Properties

Label 880.2.bo.i.401.1
Level $880$
Weight $2$
Character 880.401
Analytic conductor $7.027$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [880,2,Mod(81,880)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("880.81"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(880, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 880.bo (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,1,0,3,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.02683537787\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 5 x^{10} + 4 x^{9} + 28 x^{8} - 81 x^{7} + 335 x^{6} - 235 x^{5} + 782 x^{4} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 440)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 401.1
Root \(-0.398885 + 1.22764i\) of defining polynomial
Character \(\chi\) \(=\) 880.401
Dual form 880.2.bo.i.801.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.85331 - 1.34651i) q^{3} +(-0.309017 + 0.951057i) q^{5} +(3.77298 - 2.74123i) q^{7} +(0.694624 + 2.13783i) q^{9} +(-0.146113 + 3.31340i) q^{11} +(1.83639 + 5.65184i) q^{13} +(1.85331 - 1.34651i) q^{15} +(-1.02078 + 3.14164i) q^{17} +(-3.39136 - 2.46397i) q^{19} -10.6836 q^{21} +1.71184 q^{23} +(-0.809017 - 0.587785i) q^{25} +(-0.532447 + 1.63870i) q^{27} +(6.28365 - 4.56534i) q^{29} +(0.918410 + 2.82658i) q^{31} +(4.73232 - 5.94403i) q^{33} +(1.44115 + 4.43540i) q^{35} +(4.59926 - 3.34156i) q^{37} +(4.20684 - 12.9473i) q^{39} +(4.97349 + 3.61345i) q^{41} +4.42353 q^{43} -2.24785 q^{45} +(3.34320 + 2.42898i) q^{47} +(4.55790 - 14.0278i) q^{49} +(6.12207 - 4.44795i) q^{51} +(2.50336 + 7.70454i) q^{53} +(-3.10608 - 1.16286i) q^{55} +(2.96749 + 9.13299i) q^{57} +(-5.02817 + 3.65318i) q^{59} +(-0.472049 + 1.45282i) q^{61} +(8.48109 + 6.16188i) q^{63} -5.94269 q^{65} +7.46447 q^{67} +(-3.17257 - 2.30500i) q^{69} +(0.691418 - 2.12796i) q^{71} +(6.06277 - 4.40486i) q^{73} +(0.707902 + 2.17870i) q^{75} +(8.53152 + 12.9019i) q^{77} +(-5.41757 - 16.6736i) q^{79} +(8.64897 - 6.28385i) q^{81} +(-3.42346 + 10.5363i) q^{83} +(-2.67244 - 1.94164i) q^{85} -17.7928 q^{87} +12.8171 q^{89} +(22.4216 + 16.2903i) q^{91} +(2.10391 - 6.47518i) q^{93} +(3.39136 - 2.46397i) q^{95} +(-2.94728 - 9.07079i) q^{97} +(-7.18500 + 1.98921i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + q^{3} + 3 q^{5} + q^{7} - 10 q^{9} - 4 q^{11} + 18 q^{13} - q^{15} + 3 q^{17} - 4 q^{19} - 28 q^{21} + 18 q^{23} - 3 q^{25} - 23 q^{27} + 15 q^{29} + 8 q^{31} + 4 q^{33} - 6 q^{35} + 6 q^{37}+ \cdots - 79 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.85331 1.34651i −1.07001 0.777408i −0.0940959 0.995563i \(-0.529996\pi\)
−0.975914 + 0.218155i \(0.929996\pi\)
\(4\) 0 0
\(5\) −0.309017 + 0.951057i −0.138197 + 0.425325i
\(6\) 0 0
\(7\) 3.77298 2.74123i 1.42605 1.03609i 0.435316 0.900278i \(-0.356637\pi\)
0.990735 0.135809i \(-0.0433634\pi\)
\(8\) 0 0
\(9\) 0.694624 + 2.13783i 0.231541 + 0.712611i
\(10\) 0 0
\(11\) −0.146113 + 3.31340i −0.0440546 + 0.999029i
\(12\) 0 0
\(13\) 1.83639 + 5.65184i 0.509324 + 1.56754i 0.793378 + 0.608729i \(0.208320\pi\)
−0.284055 + 0.958808i \(0.591680\pi\)
\(14\) 0 0
\(15\) 1.85331 1.34651i 0.478523 0.347667i
\(16\) 0 0
\(17\) −1.02078 + 3.14164i −0.247576 + 0.761959i 0.747627 + 0.664119i \(0.231193\pi\)
−0.995202 + 0.0978400i \(0.968807\pi\)
\(18\) 0 0
\(19\) −3.39136 2.46397i −0.778031 0.565273i 0.126356 0.991985i \(-0.459672\pi\)
−0.904387 + 0.426712i \(0.859672\pi\)
\(20\) 0 0
\(21\) −10.6836 −2.33135
\(22\) 0 0
\(23\) 1.71184 0.356942 0.178471 0.983945i \(-0.442885\pi\)
0.178471 + 0.983945i \(0.442885\pi\)
\(24\) 0 0
\(25\) −0.809017 0.587785i −0.161803 0.117557i
\(26\) 0 0
\(27\) −0.532447 + 1.63870i −0.102469 + 0.315369i
\(28\) 0 0
\(29\) 6.28365 4.56534i 1.16684 0.847762i 0.176216 0.984351i \(-0.443614\pi\)
0.990628 + 0.136590i \(0.0436141\pi\)
\(30\) 0 0
\(31\) 0.918410 + 2.82658i 0.164951 + 0.507668i 0.999033 0.0439734i \(-0.0140017\pi\)
−0.834081 + 0.551642i \(0.814002\pi\)
\(32\) 0 0
\(33\) 4.73232 5.94403i 0.823792 1.03472i
\(34\) 0 0
\(35\) 1.44115 + 4.43540i 0.243599 + 0.749720i
\(36\) 0 0
\(37\) 4.59926 3.34156i 0.756114 0.549349i −0.141602 0.989924i \(-0.545225\pi\)
0.897716 + 0.440575i \(0.145225\pi\)
\(38\) 0 0
\(39\) 4.20684 12.9473i 0.673634 2.07323i
\(40\) 0 0
\(41\) 4.97349 + 3.61345i 0.776729 + 0.564327i 0.903996 0.427542i \(-0.140620\pi\)
−0.127266 + 0.991869i \(0.540620\pi\)
\(42\) 0 0
\(43\) 4.42353 0.674582 0.337291 0.941401i \(-0.390489\pi\)
0.337291 + 0.941401i \(0.390489\pi\)
\(44\) 0 0
\(45\) −2.24785 −0.335090
\(46\) 0 0
\(47\) 3.34320 + 2.42898i 0.487656 + 0.354303i 0.804282 0.594247i \(-0.202550\pi\)
−0.316626 + 0.948550i \(0.602550\pi\)
\(48\) 0 0
\(49\) 4.55790 14.0278i 0.651129 2.00397i
\(50\) 0 0
\(51\) 6.12207 4.44795i 0.857261 0.622837i
\(52\) 0 0
\(53\) 2.50336 + 7.70454i 0.343863 + 1.05830i 0.962190 + 0.272380i \(0.0878107\pi\)
−0.618327 + 0.785921i \(0.712189\pi\)
\(54\) 0 0
\(55\) −3.10608 1.16286i −0.418824 0.156800i
\(56\) 0 0
\(57\) 2.96749 + 9.13299i 0.393054 + 1.20969i
\(58\) 0 0
\(59\) −5.02817 + 3.65318i −0.654611 + 0.475603i −0.864839 0.502049i \(-0.832580\pi\)
0.210227 + 0.977653i \(0.432580\pi\)
\(60\) 0 0
\(61\) −0.472049 + 1.45282i −0.0604396 + 0.186014i −0.976718 0.214529i \(-0.931178\pi\)
0.916278 + 0.400543i \(0.131178\pi\)
\(62\) 0 0
\(63\) 8.48109 + 6.16188i 1.06852 + 0.776323i
\(64\) 0 0
\(65\) −5.94269 −0.737100
\(66\) 0 0
