1.62876 1.18336i −0.0642320 0.0466673i 0.555206 0.831713i \(-0.312639\pi\)
−0.619438 + 0.785046i \(0.712639\pi\)
\(644\) 0 0
\(645\) −1.42950 + 4.39956i −0.0562867 + 0.173233i
\(646\) 0 0
\(647\) 27.5398 20.0088i 1.08270 0.786628i 0.104548 0.994520i \(-0.466660\pi\)
0.978152 + 0.207892i \(0.0666603\pi\)
\(648\) 0 0
\(649\) 5.25423 + 1.52149i 0.206247 + 0.0597237i
\(650\) 0 0
\(651\) 1.74546 1.26815i 0.0684100 0.0497028i
\(652\) 0 0
\(653\) −6.53960 + 20.1268i −0.255914 + 0.787623i 0.737734 + 0.675091i \(0.235896\pi\)
−0.993648 + 0.112531i \(0.964104\pi\)
\(654\) 0 0
\(655\) −5.09398 3.70099i −0.199038 0.144610i
\(656\) 0 0
\(657\) −0.395081 1.21593i −0.0154136 0.0474381i
\(658\) 0 0
\(659\) −21.3464 −0.831539 −0.415770 0.909470i \(-0.636488\pi\)
−0.415770 + 0.909470i \(0.636488\pi\)
\(660\) 0 0
\(661\) 11.3318 0.440757 0.220379 0.975414i \(-0.429271\pi\)
0.220379 + 0.975414i \(0.429271\pi\)
\(662\) 0 0
\(663\) −3.01613 9.28270i −0.117137 0.360510i
\(664\) 0 0
\(665\) −0.891655 0.647825i −0.0345769 0.0251216i
\(666\) 0 0
\(667\) −9.84306 + 30.2938i −0.381125 + 1.17298i
\(668\) 0 0
\(669\) −3.77360 + 2.74168i −0.145896 + 0.106000i
\(670\) 0 0
\(671\) 16.1922 23.8713i 0.625094 0.921540i
\(672\) 0 0
\(673\) 15.7639 11.4531i 0.607653 0.441486i −0.240934 0.970541i \(-0.577454\pi\)
0.848587 + 0.529056i \(0.177454\pi\)
\(674\) 0 0
\(675\) 1.21045 3.72539i 0.0465904 0.143390i
\(676\) 0 0
\(677\) 20.8399 + 15.1411i 0.800944 + 0.581920i 0.911191 0.411985i \(-0.135164\pi\)
−0.110247 + 0.993904i \(0.535164\pi\)
\(678\) 0 0
\(679\) −1.86856 5.75083i −0.0717087 0.220697i
\(680\) 0 0
\(681\) 14.6566 0.561643
\(682\) 0 0
\(683\) −13.0179 −0.498117 −0.249059 0.968488i \(-0.580121\pi\)
−0.249059 + 0.968488i \(0.580121\pi\)
\(684\) 0 0
\(685\) −2.55659 7.86837i −0.0976822 0.300635i
\(686\) 0 0
\(687\) −2.49945 1.81595i −0.0953598 0.0692829i
\(688\) 0 0
\(689\) 0.0426183 0.131166i 0.00162363 0.00499701i
\(690\) 0 0
\(691\) −39.4366 + 28.6523i −1.50024 + 1.08999i −0.529950 + 0.848029i \(0.677789\pi\)
−0.970287 + 0.241957i \(0.922211\pi\)
\(692\) 0 0
\(693\) −2.92332 + 1.05536i −0.111048 + 0.0400899i
\(694\) 0 0
\(695\) −8.30625 + 6.03484i −0.315074 + 0.228915i
\(696\) 0 0
\(697\) 5.56164 17.1170i 0.210662 0.648351i
\(698\) 0 0
\(699\) 16.5398 + 12.0169i 0.625593 + 0.454520i
\(700\) 0 0
\(701\) 13.9531 + 42.9432i 0.527001 + 1.62194i 0.760324 + 0.649544i \(0.225040\pi\)
−0.233322 + 0.972399i \(0.574960\pi\)
