Properties

Label 880.2.bo.d.641.1
Level $880$
Weight $2$
Character 880.641
Analytic conductor $7.027$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [880,2,Mod(81,880)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(880, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("880.81");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 880.bo (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.02683537787\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.13140625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} + 5x^{6} - 3x^{5} + 4x^{4} + 3x^{3} + 5x^{2} + 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 440)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 641.1
Root \(-0.386111 + 0.280526i\) of defining polynomial
Character \(\chi\) \(=\) 880.641
Dual form 880.2.bo.d.81.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0911485 - 0.280526i) q^{3} +(-0.809017 - 0.587785i) q^{5} +(1.35666 - 4.17538i) q^{7} +(2.35666 - 1.71222i) q^{9} +(-3.31118 + 0.189896i) q^{11} +(-4.82402 + 3.50485i) q^{13} +(-0.0911485 + 0.280526i) q^{15} +(1.34932 + 0.980336i) q^{17} +(-2.37743 - 7.31696i) q^{19} -1.29496 q^{21} +0.904706 q^{23} +(0.309017 + 0.951057i) q^{25} +(-1.41102 - 1.02516i) q^{27} +(-1.46443 + 4.50705i) q^{29} +(-4.14709 + 3.01303i) q^{31} +(0.355081 + 0.911566i) q^{33} +(-3.55179 + 2.58053i) q^{35} +(-0.0571606 + 0.175922i) q^{37} +(1.42291 + 1.03380i) q^{39} +(-0.810356 - 2.49402i) q^{41} -3.59822 q^{43} -2.91300 q^{45} +(0.239853 + 0.738191i) q^{47} +(-9.93016 - 7.21469i) q^{49} +(0.152022 - 0.467875i) q^{51} +(7.76295 - 5.64012i) q^{53} +(2.79042 + 1.79264i) q^{55} +(-1.83590 + 1.33386i) q^{57} +(3.47762 - 10.7030i) q^{59} +(-10.6708 - 7.75277i) q^{61} +(-3.95196 - 12.1629i) q^{63} +5.96281 q^{65} +7.79954 q^{67} +(-0.0824626 - 0.253794i) q^{69} +(-5.63943 - 4.09729i) q^{71} +(3.94122 - 12.1298i) q^{73} +(0.238630 - 0.173375i) q^{75} +(-3.69927 + 14.0831i) q^{77} +(-8.11547 + 5.89624i) q^{79} +(2.54152 - 7.82200i) q^{81} +(3.31316 + 2.40715i) q^{83} +(-0.515393 - 1.58622i) q^{85} +1.39783 q^{87} -0.466291 q^{89} +(8.08953 + 24.8970i) q^{91} +(1.22324 + 0.888733i) q^{93} +(-2.37743 + 7.31696i) q^{95} +(-5.74372 + 4.17306i) q^{97} +(-7.47820 + 6.11699i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - q^{3} - 2 q^{5} - q^{7} + 7 q^{9} - 3 q^{11} - 4 q^{13} - q^{15} - 3 q^{17} - 9 q^{19} - 4 q^{21} + 22 q^{23} - 2 q^{25} + 8 q^{27} - 17 q^{29} + 4 q^{31} + 21 q^{33} - 6 q^{35} + 24 q^{37} + 13 q^{39}+ \cdots - 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.0911485 0.280526i −0.0526246 0.161962i 0.921290 0.388876i \(-0.127136\pi\)
−0.973915 + 0.226914i \(0.927136\pi\)
\(4\) 0 0
\(5\) −0.809017 0.587785i −0.361803 0.262866i