\(67\) 7.46447 0.911931 0.455965 0.889998i \(-0.349294\pi\)
0.455965 + 0.889998i \(0.349294\pi\)
\(68\) 0 0
\(69\) −3.17257 2.30500i −0.381932 0.277490i
\(70\) 0 0
\(71\) 0.691418 2.12796i 0.0820562 0.252543i −0.901609 0.432553i \(-0.857613\pi\)
0.983665 + 0.180010i \(0.0576129\pi\)
\(72\) 0 0
\(73\) 6.06277 4.40486i 0.709593 0.515550i −0.173449 0.984843i \(-0.555491\pi\)
0.883043 + 0.469293i \(0.155491\pi\)
\(74\) 0 0
\(75\) 0.707902 + 2.17870i 0.0817415 + 0.251574i
\(76\) 0 0
\(77\) 8.53152 + 12.9019i 0.972257 + 1.47031i
\(78\) 0 0
\(79\) −5.41757 16.6736i −0.609524 1.87592i −0.462046 0.886856i \(-0.652884\pi\)
−0.147478 0.989065i \(-0.547116\pi\)
\(80\) 0 0
\(81\) 8.64897 6.28385i 0.960997 0.698205i
\(82\) 0 0
\(83\) −3.42346 + 10.5363i −0.375773 + 1.15651i 0.567182 + 0.823592i \(0.308034\pi\)
−0.942955 + 0.332919i \(0.891966\pi\)
\(84\) 0 0
\(85\) −2.67244 1.94164i −0.289867 0.210600i
\(86\) 0 0
\(87\) −17.7928 −1.90759
\(88\) 0 0
\(89\) 12.8171 1.35861 0.679305 0.733856i \(-0.262281\pi\)
0.679305 + 0.733856i \(0.262281\pi\)
\(90\) 0 0
\(91\) 22.4216 + 16.2903i 2.35043 + 1.70768i
\(92\) 0 0
\(93\) 2.10391 6.47518i 0.218166 0.671444i
\(94\) 0 0
\(95\) 3.39136 2.46397i 0.347946 0.252798i
\(96\) 0 0
\(97\) −2.94728 9.07079i −0.299251 0.921000i −0.981760 0.190123i \(-0.939111\pi\)
0.682509 0.730877i \(-0.260889\pi\)
\(98\) 0 0
\(99\) −7.18500 + 1.98921i −0.722120 + 0.199923i
\(100\) 0 0
\(101\) −3.31449 10.2010i −0.329804 1.01503i −0.969225 0.246176i \(-0.920826\pi\)
0.639421 0.768857i \(-0.279174\pi\)
\(102\) 0 0
\(103\) 2.08617 1.51569i 0.205557 0.149346i −0.480244 0.877135i \(-0.659452\pi\)
0.685801 + 0.727789i \(0.259452\pi\)
\(104\) 0 0
\(105\) 3.30141 10.1607i 0.322185 0.991583i
\(106\) 0 0
\(107\) −14.2627 10.3625i −1.37883 1.00178i −0.996988 0.0775516i \(-0.975290\pi\)
−0.381842 0.924228i \(-0.624710\pi\)
\(108\) 0 0
\(109\) −15.3476 −1.47004 −0.735019 0.678047i \(-0.762827\pi\)
−0.735019 + 0.678047i \(0.762827\pi\)
\(110\) 0 0
\(111\) −13.0233 −1.23612
\(112\) 0 0
\(113\) −0.256405 0.186289i −0.0241206 0.0175246i 0.575660 0.817689i \(-0.304745\pi\)
−0.599780 + 0.800165i \(0.704745\pi\)
\(114\) 0 0
\(115\) −0.528986 + 1.62805i −0.0493282 + 0.151817i
\(116\) 0 0
\(117\) −10.8071 + 7.85181i −0.999115 + 0.725900i
\(118\) 0 0
\(119\) 4.76057 + 14.6515i 0.436401 + 1.34310i
\(120\) 0 0
\(121\) −10.9573 0.968261i −0.996118 0.0880237i
\(122\) 0 0
\(123\) −4.35188 13.3937i −0.392396 1.20767i
\(124\) 0 0
\(125\) 0.809017 0.587785i 0.0723607 0.0525731i
\(126\) 0 0
\(127\) −5.58305 + 17.1829i −0.495415 + 1.52473i 0.320893 + 0.947115i \(0.396017\pi\)
−0.816308 + 0.577616i \(0.803983\pi\)
\(128\) 0 0
\(129\) −8.19817 5.95632i −0.721809 0.524425i
\(130\) 0 0
\(131\) 7.95176 0.694749 0.347374 0.937727i \(-0.387073\pi\)
0.347374 + 0.937727i \(0.387073\pi\)
\(132\) 0 0
\(133\) −19.5498 −1.69518
\(134\) 0 0
\(135\) −1.39396 1.01277i −0.119973 0.0871658i
\(136\) 0 0
\(137\) −2.49608 + 7.68214i −0.213254 + 0.656329i 0.786019 + 0.618203i \(0.212139\pi\)
−0.999273 + 0.0381266i \(0.987861\pi\)
\(138\) 0 0
\(139\) 9.16128 6.65606i 0.777049 0.564559i −0.127043 0.991897i \(-0.540548\pi\)
0.904092 + 0.427338i \(0.140548\pi\)
\(140\) 0 0
\(141\) −2.92535 9.00331i −0.246359 0.758215i
\(142\) 0 0
\(143\) −18.9951 + 5.25891i −1.58845 + 0.439772i
\(144\) 0 0
\(145\) 2.40014 + 7.38687i 0.199321 + 0.613446i
\(146\) 0 0
\(147\) −27.3358 + 19.8606i −2.25462 + 1.63807i
\(148\) 0 0
\(149\) 0.726731 2.23665i 0.0595361 0.183233i −0.916865 0.399196i \(-0.869289\pi\)
0.976401 + 0.215963i \(0.0692891\pi\)
\(150\) 0 0
\(151\) 11.9143 + 8.65622i 0.969569 + 0.704433i 0.955353 0.295466i \(-0.0954748\pi\)
0.0142158 + 0.999899i \(0.495475\pi\)
\(152\) 0 0
\(153\) −7.42536 −0.600305
\(154\) 0 0
\(155\) −2.97204 −0.238720
\(156\) 0 0
\(157\) 13.3118 + 9.67162i 1.06240 + 0.771880i 0.974531 0.224252i \(-0.0719940\pi\)
0.0878701 + 0.996132i \(0.471994\pi\)
\(158\) 0 0
\(159\) 5.73474 17.6497i 0.454794 1.39971i
\(160\) 0 0
\(161\) 6.45872 4.69253i 0.509018 0.369823i
\(162\) 0 0
\(163\) −1.62618 5.00486i −0.127372 0.392011i 0.866954 0.498389i \(-0.166075\pi\)
−0.994326 + 0.106378i \(0.966075\pi\)
\(164\) 0 0
\(165\) 4.19074 + 6.33751i 0.326249 + 0.493375i
\(166\) 0 0
\(167\) 6.65917 + 20.4948i 0.515302 + 1.58594i 0.782732 + 0.622359i \(0.213826\pi\)
−0.267430 + 0.963577i \(0.586174\pi\)
\(168\) 0 0
\(169\) −18.0537 + 13.1168i −1.38874 + 1.00898i
\(170\) 0 0
\(171\) 2.91183 8.96169i 0.222673 0.685318i
\(172\) 0 0
\(173\) 5.73128 + 4.16402i 0.435741 + 0.316584i 0.783940 0.620836i \(-0.213207\pi\)
−0.348199 + 0.937420i \(0.613207\pi\)
\(174\) 0 0
\(175\) −4.66366 −0.352539
\(176\) 0 0
\(177\) 14.2378 1.07018
\(178\) 0 0
\(179\) 7.10931 + 5.16521i 0.531375 + 0.386066i 0.820872 0.571113i \(-0.193488\pi\)
−0.289497 + 0.957179i \(0.593488\pi\)
\(180\) 0 0
\(181\) −3.90756 + 12.0262i −0.290446 + 0.893902i 0.694267 + 0.719718i \(0.255729\pi\)
−0.984713 + 0.174184i \(0.944271\pi\)
\(182\) 0 0
\(183\) 2.83108 2.05690i 0.209280 0.152051i
\(184\) 0 0
\(185\) 1.75676 + 5.40675i 0.129160 + 0.397513i
\(186\) 0 0
\(187\) −10.2604 3.84129i −0.750313 0.280903i
\(188\) 0 0
\(189\) 2.48315 + 7.64235i 0.180623 + 0.555899i
\(190\) 0 0
\(191\) −14.3378 + 10.4170i −1.03744 + 0.753747i −0.969785 0.243962i \(-0.921553\pi\)
−0.0676586 + 0.997709i \(0.521553\pi\)
\(192\) 0 0
\(193\) −1.55602 + 4.78895i −0.112005 + 0.344716i −0.991311 0.131542i \(-0.958007\pi\)