\(702\) 0 0
\(703\) −8.32062 −0.313818
\(704\) 0 0
\(705\) 1.84684 0.0695562
\(706\) 0 0
\(707\) −1.81204 5.57688i −0.0681487 0.209740i
\(708\) 0 0
\(709\) 6.34695 + 4.61133i 0.238365 + 0.173182i 0.700554 0.713599i \(-0.252936\pi\)
−0.462190 + 0.886781i \(0.652936\pi\)
\(710\) 0 0
\(711\) 9.99381 30.7578i 0.374797 1.15351i
\(712\) 0 0
\(713\) −24.5370 + 17.8272i −0.918917 + 0.667633i
\(714\) 0 0
\(715\) −0.302887 9.37555i −0.0113273 0.350626i
\(716\) 0 0
\(717\) 6.04621 4.39283i 0.225800 0.164053i
\(718\) 0 0
\(719\) −11.2597 + 34.6538i −0.419916 + 1.29237i 0.487864 + 0.872920i \(0.337776\pi\)
−0.907780 + 0.419447i \(0.862224\pi\)
\(720\) 0 0
\(721\) 2.81781 + 2.04726i 0.104941 + 0.0762439i
\(722\) 0 0
\(723\) −3.42124 10.5295i −0.127237 0.391597i
\(724\) 0 0
\(725\) 8.44396 0.313601
\(726\) 0 0
\(727\) 15.4970 0.574753 0.287376 0.957818i \(-0.407217\pi\)
0.287376 + 0.957818i \(0.407217\pi\)
\(728\) 0 0
\(729\) −1.01155 3.11322i −0.0374647 0.115304i
\(730\) 0 0
\(731\) 25.3802 + 18.4398i 0.938719 + 0.682020i
\(732\) 0 0
\(733\) 13.0999 40.3172i 0.483854 1.48915i −0.349779 0.936832i \(-0.613743\pi\)
0.833633 0.552318i \(-0.186257\pi\)
\(734\) 0 0
\(735\) −3.95813 + 2.87575i −0.145998 + 0.106074i
\(736\) 0 0
\(737\) −1.22507 37.9208i −0.0451261 1.39683i
\(738\) 0 0
\(739\) −24.5290 + 17.8214i −0.902315 + 0.655570i −0.939060 0.343754i \(-0.888301\pi\)
0.0367444 + 0.999325i \(0.488301\pi\)
\(740\) 0 0
\(741\) −1.82669 + 5.62198i −0.0671053 + 0.206529i
\(742\) 0 0
\(743\) −16.8518 12.2436i −0.618234 0.449173i 0.234070 0.972220i \(-0.424795\pi\)
−0.852304 + 0.523047i \(0.824795\pi\)
\(744\) 0 0
\(745\) −1.51468 4.66169i −0.0554934 0.170791i
\(746\) 0 0
\(747\) 6.81790 0.249454
\(748\) 0 0
\(749\) −0.812221 −0.0296779
\(750\) 0 0
\(751\) 9.50988 + 29.2684i 0.347020 + 1.06802i 0.960493 + 0.278303i \(0.0897720\pi\)
−0.613473 + 0.789716i \(0.710228\pi\)
\(752\) 0 0
\(753\) 6.90812 + 5.01905i 0.251746 + 0.182904i
\(754\) 0 0
\(755\) 2.89124 8.89833i 0.105223 0.323843i
\(756\) 0 0
\(757\) 20.5370 14.9210i 0.746429 0.542312i −0.148289 0.988944i \(-0.547377\pi\)
0.894718 + 0.446632i \(0.147377\pi\)
\(758\) 0 0
\(759\) −8.39458 + 3.03057i −0.304704 + 0.110003i
\(760\) 0 0
\(761\) −27.2145 + 19.7725i −0.986526 + 0.716753i −0.959158 0.282872i \(-0.908713\pi\)
−0.0273686 + 0.999625i \(0.508713\pi\)
\(762\) 0 0
\(763\) 0.673110 2.07162i 0.0243682 0.0749977i
\(764\) 0 0