\(6\) 0 0
\(7\) 1.35666 4.17538i 0.512771 1.57815i −0.274531 0.961578i \(-0.588523\pi\)
0.787302 0.616568i \(-0.211477\pi\)
\(8\) 0 0
\(9\) 2.35666 1.71222i 0.785555 0.570739i
\(10\) 0 0
\(11\) −3.31118 + 0.189896i −0.998360 + 0.0572559i
\(12\) 0 0
\(13\) −4.82402 + 3.50485i −1.33794 + 0.972071i −0.338424 + 0.940994i \(0.609894\pi\)
−0.999517 + 0.0310775i \(0.990106\pi\)
\(14\) 0 0
\(15\) −0.0911485 + 0.280526i −0.0235345 + 0.0724316i
\(16\) 0 0
\(17\) 1.34932 + 0.980336i 0.327258 + 0.237767i 0.739266 0.673413i \(-0.235173\pi\)
−0.412009 + 0.911180i \(0.635173\pi\)
\(18\) 0 0
\(19\) −2.37743 7.31696i −0.545419 1.67863i −0.719992 0.693982i \(-0.755855\pi\)
0.174573 0.984644i \(-0.444145\pi\)
\(20\) 0 0
\(21\) −1.29496 −0.282584
\(22\) 0 0
\(23\) 0.904706 0.188644 0.0943221 0.995542i \(-0.469932\pi\)
0.0943221 + 0.995542i \(0.469932\pi\)
\(24\) 0 0
\(25\) 0.309017 + 0.951057i 0.0618034 + 0.190211i
\(26\) 0 0
\(27\) −1.41102 1.02516i −0.271551 0.197293i
\(28\) 0 0
\(29\) −1.46443 + 4.50705i −0.271938 + 0.836938i 0.718076 + 0.695965i \(0.245023\pi\)
−0.990013 + 0.140973i \(0.954977\pi\)
\(30\) 0 0
\(31\) −4.14709 + 3.01303i −0.744839 + 0.541157i −0.894223 0.447622i \(-0.852271\pi\)
0.149384 + 0.988779i \(0.452271\pi\)
\(32\) 0 0
\(33\) 0.355081 + 0.911566i 0.0618116 + 0.158683i
\(34\) 0 0
\(35\) −3.55179 + 2.58053i −0.600362 + 0.436189i
\(36\) 0 0
\(37\) −0.0571606 + 0.175922i −0.00939715 + 0.0289214i −0.955645 0.294521i \(-0.904840\pi\)
0.946248 + 0.323442i \(0.104840\pi\)
\(38\) 0 0
\(39\) 1.42291 + 1.03380i 0.227847 + 0.165541i
\(40\) 0 0
\(41\) −0.810356 2.49402i −0.126556 0.389501i 0.867625 0.497219i \(-0.165645\pi\)
−0.994181 + 0.107719i \(0.965645\pi\)
\(42\) 0 0
\(43\) −3.59822 −0.548723 −0.274361 0.961627i \(-0.588466\pi\)
−0.274361 + 0.961627i \(0.588466\pi\)
\(44\) 0 0
\(45\) −2.91300 −0.434244
\(46\) 0 0
\(47\) 0.239853 + 0.738191i 0.0349861 + 0.107676i 0.967024 0.254683i \(-0.0819712\pi\)
−0.932038 + 0.362360i \(0.881971\pi\)
\(48\) 0 0
\(49\) −9.93016 7.21469i −1.41859 1.03067i
\(50\) 0 0
\(51\) 0.152022 0.467875i 0.0212873 0.0655157i
\(52\) 0 0
\(53\) 7.76295 5.64012i 1.06632 0.774729i 0.0910758 0.995844i \(-0.470969\pi\)
0.975248 + 0.221114i \(0.0709694\pi\)
\(54\) 0 0
\(55\) 2.79042 + 1.79264i 0.376260 + 0.241719i
\(56\) 0 0
\(57\) −1.83590 + 1.33386i −0.243171 + 0.176674i
\(58\) 0 0
\(59\) 3.47762 10.7030i 0.452748 1.39341i −0.421012 0.907055i \(-0.638325\pi\)
0.873759 0.486359i \(-0.161675\pi\)
\(60\) 0 0
\(61\) −10.6708 7.75277i −1.36625 0.992640i −0.998019 0.0629067i \(-0.979963\pi\)
−0.368233 0.929734i \(-0.620037\pi\)
\(62\) 0 0
\(63\) −3.95196 12.1629i −0.497900 1.53238i
\(64\) 0 0
\(65\) 5.96281 0.739596
\(66\) 0 0