0.879306 + 0.476258i \(0.158007\pi\)
\(194\) 0 0
\(195\) 11.0137 + 8.00189i 0.788704 + 0.573027i
\(196\) 0 0
\(197\) −15.0557 −1.07268 −0.536338 0.844003i \(-0.680193\pi\)
−0.536338 + 0.844003i \(0.680193\pi\)
\(198\) 0 0
\(199\) −2.56534 −0.181852 −0.0909259 0.995858i \(-0.528983\pi\)
−0.0909259 + 0.995858i \(0.528983\pi\)
\(200\) 0 0
\(201\) −13.8340 10.0510i −0.975775 0.708942i
\(202\) 0 0
\(203\) 11.1934 34.4498i 0.785625 2.41790i
\(204\) 0 0
\(205\) −4.97349 + 3.61345i −0.347364 + 0.252375i
\(206\) 0 0
\(207\) 1.18908 + 3.65962i 0.0826470 + 0.254361i
\(208\) 0 0
\(209\) 8.65964 10.8769i 0.599000 0.752373i
\(210\) 0 0
\(211\) −3.00333 9.24329i −0.206758 0.636335i −0.999637 0.0269555i \(-0.991419\pi\)
0.792879 0.609379i \(-0.208581\pi\)
\(212\) 0 0
\(213\) −4.14674 + 3.01278i −0.284130 + 0.206432i
\(214\) 0 0
\(215\) −1.36694 + 4.20702i −0.0932249 + 0.286917i
\(216\) 0 0
\(217\) 11.2134 + 8.14704i 0.761217 + 0.553057i
\(218\) 0 0
\(219\) −17.1674 −1.16006
\(220\) 0 0
\(221\) −19.6306 −1.32050
\(222\) 0 0
\(223\) 0.439704 + 0.319464i 0.0294448 + 0.0213929i 0.602410 0.798187i \(-0.294207\pi\)
−0.572966 + 0.819579i \(0.694207\pi\)
\(224\) 0 0
\(225\) 0.694624 2.13783i 0.0463083 0.142522i
\(226\) 0 0
\(227\) 4.20468 3.05488i 0.279075 0.202759i −0.439439 0.898272i \(-0.644823\pi\)
0.718514 + 0.695513i \(0.244823\pi\)
\(228\) 0 0
\(229\) −1.26424 3.89093i −0.0835433 0.257120i 0.900556 0.434741i \(-0.143160\pi\)
−0.984099 + 0.177621i \(0.943160\pi\)
\(230\) 0 0
\(231\) 1.56101 35.3991i 0.102707 2.32909i
\(232\) 0 0
\(233\) 4.30912 + 13.2621i 0.282300 + 0.868829i 0.987195 + 0.159518i \(0.0509940\pi\)
−0.704895 + 0.709311i \(0.749006\pi\)
\(234\) 0 0
\(235\) −3.34320 + 2.42898i −0.218086 + 0.158449i
\(236\) 0 0
\(237\) −12.4107 + 38.1961i −0.806159 + 2.48110i
\(238\) 0 0
\(239\) 0.423576 + 0.307746i 0.0273988 + 0.0199064i 0.601400 0.798948i \(-0.294610\pi\)
−0.574002 + 0.818854i \(0.694610\pi\)
\(240\) 0 0
\(241\) −6.38011 −0.410979 −0.205489 0.978659i \(-0.565879\pi\)
−0.205489 + 0.978659i \(0.565879\pi\)
\(242\) 0 0
\(243\) −19.3214 −1.23947
\(244\) 0 0
\(245\) 11.9327 + 8.66965i 0.762355 + 0.553884i
\(246\) 0 0
\(247\) 7.69806 23.6922i 0.489816 1.50750i
\(248\) 0 0
\(249\) 20.5320 14.9174i 1.30116 0.945350i
\(250\) 0 0
\(251\) −4.21539 12.9736i −0.266073 0.818888i −0.991444 0.130530i \(-0.958332\pi\)
0.725371 0.688358i \(-0.241668\pi\)
\(252\) 0 0
\(253\) −0.250121 + 5.67201i −0.0157250 + 0.356596i
\(254\) 0 0
\(255\) 2.33842 + 7.19693i 0.146438 + 0.450689i
\(256\) 0 0
\(257\) 1.94734 1.41483i 0.121472 0.0882546i −0.525391 0.850861i \(-0.676081\pi\)
0.646863 + 0.762607i \(0.276081\pi\)
\(258\) 0 0
\(259\) 8.19293 25.2152i 0.509084 1.56680i
\(260\) 0 0
\(261\) 14.1247 + 10.2622i 0.874298 + 0.635214i
\(262\) 0 0
\(263\) 11.7841 0.726641 0.363321 0.931664i \(-0.381643\pi\)
0.363321 + 0.931664i \(0.381643\pi\)
\(264\) 0 0
\(265\) −8.10104 −0.497643
\(266\) 0 0
\(267\) −23.7541 17.2584i −1.45373 1.05619i
\(268\) 0 0
\(269\) −4.67964 + 14.4024i −0.285323 + 0.878133i 0.700979 + 0.713182i \(0.252747\pi\)
−0.986302 + 0.164951i \(0.947253\pi\)
\(270\) 0 0
\(271\) −8.55443 + 6.21516i −0.519645 + 0.377544i −0.816470 0.577388i \(-0.804072\pi\)
0.296825 + 0.954932i \(0.404072\pi\)
\(272\) 0 0
\(273\) −19.6193 60.3819i −1.18741 3.65448i
\(274\) 0 0
\(275\) 2.06578 2.59472i 0.124571 0.156467i
\(276\) 0 0
\(277\) −7.77227 23.9206i −0.466990 1.43725i −0.856462 0.516210i \(-0.827342\pi\)
0.389472 0.921038i \(-0.372658\pi\)
\(278\) 0 0
\(279\) −5.40480 + 3.92682i −0.323577 + 0.235092i
\(280\) 0 0
\(281\) −0.0998021 + 0.307159i −0.00595369 + 0.0183236i −0.953989 0.299841i \(-0.903066\pi\)
0.948036 + 0.318164i \(0.103066\pi\)
\(282\) 0 0
\(283\) 17.2906 + 12.5624i 1.02782 + 0.746754i 0.967871 0.251447i \(-0.0809065\pi\)
0.0599481 + 0.998201i \(0.480906\pi\)
\(284\) 0 0
\(285\) −9.60300 −0.568832
\(286\) 0 0
\(287\) 28.6702 1.69235
\(288\) 0 0
\(289\) 4.92539 + 3.57850i 0.289729 + 0.210500i
\(290\) 0 0
\(291\) −6.75168 + 20.7795i −0.395791 + 1.21812i
\(292\) 0 0
\(293\) 8.49478 6.17182i 0.496271 0.360562i −0.311320 0.950305i \(-0.600771\pi\)
0.807591 + 0.589743i \(0.200771\pi\)
\(294\) 0 0
\(295\) −1.92059 5.91096i −0.111821 0.344150i
\(296\) 0 0
\(297\) −5.35189 2.00365i −0.310548 0.116263i
\(298\) 0 0
\(299\) 3.14360 + 9.67501i 0.181799 + 0.559521i
\(300\) 0 0
\(301\) 16.6899 12.1259i 0.961988 0.698925i
\(302\) 0 0
\(303\) −7.59290 + 23.3686i −0.436201 + 1.34249i
\(304\) 0 0
\(305\) −1.23584 0.897890i −0.0707640 0.0514130i
\(306\) 0 0
\(307\) 29.0598 1.65853 0.829266 0.558854i \(-0.188759\pi\)
0.829266 + 0.558854i \(0.188759\pi\)
\(308\) 0 0
\(309\) −5.90722 −0.336050
\(310\) 0 0
\(311\) −16.1385 11.7253i −0.915131 0.664882i 0.0271763 0.999631i \(-0.491348\pi\)
−0.942307 + 0.334749i \(0.891348\pi\)
\(312\) 0 0
\(313\) 5.40163 16.6245i 0.305318 0.939672i −0.674240 0.738512i \(-0.735529\pi\)
0.979558 0.201160i \(-0.0644712\pi\)
\(314\) 0 0
\(315\) −8.48109 + 6.16188i −0.477855 + 0.347182i
\(316\) 0 0
\(317\) −9.21783 28.3696i −0.517725 1.59339i −0.778269 0.627931i \(-0.783902\pi\)
0.260544 0.965462i \(-0.416098\pi\)
\(318\) 0 0
\(319\) 14.2087 + 21.4873i 0.795534 + 1.20306i
\(320\) 0 0
\(321\) 12.4801 + 38.4098i 0.696572 + 2.14383i
\(322\) 0 0
\(323\) 11.2027 8.13926i 0.623336 0.452880i
\(324\) 0 0
\(325\) 1.83639 5.65184i 0.101865 0.313507i