\(765\) −9.74970 7.08357i −0.352501 0.256107i
\(766\) 0 0
\(767\) −1.44148 4.43641i −0.0520487 0.160189i
\(768\) 0 0
\(769\) −29.4388 −1.06159 −0.530795 0.847500i \(-0.678107\pi\)
−0.530795 + 0.847500i \(0.678107\pi\)
\(770\) 0 0
\(771\) 6.04453 0.217688
\(772\) 0 0
\(773\) 7.65080 + 23.5467i 0.275180 + 0.846917i 0.989172 + 0.146763i \(0.0468855\pi\)
−0.713992 + 0.700154i \(0.753115\pi\)
\(774\) 0 0
\(775\) 6.50458 + 4.72586i 0.233651 + 0.169758i
\(776\) 0 0
\(777\) 0.235492 0.724770i 0.00844823 0.0260010i
\(778\) 0 0
\(779\) −8.81846 + 6.40699i −0.315954 + 0.229554i
\(780\) 0 0
\(781\) −26.2917 + 38.7603i −0.940791 + 1.38695i
\(782\) 0 0
\(783\) −26.7590 + 19.4415i −0.956287 + 0.694783i
\(784\) 0 0
\(785\) 2.98454 9.18547i 0.106523 0.327843i
\(786\) 0 0
\(787\) 30.3056 + 22.0183i 1.08028 + 0.784869i 0.977732 0.209860i \(-0.0673007\pi\)
0.102547 + 0.994728i \(0.467301\pi\)
\(788\) 0 0
\(789\) 2.75965 + 8.49332i 0.0982460 + 0.302370i
\(790\) 0 0
\(791\) −7.15284 −0.254326
\(792\) 0 0
\(793\) −24.5979 −0.873499
\(794\) 0 0
\(795\) 0.0107491 + 0.0330824i 0.000381232 + 0.00117331i
\(796\) 0 0
\(797\) 38.9506 + 28.2993i 1.37970 + 1.00241i 0.996908 + 0.0785781i \(0.0250380\pi\)
0.382794 + 0.923834i \(0.374962\pi\)
\(798\) 0 0
\(799\) 3.87031 11.9116i 0.136922 0.421402i
\(800\) 0 0
\(801\) 24.2238 17.5996i 0.855905 0.621851i
\(802\) 0 0
\(803\) 1.63500 + 0.473454i 0.0576980 + 0.0167078i
\(804\) 0 0
\(805\) −1.14801 + 0.834079i −0.0404621 + 0.0293974i
\(806\) 0 0
\(807\) 5.30481 16.3265i 0.186738 0.574721i
\(808\) 0 0
\(809\) −30.1663 21.9171i −1.06059 0.770564i −0.0863934 0.996261i \(-0.527534\pi\)
−0.974198 + 0.225697i \(0.927534\pi\)
\(810\) 0 0
\(811\) −2.74285 8.44162i −0.0963145 0.296425i 0.891280 0.453454i \(-0.149808\pi\)
−0.987594 + 0.157029i \(0.949808\pi\)
\(812\) 0 0
\(813\) −6.72135 −0.235728
\(814\) 0 0
\(815\) −4.48802 −0.157208
\(816\) 0 0
\(817\) −5.87130 18.0700i −0.205411 0.632189i
\(818\) 0 0
\(819\) 2.14421 + 1.55786i 0.0749248 + 0.0544360i
\(820\) 0 0
\(821\) −9.62682 + 29.6283i −0.335978 + 1.03403i 0.630260 + 0.776384i \(0.282948\pi\)
−0.966238 + 0.257650i \(0.917052\pi\)
\(822\) 0 0
\(823\) −26.4022 + 19.1823i −0.920321 + 0.668653i −0.943604 0.331076i \(-0.892588\pi\)
0.0232827 + 0.999729i \(0.492588\pi\)
\(824\) 0 0
\(825\) 1.45173 + 1.86817i 0.0505428 + 0.0650413i
\(826\) 0 0
\(827\) −23.2668 + 16.9043i −0.809067 + 0.587822i −0.913560 0.406704i \(-0.866678\pi\)