\(67\) 7.79954 0.952866 0.476433 0.879211i \(-0.341930\pi\)
0.476433 + 0.879211i \(0.341930\pi\)
\(68\) 0 0
\(69\) −0.0824626 0.253794i −0.00992734 0.0305532i
\(70\) 0 0
\(71\) −5.63943 4.09729i −0.669278 0.486259i 0.200506 0.979693i \(-0.435742\pi\)
−0.869783 + 0.493434i \(0.835742\pi\)
\(72\) 0 0
\(73\) 3.94122 12.1298i 0.461285 1.41969i −0.402310 0.915504i \(-0.631793\pi\)
0.863595 0.504186i \(-0.168207\pi\)
\(74\) 0 0
\(75\) 0.238630 0.173375i 0.0275546 0.0200196i
\(76\) 0 0
\(77\) −3.69927 + 14.0831i −0.421571 + 1.60492i
\(78\) 0 0
\(79\) −8.11547 + 5.89624i −0.913062 + 0.663378i −0.941787 0.336209i \(-0.890855\pi\)
0.0287255 + 0.999587i \(0.490855\pi\)
\(80\) 0 0
\(81\) 2.54152 7.82200i 0.282391 0.869112i
\(82\) 0 0
\(83\) 3.31316 + 2.40715i 0.363667 + 0.264219i 0.754580 0.656208i \(-0.227841\pi\)
−0.390913 + 0.920428i \(0.627841\pi\)
\(84\) 0 0
\(85\) −0.515393 1.58622i −0.0559023 0.172049i
\(86\) 0 0
\(87\) 1.39783 0.149863
\(88\) 0 0
\(89\) −0.466291 −0.0494267 −0.0247134 0.999695i \(-0.507867\pi\)
−0.0247134 + 0.999695i \(0.507867\pi\)
\(90\) 0 0
\(91\) 8.08953 + 24.8970i 0.848013 + 2.60992i
\(92\) 0 0
\(93\) 1.22324 + 0.888733i 0.126844 + 0.0921574i
\(94\) 0 0
\(95\) −2.37743 + 7.31696i −0.243919 + 0.750705i
\(96\) 0 0
\(97\) −5.74372 + 4.17306i −0.583186 + 0.423710i −0.839871 0.542785i \(-0.817370\pi\)
0.256685 + 0.966495i \(0.417370\pi\)
\(98\) 0 0
\(99\) −7.47820 + 6.11699i −0.751588 + 0.614780i
\(100\) 0 0
\(101\) 13.1749 9.57214i 1.31095 0.952463i 0.310955 0.950425i \(-0.399351\pi\)
0.999998 0.00203865i \(-0.000648924\pi\)
\(102\) 0 0
\(103\) −0.985946 + 3.03443i −0.0971481 + 0.298991i −0.987808 0.155680i \(-0.950243\pi\)
0.890659 + 0.454671i \(0.150243\pi\)
\(104\) 0 0
\(105\) 1.04765 + 0.761160i 0.102240 + 0.0742816i
\(106\) 0 0
\(107\) 4.06801 + 12.5201i 0.393270 + 1.21036i 0.930301 + 0.366797i \(0.119546\pi\)
−0.537031 + 0.843562i \(0.680454\pi\)
\(108\) 0 0
\(109\) 1.33532 0.127900 0.0639502 0.997953i \(-0.479630\pi\)
0.0639502 + 0.997953i \(0.479630\pi\)
\(110\) 0 0
\(111\) 0.0545610 0.00517870
\(112\) 0 0
\(113\) −0.517444 1.59253i −0.0486770 0.149812i 0.923764 0.382963i \(-0.125096\pi\)
−0.972441 + 0.233151i \(0.925096\pi\)
\(114\) 0 0
\(115\) −0.731923 0.531773i −0.0682521 0.0495881i
\(116\) 0 0
\(117\) −5.36752 + 16.5195i −0.496227 + 1.52723i
\(118\) 0 0
\(119\) 5.92385 4.30393i 0.543038 0.394541i
\(120\) 0 0
\(121\) 10.9279 1.25756i 0.993444 0.114324i
\(122\) 0 0
\(123\) −0.625776 + 0.454653i −0.0564243 + 0.0409946i
\(124\) 0 0
\(125\) 0.309017 0.951057i 0.0276393 0.0850651i
\(126\) 0 0
\(127\) 0.729305 + 0.529871i 0.0647153 + 0.0470185i 0.619673 0.784860i \(-0.287265\pi\)
−0.554957 + 0.831879i \(0.687265\pi\)
\(128\) 0 0
\(129\) 0.327972 + 1.00939i 0.0288763 + 0.0888722i