\(326\) 0 0
\(327\) 28.4440 + 20.6657i 1.57295 + 1.14282i
\(328\) 0 0
\(329\) 19.2722 1.06251
\(330\) 0 0
\(331\) −29.4740 −1.62004 −0.810018 0.586405i \(-0.800543\pi\)
−0.810018 + 0.586405i \(0.800543\pi\)
\(332\) 0 0
\(333\) 10.3385 + 7.51133i 0.566544 + 0.411618i
\(334\) 0 0
\(335\) −2.30665 + 7.09914i −0.126026 + 0.387867i
\(336\) 0 0
\(337\) −16.9636 + 12.3248i −0.924068 + 0.671375i −0.944533 0.328416i \(-0.893485\pi\)
0.0204651 + 0.999791i \(0.493485\pi\)
\(338\) 0 0
\(339\) 0.224358 + 0.690504i 0.0121855 + 0.0375030i
\(340\) 0 0
\(341\) −9.49978 + 2.63007i −0.514442 + 0.142426i
\(342\) 0 0
\(343\) −11.1685 34.3730i −0.603040 1.85597i
\(344\) 0 0
\(345\) 3.17257 2.30500i 0.170805 0.124097i
\(346\) 0 0
\(347\) 2.24674 6.91474i 0.120611 0.371203i −0.872465 0.488677i \(-0.837480\pi\)
0.993076 + 0.117474i \(0.0374797\pi\)
\(348\) 0 0
\(349\) −15.5681 11.3109i −0.833339 0.605456i 0.0871630 0.996194i \(-0.472220\pi\)
−0.920502 + 0.390738i \(0.872220\pi\)
\(350\) 0 0
\(351\) −10.2395 −0.546542
\(352\) 0 0
\(353\) 14.5882 0.776454 0.388227 0.921564i \(-0.373088\pi\)
0.388227 + 0.921564i \(0.373088\pi\)
\(354\) 0 0
\(355\) 1.81015 + 1.31515i 0.0960730 + 0.0698011i
\(356\) 0 0
\(357\) 10.9056 33.5640i 0.577186 1.77639i
\(358\) 0 0
\(359\) 2.07608 1.50836i 0.109571 0.0796081i −0.531650 0.846964i \(-0.678428\pi\)
0.641222 + 0.767356i \(0.278428\pi\)
\(360\) 0 0
\(361\) −0.441140 1.35769i −0.0232179 0.0714574i
\(362\) 0 0
\(363\) 19.0035 + 16.5486i 0.997426 + 0.868576i
\(364\) 0 0
\(365\) 2.31577 + 7.12721i 0.121213 + 0.373055i
\(366\) 0 0
\(367\) −17.6293 + 12.8085i −0.920244 + 0.668596i −0.943585 0.331131i \(-0.892570\pi\)
0.0233410 + 0.999728i \(0.492570\pi\)
\(368\) 0 0
\(369\) −4.27026 + 13.1425i −0.222301 + 0.684171i
\(370\) 0 0
\(371\) 30.5650 + 22.2068i 1.58686 + 1.15292i
\(372\) 0 0
\(373\) 19.7684 1.02357 0.511783 0.859115i \(-0.328985\pi\)
0.511783 + 0.859115i \(0.328985\pi\)
\(374\) 0 0
\(375\) −2.29082 −0.118297
\(376\) 0 0
\(377\) 37.3418 + 27.1304i 1.92320 + 1.39729i
\(378\) 0 0
\(379\) 4.18387 12.8766i 0.214911 0.661428i −0.784249 0.620446i \(-0.786951\pi\)
0.999160 0.0409817i \(-0.0130485\pi\)
\(380\) 0 0
\(381\) 33.4840 24.3276i 1.71544 1.24634i
\(382\) 0 0
\(383\) −4.44790 13.6892i −0.227277 0.699486i −0.998053 0.0623795i \(-0.980131\pi\)
0.770776 0.637107i \(-0.219869\pi\)
\(384\) 0 0
\(385\) −14.9068 + 4.12704i −0.759723 + 0.210334i
\(386\) 0 0
\(387\) 3.07269 + 9.45677i 0.156194 + 0.480714i
\(388\) 0 0
\(389\) 12.3136 8.94633i 0.624323 0.453597i −0.230106 0.973166i \(-0.573907\pi\)
0.854429 + 0.519569i \(0.173907\pi\)
\(390\) 0 0
\(391\) −1.74741 + 5.37797i −0.0883702 + 0.271976i
\(392\) 0 0
\(393\) −14.7371 10.7071i −0.743388 0.540103i
\(394\) 0 0
\(395\) 17.5316 0.882111
\(396\) 0 0
\(397\) −37.0013 −1.85704 −0.928520 0.371282i \(-0.878918\pi\)
−0.928520 + 0.371282i \(0.878918\pi\)
\(398\) 0 0
\(399\) 36.2319 + 26.3240i 1.81386 + 1.31785i
\(400\) 0 0
\(401\) −7.60503 + 23.4059i −0.379777 + 1.16883i 0.560422 + 0.828207i \(0.310639\pi\)
−0.940199 + 0.340626i \(0.889361\pi\)
\(402\) 0 0
\(403\) −14.2888 + 10.3814i −0.711775 + 0.517135i
\(404\) 0 0
\(405\) 3.30361 + 10.1675i 0.164158 + 0.505226i
\(406\) 0 0
\(407\) 10.3999 + 15.7275i 0.515505 + 0.779581i
\(408\) 0 0
\(409\) 5.66569 + 17.4372i 0.280150 + 0.862215i 0.987810 + 0.155661i \(0.0497509\pi\)
−0.707660 + 0.706553i \(0.750249\pi\)
\(410\) 0 0
\(411\) 14.9701 10.8764i 0.738420 0.536493i
\(412\) 0 0
\(413\) −8.95696 + 27.5667i −0.440743 + 1.35647i
\(414\) 0 0
\(415\) −8.96273 6.51180i −0.439963 0.319652i
\(416\) 0 0
\(417\) −25.9411 −1.27034
\(418\) 0 0
\(419\) −23.6524 −1.15550 −0.577748 0.816215i \(-0.696068\pi\)
−0.577748 + 0.816215i \(0.696068\pi\)
\(420\) 0 0
\(421\) −9.45914 6.87247i −0.461010 0.334944i 0.332917 0.942956i \(-0.391967\pi\)
−0.793928 + 0.608012i \(0.791967\pi\)
\(422\) 0 0
\(423\) −2.87048 + 8.83444i −0.139568 + 0.429545i
\(424\) 0 0
\(425\) 2.67244 1.94164i 0.129632 0.0941834i
\(426\) 0 0
\(427\) 2.20147 + 6.77544i 0.106537 + 0.327886i
\(428\) 0 0
\(429\) 42.2851 + 15.8307i 2.04154 + 0.764315i
\(430\) 0 0
\(431\) 1.67524 + 5.15585i 0.0806933 + 0.248349i 0.983262 0.182197i \(-0.0583210\pi\)
−0.902569 + 0.430546i \(0.858321\pi\)
\(432\) 0 0
\(433\) 11.3653 8.25735i 0.546180 0.396823i −0.280195 0.959943i \(-0.590399\pi\)
0.826375 + 0.563120i \(0.190399\pi\)
\(434\) 0 0
\(435\) 5.49829 16.9220i 0.263623 0.811347i
\(436\) 0 0
\(437\) −5.80545 4.21791i −0.277712 0.201770i
\(438\) 0 0
\(439\) −13.4133 −0.640184 −0.320092 0.947386i \(-0.603714\pi\)
−0.320092 + 0.947386i \(0.603714\pi\)
\(440\) 0 0
\(441\) 33.1551 1.57881
\(442\) 0 0
\(443\) −22.7987 16.5642i −1.08320 0.786989i −0.104959 0.994477i \(-0.533471\pi\)
−0.978238 + 0.207488i \(0.933471\pi\)
\(444\) 0 0
\(445\) −3.96070 + 12.1898i −0.187755 + 0.577852i
\(446\) 0 0
\(447\) −4.35852 + 3.16665i −0.206151 + 0.149778i
\(448\) 0 0
\(449\) −11.5888 35.6668i −0.546911 1.68322i −0.716402 0.697688i \(-0.754212\pi\)
0.169490 0.985532i \(-0.445788\pi\)
\(450\) 0 0
\(451\) −12.6995 + 15.9512i −0.597997 + 0.751114i
\(452\) 0 0
\(453\) −10.4252 32.0853i −0.489817 1.50750i
\(454\) 0 0
\(455\) −22.4216 + 16.2903i −1.05114 + 0.763700i
\(456\) 0 0
\(457\) 4.80038 14.7740i 0.224552 0.691101i −0.773785 0.633449i \(-0.781639\pi\)
0.998337 0.0576517i \(-0.0183613\pi\)
\(458\) 0 0
\(459\) −4.60470 3.34551i −0.214929 0.156155i
\(460\) 0 0