0.104493 + 0.994526i \(0.466678\pi\)
\(828\) 0 0
\(829\) −13.2250 + 40.7023i −0.459323 + 1.41365i 0.406661 + 0.913579i \(0.366693\pi\)
−0.865984 + 0.500071i \(0.833307\pi\)
\(830\) 0 0
\(831\) 13.7244 + 9.97136i 0.476094 + 0.345903i
\(832\) 0 0
\(833\) 10.2529 + 31.5553i 0.355243 + 1.09333i
\(834\) 0 0
\(835\) 23.4716 0.812267
\(836\) 0 0
\(837\) −31.4940 −1.08859
\(838\) 0 0
\(839\) 8.81709 + 27.1362i 0.304400 + 0.936846i 0.979900 + 0.199487i \(0.0639276\pi\)
−0.675501 + 0.737359i \(0.736072\pi\)
\(840\) 0 0
\(841\) −34.2218 24.8636i −1.18006 0.857364i
\(842\) 0 0
\(843\) −0.109536 + 0.337119i −0.00377264 + 0.0116110i
\(844\) 0 0
\(845\) 4.04563 2.93932i 0.139174 0.101116i
\(846\) 0 0
\(847\) 1.02201 4.00970i 0.0351165 0.137775i
\(848\) 0 0
\(849\) −2.70107 + 1.96244i −0.0927004 + 0.0673508i
\(850\) 0 0
\(851\) −3.31045 + 10.1885i −0.113481 + 0.349258i
\(852\) 0 0
\(853\) −27.0293 19.6380i −0.925466 0.672391i 0.0194121 0.999812i \(-0.493821\pi\)
−0.944879 + 0.327421i \(0.893821\pi\)
\(854\) 0 0
\(855\) 2.25544 + 6.94153i 0.0771344 + 0.237395i
\(856\) 0 0
\(857\) 11.9632 0.408656 0.204328 0.978902i \(-0.434499\pi\)
0.204328 + 0.978902i \(0.434499\pi\)
\(858\) 0 0
\(859\) −23.4984 −0.801755 −0.400878 0.916132i \(-0.631295\pi\)
−0.400878 + 0.916132i \(0.631295\pi\)
\(860\) 0 0
\(861\) −0.308500 0.949467i −0.0105137 0.0323577i
\(862\) 0 0
\(863\) 3.31223 + 2.40647i 0.112750 + 0.0819173i 0.642731 0.766092i \(-0.277801\pi\)
−0.529982 + 0.848009i \(0.677801\pi\)
\(864\) 0 0
\(865\) −4.00204 + 12.3170i −0.136073 + 0.418791i
\(866\) 0 0
\(867\) 3.69536 2.68484i 0.125501 0.0911819i
\(868\) 0 0
\(869\) 26.4201 + 33.9989i 0.896242 + 1.15333i
\(870\) 0 0
\(871\) −26.1753 + 19.0175i −0.886916 + 0.644382i
\(872\) 0 0
\(873\) −12.3742 + 38.0838i −0.418803 + 1.28894i
\(874\) 0 0
\(875\) 0.304330 + 0.221108i 0.0102882 + 0.00747483i
\(876\) 0 0
\(877\) 13.7101 + 42.1952i 0.462956 + 1.42483i 0.861535 + 0.507698i \(0.169503\pi\)
−0.398579 + 0.917134i \(0.630497\pi\)
\(878\) 0 0
\(879\) −12.0701 −0.407115
\(880\) 0 0
\(881\) −43.0315 −1.44977 −0.724884 0.688871i \(-0.758107\pi\)
−0.724884 + 0.688871i \(0.758107\pi\)
\(882\) 0 0
\(883\) 11.2928 + 34.7558i 0.380034 + 1.16963i 0.940019 + 0.341122i \(0.110807\pi\)
−0.559985 + 0.828503i \(0.689193\pi\)
\(884\) 0 0
\(885\) 0.951831 + 0.691545i 0.0319954 + 0.0232460i
\(886\) 0 0
\(887\) 0.554496 1.70656i 0.0186181 0.0573008i −0.941316 0.337527i \(-0.890410\pi\)