\(130\) 0 0
\(131\) 14.5527 1.27148 0.635739 0.771904i \(-0.280695\pi\)
0.635739 + 0.771904i \(0.280695\pi\)
\(132\) 0 0
\(133\) −33.7765 −2.92879
\(134\) 0 0
\(135\) 0.538961 + 1.65875i 0.0463864 + 0.142763i
\(136\) 0 0
\(137\) 16.6573 + 12.1022i 1.42313 + 1.03396i 0.991246 + 0.132031i \(0.0421498\pi\)
0.431881 + 0.901931i \(0.357850\pi\)
\(138\) 0 0
\(139\) 4.63035 14.2508i 0.392741 1.20873i −0.537965 0.842967i \(-0.680807\pi\)
0.930707 0.365767i \(-0.119193\pi\)
\(140\) 0 0
\(141\) 0.185220 0.134570i 0.0155983 0.0113328i
\(142\) 0 0
\(143\) 15.3076 12.5213i 1.28009 1.04708i
\(144\) 0 0
\(145\) 3.83392 2.78551i 0.318390 0.231324i
\(146\) 0 0
\(147\) −1.11879 + 3.44328i −0.0922762 + 0.283997i
\(148\) 0 0
\(149\) −8.86891 6.44364i −0.726570 0.527884i 0.161907 0.986806i \(-0.448236\pi\)
−0.888476 + 0.458922i \(0.848236\pi\)
\(150\) 0 0
\(151\) 1.82682 + 5.62238i 0.148665 + 0.457543i 0.997464 0.0711723i \(-0.0226740\pi\)
−0.848799 + 0.528715i \(0.822674\pi\)
\(152\) 0 0
\(153\) 4.85844 0.392781
\(154\) 0 0
\(155\) 5.12608 0.411737
\(156\) 0 0
\(157\) −1.36780 4.20964i −0.109162 0.335966i 0.881523 0.472142i \(-0.156519\pi\)
−0.990685 + 0.136176i \(0.956519\pi\)
\(158\) 0 0
\(159\) −2.28978 1.66362i −0.181592 0.131934i
\(160\) 0 0
\(161\) 1.22738 3.77749i 0.0967313 0.297708i
\(162\) 0 0
\(163\) −5.97430 + 4.34059i −0.467944 + 0.339981i −0.796639 0.604455i \(-0.793391\pi\)
0.328696 + 0.944436i \(0.393391\pi\)
\(164\) 0 0
\(165\) 0.248539 0.946183i 0.0193487 0.0736603i
\(166\) 0 0
\(167\) −15.7658 + 11.4545i −1.21999 + 0.886375i −0.996099 0.0882386i \(-0.971876\pi\)
−0.223892 + 0.974614i \(0.571876\pi\)
\(168\) 0 0
\(169\) 6.96991 21.4512i 0.536147 1.65009i
\(170\) 0 0
\(171\) −18.1310 13.1730i −1.38651 1.00736i
\(172\) 0 0
\(173\) 2.93815 + 9.04269i 0.223383 + 0.687503i 0.998452 + 0.0556257i \(0.0177153\pi\)
−0.775068 + 0.631877i \(0.782285\pi\)
\(174\) 0 0
\(175\) 4.39026 0.331872
\(176\) 0 0
\(177\) −3.31946 −0.249506
\(178\) 0 0
\(179\) −2.22879 6.85952i −0.166588 0.512705i 0.832562 0.553932i \(-0.186873\pi\)
−0.999150 + 0.0412273i \(0.986873\pi\)
\(180\) 0 0
\(181\) 18.9225 + 13.7480i 1.40650 + 1.02188i 0.993820 + 0.111002i \(0.0354060\pi\)
0.412676 + 0.910878i \(0.364594\pi\)
\(182\) 0 0
\(183\) −1.20223 + 3.70009i −0.0888715 + 0.273518i
\(184\) 0 0
\(185\) 0.149648 0.108726i 0.0110024 0.00799369i
\(186\) 0 0
\(187\) −4.65400 2.98984i −0.340334 0.218639i
\(188\) 0 0
\(189\) −6.19473 + 4.50074i −0.450601 + 0.327380i
\(190\) 0 0
\(191\) 1.28728 3.96183i 0.0931441 0.286668i −0.893621 0.448821i \(-0.851844\pi\)
0.986766 + 0.162153i \(0.0518439\pi\)
\(192\) 0 0
\(193\) 18.7417 + 13.6166i 1.34906 + 0.980148i 0.999058 + 0.0433979i \(0.0138183\pi\)