\(461\) −20.4407 −0.952018 −0.476009 0.879440i \(-0.657917\pi\)
−0.476009 + 0.879440i \(0.657917\pi\)
\(462\) 0 0
\(463\) 9.64734 0.448350 0.224175 0.974549i \(-0.428031\pi\)
0.224175 + 0.974549i \(0.428031\pi\)
\(464\) 0 0
\(465\) 5.50811 + 4.00188i 0.255433 + 0.185583i
\(466\) 0 0
\(467\) −4.31921 + 13.2932i −0.199869 + 0.615134i 0.800016 + 0.599979i \(0.204824\pi\)
−0.999885 + 0.0151554i \(0.995176\pi\)
\(468\) 0 0
\(469\) 28.1633 20.4618i 1.30046 0.944839i
\(470\) 0 0
\(471\) −11.6481 35.8491i −0.536715 1.65184i
\(472\) 0 0
\(473\) −0.646333 + 14.6569i −0.0297184 + 0.673927i
\(474\) 0 0
\(475\) 1.29538 + 3.98678i 0.0594363 + 0.182926i
\(476\) 0 0
\(477\) −14.7321 + 10.7035i −0.674539 + 0.490081i
\(478\) 0 0
\(479\) −8.88347 + 27.3405i −0.405896 + 1.24922i 0.514249 + 0.857641i \(0.328071\pi\)
−0.920145 + 0.391578i \(0.871929\pi\)
\(480\) 0 0
\(481\) 27.3320 + 19.8578i 1.24623 + 0.905440i
\(482\) 0 0
\(483\) −18.2886 −0.832158
\(484\) 0 0
\(485\) 9.53760 0.433080
\(486\) 0 0
\(487\) 8.33237 + 6.05382i 0.377576 + 0.274325i 0.760345 0.649519i \(-0.225030\pi\)
−0.382770 + 0.923844i \(0.625030\pi\)
\(488\) 0 0
\(489\) −3.72528 + 11.4652i −0.168463 + 0.518475i
\(490\) 0 0
\(491\) −5.95322 + 4.32527i −0.268665 + 0.195197i −0.713958 0.700188i \(-0.753099\pi\)
0.445293 + 0.895385i \(0.353099\pi\)
\(492\) 0 0
\(493\) 7.92842 + 24.4012i 0.357078 + 1.09897i
\(494\) 0 0
\(495\) 0.328440 7.44804i 0.0147623 0.334765i
\(496\) 0 0
\(497\) −3.22453 9.92409i −0.144640 0.445156i
\(498\) 0 0
\(499\) 2.29474 1.66722i 0.102727 0.0746352i −0.535236 0.844702i \(-0.679777\pi\)
0.637963 + 0.770067i \(0.279777\pi\)
\(500\) 0 0
\(501\) 15.2550 46.9499i 0.681541 2.09757i
\(502\) 0 0
\(503\) −11.1930 8.13221i −0.499072 0.362597i 0.309590 0.950870i \(-0.399808\pi\)
−0.808663 + 0.588273i \(0.799808\pi\)
\(504\) 0 0
\(505\) 10.7259 0.477297
\(506\) 0 0
\(507\) 51.1209 2.27036
\(508\) 0 0
\(509\) −20.1862 14.6661i −0.894737 0.650064i 0.0423720 0.999102i \(-0.486509\pi\)
−0.937109 + 0.349038i \(0.886509\pi\)
\(510\) 0 0
\(511\) 10.8000 33.2389i 0.477762 1.47040i
\(512\) 0 0
\(513\) 5.84343 4.24550i 0.257994 0.187443i
\(514\) 0 0
\(515\) 0.796847 + 2.45244i 0.0351133 + 0.108068i
\(516\) 0 0
\(517\) −8.53667 + 10.7225i −0.375442 + 0.471574i
\(518\) 0 0
\(519\) −5.01495 15.4344i −0.220132 0.677496i
\(520\) 0 0
\(521\) −1.39596 + 1.01422i −0.0611581 + 0.0444339i −0.617944 0.786222i \(-0.712034\pi\)
0.556786 + 0.830656i \(0.312034\pi\)
\(522\) 0 0
\(523\) 4.61819 14.2133i 0.201939 0.621505i −0.797886 0.602808i \(-0.794048\pi\)
0.999825 0.0186967i \(-0.00595170\pi\)
\(524\) 0 0
\(525\) 8.64321 + 6.27966i 0.377221 + 0.274067i
\(526\) 0 0
\(527\) −9.81758 −0.427660
\(528\) 0 0
\(529\) −20.0696 −0.872592
\(530\) 0 0
\(531\) −11.3026 8.21180i −0.490490 0.356362i
\(532\) 0 0
\(533\) −11.2894 + 34.7451i −0.488997 + 1.50498i
\(534\) 0 0
\(535\) 14.2627 10.3625i 0.616632 0.448009i
\(536\) 0 0
\(537\) −6.22075 19.1455i −0.268445 0.826189i
\(538\) 0 0
\(539\) 45.8138 + 17.1518i 1.97334 + 0.738781i
\(540\) 0 0
\(541\) −12.3669 38.0613i −0.531693 1.63638i −0.750688 0.660657i \(-0.770278\pi\)
0.218995 0.975726i \(-0.429722\pi\)
\(542\) 0 0
\(543\) 23.4353 17.0268i 1.00571 0.730689i
\(544\) 0 0
\(545\) 4.74268 14.5965i 0.203154 0.625244i
\(546\) 0 0
\(547\) 18.6066 + 13.5185i 0.795561 + 0.578009i 0.909609 0.415466i \(-0.136382\pi\)
−0.114047 + 0.993475i \(0.536382\pi\)
\(548\) 0 0
\(549\) −3.43378 −0.146550
\(550\) 0 0
\(551\) −32.5589 −1.38706
\(552\) 0 0
\(553\) −66.1464 48.0581i −2.81283 2.04364i
\(554\) 0 0
\(555\) 4.02442 12.3859i 0.170827 0.525752i
\(556\) 0 0
\(557\) −9.64838 + 7.00996i −0.408815 + 0.297022i −0.773122 0.634257i \(-0.781306\pi\)
0.364307 + 0.931279i \(0.381306\pi\)
\(558\) 0 0
\(559\) 8.12333 + 25.0010i 0.343580 + 1.05743i
\(560\) 0 0
\(561\) 13.8433 + 20.9348i 0.584466 + 0.883868i
\(562\) 0 0
\(563\) 12.1429 + 37.3719i 0.511761 + 1.57504i 0.789100 + 0.614265i \(0.210547\pi\)
−0.277339 + 0.960772i \(0.589453\pi\)
\(564\) 0 0
\(565\) 0.256405 0.186289i 0.0107871 0.00783725i
\(566\) 0 0
\(567\) 15.4069 47.4176i 0.647030 1.99135i
\(568\) 0 0
\(569\) 13.9066 + 10.1037i 0.582995 + 0.423570i 0.839802 0.542892i \(-0.182671\pi\)
−0.256808 + 0.966462i \(0.582671\pi\)
\(570\) 0 0
\(571\) 26.4297 1.10605 0.553025 0.833165i \(-0.313473\pi\)
0.553025 + 0.833165i \(0.313473\pi\)
\(572\) 0 0
\(573\) 40.5989 1.69604
\(574\) 0 0
\(575\) −1.38490 1.00619i −0.0577545 0.0419611i
\(576\) 0 0
\(577\) 3.20877 9.87559i 0.133583 0.411126i −0.861784 0.507275i \(-0.830653\pi\)
0.995367 + 0.0961494i \(0.0306527\pi\)
\(578\) 0 0
\(579\) 9.33217 6.78022i 0.387832 0.281776i
\(580\) 0 0
\(581\) 15.9658 + 49.1378i 0.662374 + 2.03858i
\(582\) 0 0
\(583\) −25.8940 + 7.16891i −1.07242 + 0.296906i
\(584\) 0 0
\(585\) −4.12794 12.7045i −0.170669 0.525266i
\(586\) 0 0
\(587\) −17.2197 + 12.5109i −0.710735 + 0.516379i −0.883411 0.468600i \(-0.844759\pi\)
0.172676 + 0.984979i \(0.444759\pi\)
\(588\) 0 0
\(589\) 3.84993 11.8489i 0.158634 0.488224i
\(590\) 0 0
\(591\) 27.9030 + 20.2727i 1.14777 + 0.833907i
\(592\) 0 0
\(593\) −6.74652 −0.277046 −0.138523 0.990359i \(-0.544236\pi\)
−0.138523 + 0.990359i \(0.544236\pi\)
\(594\) 0 0
\(595\) −15.4055 −0.631565
\(596\) 0 0
\(597\) 4.75437 + 3.45425i 0.194583 + 0.141373i
\(598\) 0 0
\(599\) 1.26509 3.89353i 0.0516900 0.159085i −0.921879 0.387477i \(-0.873347\pi\)