0.959934 + 0.280226i \(0.0904095\pi\)
\(888\) 0 0
\(889\) 3.07292 2.23260i 0.103062 0.0748791i
\(890\) 0 0
\(891\) 14.9065 + 4.31652i 0.499385 + 0.144609i
\(892\) 0 0
\(893\) −6.13672 + 4.45859i −0.205358 + 0.149201i
\(894\) 0 0
\(895\) 1.09062 3.35659i 0.0364555 0.112199i
\(896\) 0 0
\(897\) 6.15730 + 4.47354i 0.205586 + 0.149367i
\(898\) 0 0
\(899\) −20.9793 64.5675i −0.699697 2.15345i
\(900\) 0 0
\(901\) 0.235898 0.00785890
\(902\) 0 0
\(903\) 1.74016 0.0579090
\(904\) 0 0
\(905\) 0.553690 + 1.70408i 0.0184053 + 0.0566457i
\(906\) 0 0
\(907\) −41.4760 30.1341i −1.37719 1.00059i −0.997137 0.0756199i \(-0.975906\pi\)
−0.380051 0.924966i \(-0.624094\pi\)
\(908\) 0 0
\(909\) −11.9999 + 36.9318i −0.398011 + 1.22495i
\(910\) 0 0
\(911\) 32.4256 23.5586i 1.07431 0.780531i 0.0976273 0.995223i \(-0.468875\pi\)
0.976682 + 0.214692i \(0.0688747\pi\)
\(912\) 0 0
\(913\) −5.09553 + 7.51204i −0.168637 + 0.248612i
\(914\) 0 0
\(915\) 5.01919 3.64665i 0.165929 0.120555i
\(916\) 0 0
\(917\) −0.731929 + 2.25264i −0.0241704 + 0.0743889i
\(918\) 0 0
\(919\) 0.876551 + 0.636852i 0.0289147 + 0.0210078i 0.602149 0.798384i \(-0.294311\pi\)
−0.573234 + 0.819392i \(0.694311\pi\)
\(920\) 0 0
\(921\) −7.57573 23.3157i −0.249629 0.768279i
\(922\) 0 0
\(923\) 39.9402 1.31465
\(924\) 0 0
\(925\) 2.83990 0.0933754
\(926\) 0 0
\(927\) −7.12764 21.9366i −0.234102 0.720493i
\(928\) 0 0
\(929\) −11.5480 8.39015i −0.378879 0.275272i 0.382004 0.924161i \(-0.375234\pi\)
−0.760883 + 0.648889i \(0.775234\pi\)
\(930\) 0 0
\(931\) 6.20960 19.1112i 0.203511 0.626344i
\(932\) 0 0
\(933\) −4.25212 + 3.08935i −0.139208 + 0.101141i
\(934\) 0 0
\(935\) 15.0914 5.44824i 0.493543 0.178177i
\(936\) 0 0
\(937\) 22.5636 16.3934i 0.737120 0.535549i −0.154688 0.987963i \(-0.549437\pi\)
0.891808 + 0.452415i \(0.149437\pi\)
\(938\) 0 0
\(939\) 5.52430 17.0020i 0.180279 0.554841i
\(940\) 0 0
\(941\) −2.93220 2.13037i −0.0955869 0.0694480i 0.538965 0.842328i \(-0.318815\pi\)
−0.634552 + 0.772880i \(0.718815\pi\)
\(942\) 0 0
\(943\) 4.33678 + 13.3472i 0.141225 + 0.434645i
\(944\) 0 0
\(945\) −1.47351 −0.0479332
\(946\) 0 0
\(947\) 54.9559 1.78583 0.892913 0.450230i \(-0.148658\pi\)
0.892913 + 0.450230i \(0.148658\pi\)
\(948\) 0 0
\(949\) −0.448556 1.38051i −0.0145607 0.0448134i
\(950\) 0 0
\(951\) 16.2012 + 11.7709i 0.525361 + 0.381697i
\(952\) 0 0
\(953\) −2.79241 + 8.59415i −0.0904550 + 0.278392i −0.986043 0.166493i \(-0.946756\pi\)