0.350000 + 0.936750i \(0.386182\pi\)
\(194\) 0 0
\(195\) −0.543502 1.67273i −0.0389210 0.119786i
\(196\) 0 0
\(197\) 10.1507 0.723209 0.361604 0.932332i \(-0.382229\pi\)
0.361604 + 0.932332i \(0.382229\pi\)
\(198\) 0 0
\(199\) 17.0131 1.20603 0.603014 0.797731i \(-0.293966\pi\)
0.603014 + 0.797731i \(0.293966\pi\)
\(200\) 0 0
\(201\) −0.710917 2.18798i −0.0501442 0.154328i
\(202\) 0 0
\(203\) 16.8319 + 12.2291i 1.18137 + 0.858315i
\(204\) 0 0
\(205\) −0.810356 + 2.49402i −0.0565977 + 0.174190i
\(206\) 0 0
\(207\) 2.13209 1.54905i 0.148190 0.107667i
\(208\) 0 0
\(209\) 9.26156 + 23.7763i 0.640635 + 1.64464i
\(210\) 0 0
\(211\) −4.86721 + 3.53624i −0.335073 + 0.243445i −0.742580 0.669757i \(-0.766398\pi\)
0.407507 + 0.913202i \(0.366398\pi\)
\(212\) 0 0
\(213\) −0.635371 + 1.95547i −0.0435349 + 0.133987i
\(214\) 0 0
\(215\) 2.91102 + 2.11498i 0.198530 + 0.144240i
\(216\) 0 0
\(217\) 6.95437 + 21.4033i 0.472093 + 1.45295i
\(218\) 0 0
\(219\) −3.76197 −0.254211
\(220\) 0 0
\(221\) −9.94506 −0.668977
\(222\) 0 0
\(223\) −0.770711 2.37201i −0.0516107 0.158841i 0.921929 0.387358i \(-0.126612\pi\)
−0.973540 + 0.228517i \(0.926612\pi\)
\(224\) 0 0
\(225\) 2.35666 + 1.71222i 0.157111 + 0.114148i
\(226\) 0 0
\(227\) 7.72396 23.7719i 0.512657 1.57780i −0.274848 0.961488i \(-0.588627\pi\)
0.787505 0.616309i \(-0.211373\pi\)
\(228\) 0 0
\(229\) 2.24164 1.62865i 0.148132 0.107624i −0.511251 0.859432i \(-0.670818\pi\)
0.659383 + 0.751807i \(0.270818\pi\)
\(230\) 0 0
\(231\) 4.28786 0.245909i 0.282121 0.0161796i
\(232\) 0 0
\(233\) 7.76676 5.64288i 0.508818 0.369678i −0.303557 0.952813i \(-0.598174\pi\)
0.812375 + 0.583136i \(0.198174\pi\)
\(234\) 0 0
\(235\) 0.239853 0.738191i 0.0156463 0.0481543i
\(236\) 0 0
\(237\) 2.39376 + 1.73917i 0.155492 + 0.112971i
\(238\) 0 0
\(239\) −4.56394 14.0464i −0.295217 0.908584i −0.983149 0.182808i \(-0.941481\pi\)
0.687932 0.725775i \(-0.258519\pi\)
\(240\) 0 0
\(241\) −10.4338 −0.672099 −0.336049 0.941844i \(-0.609091\pi\)
−0.336049 + 0.941844i \(0.609091\pi\)
\(242\) 0 0
\(243\) −7.65828 −0.491279
\(244\) 0 0
\(245\) 3.79298 + 11.6736i 0.242325 + 0.745799i
\(246\) 0 0
\(247\) 37.1136 + 26.9646i 2.36148 + 1.71572i
\(248\) 0 0
\(249\) 0.373280 1.14884i 0.0236557 0.0728047i
\(250\) 0 0
\(251\) −5.44787 + 3.95811i −0.343866 + 0.249834i −0.746291 0.665619i \(-0.768167\pi\)
0.402425 + 0.915453i \(0.368167\pi\)
\(252\) 0 0
\(253\) −2.99565 + 0.171800i −0.188335 + 0.0108010i
\(254\) 0 0
\(255\) −0.397999 + 0.289163i −0.0249236 + 0.0181081i
\(256\) 0 0
\(257\) 2.39239 7.36301i 0.149233 0.459292i −0.848298 0.529519i \(-0.822372\pi\)
0.997531 + 0.0702272i \(0.0223724\pi\)
\(258\) 0 0
\(259\) 0.656995 + 0.477335i 0.0408237 + 0.0296601i
\(260\) 0 0