0.973569 + 0.228392i \(0.0733467\pi\)
\(600\) 0 0
\(601\) −1.99582 + 1.45005i −0.0814112 + 0.0591487i −0.627746 0.778418i \(-0.716022\pi\)
0.546335 + 0.837567i \(0.316022\pi\)
\(602\) 0 0
\(603\) 5.18501 + 15.9578i 0.211150 + 0.649852i
\(604\) 0 0
\(605\) 4.30686 10.1218i 0.175099 0.411510i
\(606\) 0 0
\(607\) −8.63465 26.5747i −0.350470 1.07863i −0.958590 0.284790i \(-0.908076\pi\)
0.608120 0.793845i \(-0.291924\pi\)
\(608\) 0 0
\(609\) −67.1319 + 48.7742i −2.72032 + 1.97643i
\(610\) 0 0
\(611\) −7.58876 + 23.3558i −0.307008 + 0.944874i
\(612\) 0 0
\(613\) 31.4825 + 22.8734i 1.27157 + 0.923848i 0.999264 0.0383629i \(-0.0122143\pi\)
0.272304 + 0.962211i \(0.412214\pi\)
\(614\) 0 0
\(615\) 14.0830 0.567881
\(616\) 0 0
\(617\) −0.639294 −0.0257370 −0.0128685 0.999917i \(-0.504096\pi\)
−0.0128685 + 0.999917i \(0.504096\pi\)
\(618\) 0 0
\(619\) −15.6081 11.3400i −0.627344 0.455792i 0.228135 0.973630i \(-0.426737\pi\)
−0.855479 + 0.517837i \(0.826737\pi\)
\(620\) 0 0
\(621\) −0.911462 + 2.80519i −0.0365757 + 0.112568i
\(622\) 0 0
\(623\) 48.3587 35.1346i 1.93745 1.40764i
\(624\) 0 0
\(625\) 0.309017 + 0.951057i 0.0123607 + 0.0380423i
\(626\) 0 0
\(627\) −30.6949 + 8.49805i −1.22584 + 0.339379i
\(628\) 0 0
\(629\) 5.80313 + 17.8602i 0.231386 + 0.712133i
\(630\) 0 0
\(631\) 13.2570 9.63174i 0.527751 0.383434i −0.291765 0.956490i \(-0.594242\pi\)
0.819516 + 0.573057i \(0.194242\pi\)
\(632\) 0 0
\(633\) −6.88008 + 21.1747i −0.273459 + 0.841619i
\(634\) 0 0
\(635\) −14.6166 10.6196i −0.580042 0.421425i
\(636\) 0 0
\(637\) 87.6528 3.47293
\(638\) 0 0
\(639\) 5.02951 0.198964
\(640\) 0 0
\(641\) 7.38771 + 5.36749i 0.291797 + 0.212003i 0.724047 0.689751i \(-0.242280\pi\)
−0.432250 + 0.901754i \(0.642280\pi\)
\(642\) 0 0
\(643\) −12.2080 + 37.5724i −0.481437 + 1.48171i 0.355639 + 0.934623i \(0.384263\pi\)
−0.837076 + 0.547087i \(0.815737\pi\)
\(644\) 0 0
\(645\) 8.19817 5.95632i 0.322803 0.234530i
\(646\) 0 0
\(647\) −1.31884 4.05896i −0.0518488 0.159574i 0.921779 0.387715i \(-0.126735\pi\)
−0.973628 + 0.228140i \(0.926735\pi\)
\(648\) 0 0
\(649\) −11.3698 17.1941i −0.446303 0.674928i
\(650\) 0 0
\(651\) −9.81192 30.1980i −0.384560 1.18355i
\(652\) 0 0
\(653\) 3.53416 2.56772i 0.138302 0.100482i −0.516483 0.856297i \(-0.672759\pi\)
0.654785 + 0.755815i \(0.272759\pi\)
\(654\) 0 0
\(655\) −2.45723 + 7.56257i −0.0960119 + 0.295494i
\(656\) 0 0
\(657\) 13.6282 + 9.90147i 0.531687 + 0.386293i
\(658\) 0 0
\(659\) 0.146275 0.00569808 0.00284904 0.999996i \(-0.499093\pi\)
0.00284904 + 0.999996i \(0.499093\pi\)
\(660\) 0 0
\(661\) 41.7505 1.62391 0.811953 0.583723i \(-0.198405\pi\)
0.811953 + 0.583723i \(0.198405\pi\)
\(662\) 0 0
\(663\) 36.3816 + 26.4328i 1.41294 + 1.02656i
\(664\) 0 0
\(665\) 6.04122 18.5930i 0.234269 0.721005i
\(666\) 0 0
\(667\) 10.7566 7.81511i 0.416496 0.302602i
\(668\) 0 0
\(669\) −0.384748 1.18413i −0.0148752 0.0457812i
\(670\) 0 0
\(671\) −4.74480 1.77636i −0.183171 0.0685757i
\(672\) 0 0
\(673\) 0.799949 + 2.46199i 0.0308358 + 0.0949027i 0.965290 0.261181i \(-0.0841119\pi\)
−0.934454 + 0.356083i \(0.884112\pi\)
\(674\) 0 0
\(675\) 1.39396 1.01277i 0.0536537 0.0389817i
\(676\) 0 0
\(677\) 13.9186 42.8370i 0.534934 1.64636i −0.208856 0.977946i \(-0.566974\pi\)
0.743791 0.668413i \(-0.233026\pi\)
\(678\) 0 0
\(679\) −35.9851 26.1447i −1.38098 1.00334i
\(680\) 0 0
\(681\) −11.9060 −0.456239
\(682\) 0 0
\(683\) 34.4943 1.31989 0.659944 0.751314i \(-0.270580\pi\)
0.659944 + 0.751314i \(0.270580\pi\)
\(684\) 0 0
\(685\) −6.53482 4.74782i −0.249683 0.181405i
\(686\) 0 0
\(687\) −2.89614 + 8.91341i −0.110495 + 0.340068i
\(688\) 0 0
\(689\) −38.9477 + 28.2971i −1.48379 + 1.07803i
\(690\) 0 0
\(691\) −6.86210 21.1194i −0.261046 0.803418i −0.992578 0.121611i \(-0.961194\pi\)
0.731531 0.681808i \(-0.238806\pi\)
\(692\) 0 0
\(693\) −21.6560 + 27.2010i −0.822643 + 1.03328i
\(694\) 0 0
\(695\) 3.49930 + 10.7697i 0.132736 + 0.408519i
\(696\) 0 0
\(697\) −16.4290 + 11.9364i −0.622293 + 0.452123i
\(698\) 0 0
\(699\) 9.87141 30.3811i 0.373371 1.14912i
\(700\) 0 0
\(701\) −6.48043 4.70831i −0.244763 0.177830i 0.458640 0.888622i \(-0.348337\pi\)
−0.703402 + 0.710792i \(0.748337\pi\)
\(702\) 0 0
\(703\) −23.8312 −0.898812
\(704\) 0 0
\(705\) 9.46664 0.356534
\(706\) 0 0
\(707\) −40.4687 29.4022i −1.52198 1.10578i
\(708\) 0 0
\(709\) 3.93756 12.1186i 0.147878 0.455122i −0.849492 0.527602i \(-0.823091\pi\)
0.997370 + 0.0724796i \(0.0230912\pi\)
\(710\) 0 0
\(711\) 31.8821 23.1637i 1.19567 0.868707i
\(712\) 0 0
\(713\) 1.57217 + 4.83864i 0.0588781 + 0.181208i
\(714\) 0 0
\(715\) 0.868303 19.6905i 0.0324727 0.736384i
\(716\) 0 0
\(717\) −0.370635 1.14070i −0.0138416 0.0426001i
\(718\) 0 0
\(719\) −4.97964 + 3.61792i −0.185709 + 0.134926i −0.676755 0.736208i \(-0.736615\pi\)
0.491046 + 0.871133i \(0.336615\pi\)
\(720\) 0 0
\(721\) 3.71622 11.4373i 0.138399 0.425949i
\(722\) 0 0
\(723\) 11.8243 + 8.59088i 0.439751 + 0.319498i
\(724\) 0 0
\(725\) −7.76702 −0.288460
\(726\) 0 0
\(727\) 9.77647 0.362589 0.181295 0.983429i \(-0.441971\pi\)
0.181295 + 0.983429i \(0.441971\pi\)
\(728\) 0 0
\(729\) 9.86165 + 7.16491i 0.365246 + 0.265367i
\(730\) 0 0
\(731\) −4.51545 + 13.8971i −0.167010 + 0.514004i
\(732\) 0 0
\(733\) 17.9574 13.0468i 0.663272 0.481895i −0.204494 0.978868i \(-0.565555\pi\)
0.867766 + 0.496972i \(0.165555\pi\)
\(734\) 0 0
\(735\) −10.4413 32.1351i −0.385134 1.18532i
\(736\) 0 0