0.895588 + 0.444885i \(0.146756\pi\)
\(954\) 0 0
\(955\) 2.75157 1.99913i 0.0890387 0.0646904i
\(956\) 0 0
\(957\) −0.645066 19.9673i −0.0208520 0.645452i
\(958\) 0 0
\(959\) −2.51781 + 1.82930i −0.0813043 + 0.0590710i
\(960\) 0 0
\(961\) 10.3964 31.9967i 0.335366 1.03215i
\(962\) 0 0
\(963\) 4.35153 + 3.16157i 0.140226 + 0.101880i
\(964\) 0 0
\(965\) −2.40274 7.39487i −0.0773469 0.238049i
\(966\) 0 0
\(967\) 44.4619 1.42980 0.714900 0.699227i \(-0.246472\pi\)
0.714900 + 0.699227i \(0.246472\pi\)
\(968\) 0 0
\(969\) −10.1110 −0.324812
\(970\) 0 0
\(971\) −0.515647 1.58700i −0.0165479 0.0509292i 0.942442 0.334371i \(-0.108524\pi\)
−0.958990 + 0.283442i \(0.908524\pi\)
\(972\) 0 0
\(973\) 3.12458 + 2.27014i 0.100169 + 0.0727773i
\(974\) 0 0
\(975\) 0.623466 1.91883i 0.0199669 0.0614518i
\(976\) 0 0
\(977\) −18.3272 + 13.3155i −0.586339 + 0.426000i −0.841004 0.541029i \(-0.818035\pi\)
0.254665 + 0.967029i \(0.418035\pi\)
\(978\) 0 0
\(979\) 1.28719 + 39.8435i 0.0411387 + 1.27340i
\(980\) 0 0
\(981\) −11.6700 + 8.47876i −0.372595 + 0.270706i
\(982\) 0 0
\(983\) −14.5087 + 44.6531i −0.462754 + 1.42421i 0.399031 + 0.916938i \(0.369347\pi\)
−0.861785 + 0.507274i \(0.830653\pi\)
\(984\) 0 0
\(985\) 5.73925 + 4.16981i 0.182868 + 0.132861i
\(986\) 0 0
\(987\) −0.214684 0.660729i −0.00683346 0.0210312i
\(988\) 0 0
\(989\) −24.4625 −0.777863
\(990\) 0 0
\(991\) 0.122612 0.00389489 0.00194745 0.999998i \(-0.499380\pi\)
0.00194745 + 0.999998i \(0.499380\pi\)
\(992\) 0 0
\(993\) 4.84179 + 14.9015i 0.153650 + 0.472885i
\(994\) 0 0
\(995\) 10.3339 + 7.50800i 0.327606 + 0.238020i
\(996\) 0 0
\(997\) −6.23692 + 19.1953i −0.197525 + 0.607920i 0.802413 + 0.596770i \(0.203549\pi\)
−0.999938 + 0.0111504i \(0.996451\pi\)
\(998\) 0 0
\(999\) −8.99967 + 6.53864i −0.284737 + 0.206873i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 880.2.bo.k.641.2 16
4.3 odd 2 440.2.y.d.201.3 yes 16
11.2 odd 10 9680.2.a.de.1.4 8
11.4 even 5 inner 880.2.bo.k.81.2 16
11.9 even 5 9680.2.a.df.1.4 8
44.15 odd 10 440.2.y.d.81.3 16
44.31 odd 10 4840.2.a.bg.1.5 8
44.35 even 10 4840.2.a.bh.1.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
440.2.y.d.81.3 16 44.15 odd 10
440.2.y.d.201.3 yes 16 4.3 odd 2
880.2.bo.k.81.2 16 11.4 even 5 inner
880.2.bo.k.641.2 16 1.1 even 1 trivial
4840.2.a.bg.1.5 8 44.31 odd 10
4840.2.a.bh.1.5 8 44.35 even 10
9680.2.a.de.1.4 8 11.2 odd 10
9680.2.a.df.1.4 8 11.9 even 5