\(261\) 4.26588 + 13.1290i 0.264051 + 0.812666i
\(262\) 0 0
\(263\) −18.1618 −1.11990 −0.559952 0.828525i \(-0.689181\pi\)
−0.559952 + 0.828525i \(0.689181\pi\)
\(264\) 0 0
\(265\) −9.59554 −0.589449
\(266\) 0 0
\(267\) 0.0425017 + 0.130807i 0.00260106 + 0.00800525i
\(268\) 0 0
\(269\) 8.67812 + 6.30502i 0.529114 + 0.384424i 0.820026 0.572326i \(-0.193959\pi\)
−0.290912 + 0.956750i \(0.593959\pi\)
\(270\) 0 0
\(271\) 5.80566 17.8680i 0.352669 1.08540i −0.604680 0.796469i \(-0.706699\pi\)
0.957349 0.288935i \(-0.0933011\pi\)
\(272\) 0 0
\(273\) 6.24692 4.53865i 0.378081 0.274692i
\(274\) 0 0
\(275\) −1.20381 3.09044i −0.0725927 0.186361i
\(276\) 0 0
\(277\) −23.3375 + 16.9557i −1.40221 + 1.01877i −0.407814 + 0.913065i \(0.633709\pi\)
−0.994398 + 0.105701i \(0.966291\pi\)
\(278\) 0 0
\(279\) −4.61432 + 14.2014i −0.276252 + 0.850217i
\(280\) 0 0
\(281\) −21.8873 15.9021i −1.30569 0.948637i −0.305693 0.952130i \(-0.598888\pi\)
−0.999994 + 0.00349313i \(0.998888\pi\)
\(282\) 0 0
\(283\) −3.97802 12.2431i −0.236468 0.727775i −0.996923 0.0783842i \(-0.975024\pi\)
0.760455 0.649391i \(-0.224976\pi\)
\(284\) 0 0
\(285\) 2.26930 0.134422
\(286\) 0 0
\(287\) −11.5129 −0.679583
\(288\) 0 0
\(289\) −4.39369 13.5224i −0.258452 0.795435i
\(290\) 0 0
\(291\) 1.69418 + 1.23090i 0.0993148 + 0.0721565i
\(292\) 0 0
\(293\) 1.81972 5.60052i 0.106309 0.327186i −0.883726 0.468004i \(-0.844973\pi\)
0.990035 + 0.140818i \(0.0449733\pi\)
\(294\) 0 0
\(295\) −9.10453 + 6.61483i −0.530086 + 0.385130i
\(296\) 0 0
\(297\) 4.86682 + 3.12656i 0.282401 + 0.181422i
\(298\) 0 0
\(299\) −4.36432 + 3.17086i −0.252395 + 0.183376i
\(300\) 0 0
\(301\) −4.88157 + 15.0239i −0.281369 + 0.865965i
\(302\) 0 0
\(303\) −3.88611 2.82343i −0.223251 0.162202i
\(304\) 0 0
\(305\) 4.07587 + 12.5442i 0.233384 + 0.718281i
\(306\) 0 0
\(307\) −6.85844 −0.391432 −0.195716 0.980661i \(-0.562703\pi\)
−0.195716 + 0.980661i \(0.562703\pi\)
\(308\) 0 0
\(309\) 0.941105 0.0535376
\(310\) 0 0
\(311\) 4.40946 + 13.5709i 0.250037 + 0.769536i 0.994767 + 0.102170i \(0.0325784\pi\)
−0.744730 + 0.667366i \(0.767422\pi\)
\(312\) 0 0
\(313\) −1.29421 0.940297i −0.0731529 0.0531487i 0.550608 0.834764i \(-0.314396\pi\)
−0.623761 + 0.781615i \(0.714396\pi\)
\(314\) 0 0
\(315\) −3.95196 + 12.1629i −0.222668 + 0.685300i
\(316\) 0 0
\(317\) 24.9627 18.1365i 1.40204 1.01864i 0.407624 0.913150i \(-0.366357\pi\)
0.994420 0.105495i \(-0.0336427\pi\)
\(318\) 0 0
\(319\) 3.99312 15.2018i 0.223572 0.851135i
\(320\) 0 0
\(321\) 3.14141 2.28237i 0.175337 0.127389i
\(322\) 0 0
\(323\) 3.96518 12.2036i 0.220629 0.679025i
\(324\) 0 0
\(325\) −4.82402 3.50485i −0.267588 0.194414i
\(326\) 0 0
\(327\) −0.121712 0.374592i −0.00673071 0.0207150i
\(328\) 0 0
\(329\) 3.40763 0.187869