\(737\) −1.09065 + 24.7328i −0.0401748 + 0.911045i
\(738\) 0 0
\(739\) −6.41509 19.7436i −0.235983 0.726281i −0.996990 0.0775365i \(-0.975295\pi\)
0.761007 0.648744i \(-0.224705\pi\)
\(740\) 0 0
\(741\) −46.1687 + 33.5435i −1.69605 + 1.23225i
\(742\) 0 0
\(743\) 10.7212 32.9965i 0.393323 1.21052i −0.536937 0.843622i \(-0.680419\pi\)
0.930260 0.366901i \(-0.119581\pi\)
\(744\) 0 0
\(745\) 1.90261 + 1.38232i 0.0697061 + 0.0506444i
\(746\) 0 0
\(747\) −24.9029 −0.911150
\(748\) 0 0
\(749\) −82.2189 −3.00421
\(750\) 0 0
\(751\) −16.6954 12.1299i −0.609224 0.442627i 0.239917 0.970793i \(-0.422880\pi\)
−0.849141 + 0.528166i \(0.822880\pi\)
\(752\) 0 0
\(753\) −9.65669 + 29.7202i −0.351909 + 1.08307i
\(754\) 0 0
\(755\) −11.9143 + 8.65622i −0.433605 + 0.315032i
\(756\) 0 0
\(757\) −7.31734 22.5204i −0.265953 0.818520i −0.991472 0.130318i \(-0.958400\pi\)
0.725519 0.688202i \(-0.241600\pi\)
\(758\) 0 0
\(759\) 8.10096 10.1752i 0.294046 0.369336i
\(760\) 0 0
\(761\) 14.3705 + 44.2278i 0.520930 + 1.60326i 0.772227 + 0.635347i \(0.219143\pi\)
−0.251297 + 0.967910i \(0.580857\pi\)
\(762\) 0 0
\(763\) −57.9063 + 42.0714i −2.09635 + 1.52309i
\(764\) 0 0
\(765\) 2.29456 7.06194i 0.0829601 0.255325i
\(766\) 0 0
\(767\) −29.8808 21.7097i −1.07893 0.783892i
\(768\) 0 0
\(769\) 8.48780 0.306078 0.153039 0.988220i \(-0.451094\pi\)
0.153039 + 0.988220i \(0.451094\pi\)
\(770\) 0 0
\(771\) −5.51412 −0.198586
\(772\) 0 0
\(773\) −36.2516 26.3384i −1.30388 0.947325i −0.303895 0.952706i \(-0.598287\pi\)
−0.999986 + 0.00538094i \(0.998287\pi\)
\(774\) 0 0
\(775\) 0.918410 2.82658i 0.0329903 0.101534i
\(776\) 0 0
\(777\) −49.1366 + 35.6998i −1.76277 + 1.28072i
\(778\) 0 0
\(779\) −7.96347 24.5090i −0.285321 0.878127i
\(780\) 0 0
\(781\) 6.94978 + 2.60187i 0.248683 + 0.0931022i
\(782\) 0 0
\(783\) 4.13553 + 12.7278i 0.147792 + 0.454856i
\(784\) 0 0
\(785\) −13.3118 + 9.67162i −0.475120 + 0.345195i
\(786\) 0 0
\(787\) −1.39122 + 4.28172i −0.0495915 + 0.152627i −0.972786 0.231707i \(-0.925569\pi\)
0.923194 + 0.384334i \(0.125569\pi\)
\(788\) 0 0
\(789\) −21.8397 15.8675i −0.777513 0.564896i
\(790\) 0 0
\(791\) −1.47807 −0.0525542
\(792\) 0 0
\(793\) −9.07795 −0.322367
\(794\) 0 0
\(795\) 15.0137 + 10.9081i 0.532483 + 0.386871i
\(796\) 0 0
\(797\) 10.7449 33.0695i 0.380605 1.17138i −0.559014 0.829158i \(-0.688820\pi\)
0.939619 0.342223i \(-0.111180\pi\)
\(798\) 0 0
\(799\) −11.0436 + 8.02368i −0.390696 + 0.283857i
\(800\) 0 0
\(801\) 8.90308 + 27.4009i 0.314575 + 0.968162i
\(802\) 0 0
\(803\) 13.7092 + 20.7320i 0.483788 + 0.731617i
\(804\) 0 0
\(805\) 2.46701 + 7.59268i 0.0869507 + 0.267607i
\(806\) 0 0
\(807\) 28.0659 20.3910i 0.987965 0.717799i
\(808\) 0 0
\(809\) 16.5478 50.9290i 0.581790 1.79057i −0.0300036 0.999550i \(-0.509552\pi\)
0.611794 0.791017i \(-0.290448\pi\)
\(810\) 0 0
\(811\) −14.2011 10.3177i −0.498667 0.362303i 0.309840 0.950789i \(-0.399724\pi\)
−0.808508 + 0.588485i \(0.799724\pi\)
\(812\) 0 0
\(813\) 24.2228 0.849530
\(814\) 0 0
\(815\) 5.26242 0.184334
\(816\) 0 0
\(817\) −15.0018 10.8994i −0.524845 0.381322i
\(818\) 0 0
\(819\) −19.2513 + 59.2494i −0.672694 + 2.07034i
\(820\) 0 0
\(821\) −10.0045 + 7.26871i −0.349160 + 0.253680i −0.748517 0.663116i \(-0.769234\pi\)
0.399356 + 0.916796i \(0.369234\pi\)
\(822\) 0 0
\(823\) 4.33731 + 13.3489i 0.151189 + 0.465312i 0.997755 0.0669720i \(-0.0213338\pi\)
−0.846566 + 0.532284i \(0.821334\pi\)
\(824\) 0 0
\(825\) −7.32234 + 2.02723i −0.254931 + 0.0705791i
\(826\) 0 0
\(827\) 7.97527 + 24.5454i 0.277327 + 0.853526i 0.988594 + 0.150604i \(0.0481217\pi\)
−0.711267 + 0.702922i \(0.751878\pi\)
\(828\) 0 0
\(829\) −11.3328 + 8.23376i −0.393604 + 0.285970i −0.766931 0.641730i \(-0.778217\pi\)
0.373327 + 0.927700i \(0.378217\pi\)
\(830\) 0 0
\(831\) −17.8049 + 54.7977i −0.617644 + 1.90091i
\(832\) 0 0
\(833\) 39.4176 + 28.6386i 1.36574 + 0.992268i
\(834\) 0 0
\(835\) −21.5495 −0.745752
\(836\) 0 0
\(837\) −5.12093 −0.177005
\(838\) 0 0
\(839\) 5.50277 + 3.99799i 0.189977 + 0.138026i 0.678708 0.734408i \(-0.262540\pi\)
−0.488731 + 0.872434i \(0.662540\pi\)
\(840\) 0 0
\(841\) 9.68043 29.7933i 0.333808 1.02736i
\(842\) 0 0
\(843\) 0.598557 0.434877i 0.0206154 0.0149780i
\(844\) 0 0
\(845\) −6.89589 21.2234i −0.237226 0.730106i
\(846\) 0 0
\(847\) −43.9959 + 26.3832i −1.51172 + 0.906539i
\(848\) 0 0
\(849\) −15.1295 46.5639i −0.519244 1.59807i
\(850\) 0 0
\(851\) 7.87318 5.72020i 0.269889 0.196086i
\(852\) 0 0
\(853\) −14.4917 + 44.6010i −0.496188 + 1.52711i 0.318909 + 0.947785i \(0.396683\pi\)
−0.815097 + 0.579324i \(0.803317\pi\)
\(854\) 0 0
\(855\) 7.62327 + 5.53863i 0.260710 + 0.189417i
\(856\) 0 0
\(857\) −2.79309 −0.0954100 −0.0477050 0.998861i \(-0.515191\pi\)
−0.0477050 + 0.998861i \(0.515191\pi\)
\(858\) 0 0
\(859\) −5.83184 −0.198980 −0.0994898 0.995039i \(-0.531721\pi\)
−0.0994898 + 0.995039i \(0.531721\pi\)
\(860\) 0 0
\(861\) −53.1348 38.6047i −1.81083 1.31564i
\(862\) 0 0
\(863\) −13.8593 + 42.6544i −0.471775 + 1.45197i 0.378483 + 0.925608i \(0.376446\pi\)
−0.850258 + 0.526366i \(0.823554\pi\)
\(864\) 0 0
\(865\) −5.73128 + 4.16402i −0.194869 + 0.141581i
\(866\) 0 0
\(867\) −4.30979 13.2642i −0.146368 0.450474i
\(868\) 0 0
\(869\) 56.0378 15.5144i 1.90095 0.526289i
\(870\) 0 0
\(871\) 13.7077 + 42.1880i 0.464468 + 1.42948i
\(872\) 0 0
\(873\) 17.3446 12.6016i 0.587026 0.426499i
\(874\) 0 0
\(875\) 1.44115 4.43540i 0.0487197 0.149944i