\(330\) 0 0
\(331\) 1.16816 0.0642079 0.0321040 0.999485i \(-0.489779\pi\)
0.0321040 + 0.999485i \(0.489779\pi\)
\(332\) 0 0
\(333\) 0.166509 + 0.512461i 0.00912462 + 0.0280827i
\(334\) 0 0
\(335\) −6.30996 4.58446i −0.344750 0.250476i
\(336\) 0 0
\(337\) 4.33522 13.3424i 0.236154 0.726809i −0.760812 0.648973i \(-0.775199\pi\)
0.996966 0.0778359i \(-0.0248010\pi\)
\(338\) 0 0
\(339\) −0.399582 + 0.290313i −0.0217023 + 0.0157677i
\(340\) 0 0
\(341\) 13.1596 10.7642i 0.712632 0.582916i
\(342\) 0 0
\(343\) −18.7334 + 13.6106i −1.01151 + 0.734905i
\(344\) 0 0
\(345\) −0.0824626 + 0.253794i −0.00443964 + 0.0136638i
\(346\) 0 0
\(347\) 26.9818 + 19.6034i 1.44846 + 1.05237i 0.986188 + 0.165630i \(0.0529659\pi\)
0.462273 + 0.886738i \(0.347034\pi\)
\(348\) 0 0
\(349\) −10.9166 33.5978i −0.584351 1.79845i −0.601862 0.798600i \(-0.705574\pi\)
0.0175108 0.999847i \(-0.494426\pi\)
\(350\) 0 0
\(351\) 10.3998 0.555102
\(352\) 0 0
\(353\) 11.7558 0.625698 0.312849 0.949803i \(-0.398717\pi\)
0.312849 + 0.949803i \(0.398717\pi\)
\(354\) 0 0
\(355\) 2.15407 + 6.62955i 0.114326 + 0.351860i
\(356\) 0 0
\(357\) −1.74732 1.26950i −0.0924778 0.0671890i
\(358\) 0 0
\(359\) 0.840838 2.58783i 0.0443777 0.136581i −0.926413 0.376510i \(-0.877124\pi\)
0.970790 + 0.239929i \(0.0771242\pi\)
\(360\) 0 0
\(361\) −32.5145 + 23.6232i −1.71129 + 1.24332i
\(362\) 0 0
\(363\) −1.34884 2.95093i −0.0707957 0.154884i
\(364\) 0 0
\(365\) −10.3183 + 7.49665i −0.540082 + 0.392393i
\(366\) 0 0
\(367\) −0.959060 + 2.95168i −0.0500625 + 0.154077i −0.972962 0.230963i \(-0.925812\pi\)
0.922900 + 0.385040i \(0.125812\pi\)
\(368\) 0 0
\(369\) −6.18004 4.49006i −0.321720 0.233743i
\(370\) 0 0
\(371\) −13.0179 40.0650i −0.675857 2.08007i
\(372\) 0 0
\(373\) −27.4604 −1.42185 −0.710924 0.703269i \(-0.751723\pi\)
−0.710924 + 0.703269i \(0.751723\pi\)
\(374\) 0 0
\(375\) −0.294963 −0.0152318
\(376\) 0 0
\(377\) −8.73211 26.8747i −0.449727 1.38412i
\(378\) 0 0
\(379\) 11.2805 + 8.19577i 0.579441 + 0.420989i 0.838523 0.544867i \(-0.183420\pi\)
−0.259081 + 0.965855i \(0.583420\pi\)
\(380\) 0 0
\(381\) 0.0821677 0.252886i 0.00420958 0.0129558i
\(382\) 0 0
\(383\) 6.59841 4.79402i 0.337163 0.244963i −0.406301 0.913739i \(-0.633182\pi\)
0.743464 + 0.668776i \(0.233182\pi\)
\(384\) 0 0
\(385\) 11.2706 9.21908i 0.574403 0.469848i
\(386\) 0 0
\(387\) −8.47979 + 6.16093i −0.431052 + 0.313177i
\(388\) 0 0
\(389\) −0.958326 + 2.94942i −0.0485891 + 0.149542i −0.972407 0.233290i \(-0.925051\pi\)
0.923818 + 0.382831i \(0.125051\pi\)
\(390\) 0 0
\(391\) 1.22074 + 0.886916i 0.0617352 + 0.0448533i
\(392\) 0 0
\(393\) −1.32646 4.08243i −0.0669111 0.205931i
\(394\) 0 0
\(395\) 10.0313 0.504728
\(396\) 0 0