\(876\) 0 0
\(877\) 12.8380 + 9.32736i 0.433509 + 0.314962i 0.783050 0.621958i \(-0.213663\pi\)
−0.349542 + 0.936921i \(0.613663\pi\)
\(878\) 0 0
\(879\) −24.0539 −0.811318
\(880\) 0 0
\(881\) −30.1411 −1.01548 −0.507740 0.861510i \(-0.669519\pi\)
−0.507740 + 0.861510i \(0.669519\pi\)
\(882\) 0 0
\(883\) −34.6023 25.1400i −1.16446 0.846030i −0.174124 0.984724i \(-0.555710\pi\)
−0.990335 + 0.138694i \(0.955710\pi\)
\(884\) 0 0
\(885\) −4.39972 + 13.5409i −0.147895 + 0.455174i
\(886\) 0 0
\(887\) 5.38867 3.91510i 0.180934 0.131456i −0.493632 0.869671i \(-0.664331\pi\)
0.674566 + 0.738215i \(0.264331\pi\)
\(888\) 0 0
\(889\) 26.0374 + 80.1349i 0.873267 + 2.68764i
\(890\) 0 0
\(891\) 19.5572 + 29.5757i 0.655191 + 0.990823i
\(892\) 0 0
\(893\) −5.35308 16.4751i −0.179134 0.551317i
\(894\) 0 0
\(895\) −7.10931 + 5.16521i −0.237638 + 0.172654i
\(896\) 0 0
\(897\) 7.20142 22.1637i 0.240449 0.740025i
\(898\) 0 0
\(899\) 18.6752 + 13.5684i 0.622854 + 0.452530i
\(900\) 0 0
\(901\) −26.7603 −0.891514
\(902\) 0 0
\(903\) −47.2592 −1.57269
\(904\) 0 0
\(905\) −10.2301 7.43261i −0.340060 0.247068i
\(906\) 0 0
\(907\) 11.5359 35.5039i 0.383043 1.17889i −0.554846 0.831953i \(-0.687223\pi\)
0.937890 0.346934i \(-0.112777\pi\)
\(908\) 0 0
\(909\) 19.5056 14.1717i 0.646961 0.470045i
\(910\) 0 0
\(911\) 4.55019 + 14.0040i 0.150755 + 0.463975i 0.997706 0.0676955i \(-0.0215646\pi\)
−0.846952 + 0.531670i \(0.821565\pi\)
\(912\) 0 0
\(913\) −34.4109 12.8828i −1.13883 0.426358i
\(914\) 0 0
\(915\) 1.08138 + 3.32814i 0.0357493 + 0.110025i
\(916\) 0 0
\(917\) 30.0018 21.7976i 0.990747 0.719820i
\(918\) 0 0
\(919\) 10.5128 32.3552i 0.346787 1.06730i −0.613834 0.789435i \(-0.710374\pi\)
0.960620 0.277864i \(-0.0896265\pi\)
\(920\) 0 0
\(921\) −53.8569 39.1293i −1.77465 1.28936i
\(922\) 0 0
\(923\) 13.2966 0.437664
\(924\) 0 0
\(925\) −5.68500 −0.186922
\(926\) 0 0
\(927\) 4.68941 + 3.40705i 0.154020 + 0.111902i
\(928\) 0 0
\(929\) 5.77838 17.7840i 0.189582 0.583475i −0.810415 0.585857i \(-0.800758\pi\)
0.999997 + 0.00238187i \(0.000758173\pi\)
\(930\) 0 0
\(931\) −50.0215 + 36.3427i −1.63939 + 1.19108i
\(932\) 0 0
\(933\) 14.1214 + 43.4613i 0.462315 + 1.42286i
\(934\) 0 0
\(935\) 6.82392 8.57117i 0.223166 0.280307i
\(936\) 0 0
\(937\) 0.0378104 + 0.116369i 0.00123521 + 0.00380160i 0.951672 0.307116i \(-0.0993638\pi\)
−0.950437 + 0.310917i \(0.899364\pi\)
\(938\) 0 0
\(939\) −32.3959 + 23.5370i −1.05720 + 0.768102i
\(940\) 0 0
\(941\) 9.21831 28.3710i 0.300508 0.924869i −0.680807 0.732463i \(-0.738371\pi\)
0.981315 0.192407i \(-0.0616292\pi\)
\(942\) 0 0
\(943\) 8.51380 + 6.18564i 0.277248 + 0.201432i
\(944\) 0 0
\(945\) −8.03564 −0.261399
\(946\) 0 0
\(947\) 49.0368 1.59348 0.796741 0.604320i \(-0.206555\pi\)
0.796741 + 0.604320i \(0.206555\pi\)
\(948\) 0 0
\(949\) 36.0292 + 26.1767i 1.16956 + 0.849732i
\(950\) 0 0
\(951\) −21.1164 + 64.9895i −0.684745 + 2.10743i
\(952\) 0 0
\(953\) −27.1125 + 19.6984i −0.878260 + 0.638093i −0.932791 0.360419i \(-0.882634\pi\)
0.0545306 + 0.998512i \(0.482634\pi\)
\(954\) 0 0
\(955\) −5.47653 16.8550i −0.177216 0.545416i
\(956\) 0 0
\(957\) 2.59976 58.9548i 0.0840382 1.90574i
\(958\) 0 0
\(959\) 11.6409 + 35.8269i 0.375903 + 1.15691i
\(960\) 0 0
\(961\) 17.9335 13.0294i 0.578499 0.420304i
\(962\) 0 0
\(963\) 12.2460 37.6894i 0.394623 1.21452i
\(964\) 0 0
\(965\) −4.07373 2.95973i −0.131138 0.0952772i
\(966\) 0 0
\(967\) −52.5565 −1.69010 −0.845052 0.534685i \(-0.820430\pi\)
−0.845052 + 0.534685i \(0.820430\pi\)
\(968\) 0 0
\(969\) −31.7217 −1.01905
\(970\) 0 0
\(971\) 3.46962 + 2.52083i 0.111345 + 0.0808971i 0.642065 0.766651i \(-0.278078\pi\)
−0.530719 + 0.847548i \(0.678078\pi\)
\(972\) 0 0
\(973\) 16.3195 50.2263i 0.523180 1.61018i
\(974\) 0 0
\(975\) −11.0137 + 8.00189i −0.352719 + 0.256266i
\(976\) 0 0
\(977\) −6.66156 20.5022i −0.213122 0.655923i −0.999282 0.0378988i \(-0.987934\pi\)
0.786159 0.618024i \(-0.212066\pi\)
\(978\) 0 0
\(979\) −1.87274 + 42.4683i −0.0598531 + 1.35729i
\(980\) 0 0
\(981\) −10.6608 32.8107i −0.340375 1.04757i
\(982\) 0 0
\(983\) 21.3311 15.4979i 0.680356 0.494307i −0.193120 0.981175i \(-0.561861\pi\)
0.873476 + 0.486868i \(0.161861\pi\)
\(984\) 0 0
\(985\) 4.65248 14.3189i 0.148240 0.456237i
\(986\) 0 0
\(987\) −35.7174 25.9502i −1.13690 0.826005i
\(988\) 0 0
\(989\) 7.57235 0.240787
\(990\) 0 0
\(991\) 49.3520 1.56772 0.783858 0.620940i \(-0.213249\pi\)
0.783858 + 0.620940i \(0.213249\pi\)
\(992\) 0 0
\(993\) 54.6244 + 39.6870i 1.73345 + 1.25943i
\(994\) 0 0
\(995\) 0.792732 2.43978i 0.0251313 0.0773462i
\(996\) 0 0
\(997\) 2.28959 1.66349i 0.0725122 0.0526832i −0.550939 0.834546i \(-0.685730\pi\)
0.623451 + 0.781863i \(0.285730\pi\)
\(998\) 0 0
\(999\) 3.02696 + 9.31603i 0.0957688 + 0.294746i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 880.2.bo.i.401.1 12
4.3 odd 2 440.2.y.c.401.3 yes 12
11.3 even 5 9680.2.a.dc.1.5 6
11.8 odd 10 9680.2.a.dd.1.5 6
11.9 even 5 inner 880.2.bo.i.801.1 12
44.3 odd 10 4840.2.a.bb.1.2 6
44.19 even 10 4840.2.a.ba.1.2 6
44.31 odd 10 440.2.y.c.361.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
440.2.y.c.361.3 12 44.31 odd 10
440.2.y.c.401.3 yes 12 4.3 odd 2
880.2.bo.i.401.1 12 1.1 even 1 trivial
880.2.bo.i.801.1 12 11.9 even 5 inner
4840.2.a.ba.1.2 6 44.19 even 10
4840.2.a.bb.1.2 6 44.3 odd 10
9680.2.a.dc.1.5 6 11.3 even 5
9680.2.a.dd.1.5 6 11.8 odd 10