\(397\) 23.1546 1.16209 0.581047 0.813870i \(-0.302643\pi\)
0.581047 + 0.813870i \(0.302643\pi\)
\(398\) 0 0
\(399\) 3.07868 + 9.47520i 0.154127 + 0.474353i
\(400\) 0 0
\(401\) 6.66933 + 4.84555i 0.333051 + 0.241975i 0.741724 0.670705i \(-0.234008\pi\)
−0.408673 + 0.912681i \(0.634008\pi\)
\(402\) 0 0
\(403\) 9.44537 29.0699i 0.470507 1.44807i
\(404\) 0 0
\(405\) −6.65379 + 4.83426i −0.330630 + 0.240217i
\(406\) 0 0
\(407\) 0.155862 0.593366i 0.00772581 0.0294120i
\(408\) 0 0
\(409\) −1.76891 + 1.28518i −0.0874667 + 0.0635483i −0.630659 0.776060i \(-0.717215\pi\)
0.543192 + 0.839608i \(0.317215\pi\)
\(410\) 0 0
\(411\) 1.87670 5.77590i 0.0925710 0.284904i
\(412\) 0 0
\(413\) −39.9712 29.0408i −1.96686 1.42900i
\(414\) 0 0
\(415\) −1.26552 3.89486i −0.0621217 0.191191i
\(416\) 0 0
\(417\) −4.41977 −0.216437
\(418\) 0 0
\(419\) −10.7348 −0.524429 −0.262215 0.965010i \(-0.584453\pi\)
−0.262215 + 0.965010i \(0.584453\pi\)
\(420\) 0 0
\(421\) 5.80597 + 17.8689i 0.282966 + 0.870878i 0.987001 + 0.160714i \(0.0513795\pi\)
−0.704036 + 0.710165i \(0.748620\pi\)
\(422\) 0 0
\(423\) 1.82919 + 1.32899i 0.0889385 + 0.0646176i
\(424\) 0 0
\(425\) −0.515393 + 1.58622i −0.0250003 + 0.0769429i
\(426\) 0 0
\(427\) −46.8474 + 34.0366i −2.26711 + 1.64715i
\(428\) 0 0
\(429\) −4.90782 3.15290i −0.236952 0.152224i
\(430\) 0 0
\(431\) −7.26399 + 5.27760i −0.349894 + 0.254213i −0.748825 0.662768i \(-0.769381\pi\)
0.398931 + 0.916981i \(0.369381\pi\)
\(432\) 0 0
\(433\) 9.73586 29.9639i 0.467876 1.43997i −0.387454 0.921889i \(-0.626645\pi\)
0.855330 0.518084i \(-0.173355\pi\)
\(434\) 0 0
\(435\) −1.13087 0.821622i −0.0542208 0.0393937i
\(436\) 0 0
\(437\) −2.15087 6.61970i −0.102890 0.316663i
\(438\) 0 0
\(439\) −27.4750 −1.31131 −0.655655 0.755060i \(-0.727607\pi\)
−0.655655 + 0.755060i \(0.727607\pi\)
\(440\) 0 0
\(441\) −35.7552 −1.70263
\(442\) 0 0
\(443\) 9.33108 + 28.7181i 0.443333 + 1.36444i 0.884301 + 0.466916i \(0.154635\pi\)
−0.440968 + 0.897523i \(0.645365\pi\)
\(444\) 0 0
\(445\) 0.377237 + 0.274079i 0.0178827 + 0.0129926i
\(446\) 0 0
\(447\) −0.999223 + 3.07529i −0.0472616 + 0.145456i
\(448\) 0 0
\(449\) 22.1525 16.0947i 1.04544 0.759558i 0.0741012 0.997251i \(-0.476391\pi\)
0.971340 + 0.237693i \(0.0763912\pi\)
\(450\) 0 0
\(451\) 3.15684 + 8.10428i 0.148650 + 0.381615i
\(452\) 0 0
\(453\) 1.41071 1.02494i 0.0662811 0.0481560i
\(454\) 0 0
\(455\) 8.08953 24.8970i 0.379243 1.16719i
\(456\) 0 0
\(457\) −11.5596 8.39854i −0.540735 0.392867i 0.283623 0.958936i \(-0.408464\pi\)
−0.824358 + 0.566069i \(0.808464\pi\)
\(458\) 0 0
\(459\) −0.898905 2.76655i −0.0419573 0.129131i
\(460\) 0 0
\(461\) 8.78738 0.409269 0.204635 0.978838i \(-0.434399\pi\)
0.204635 + 0.978838i \(0.434399\pi\)
\(462\) 0 0
\(463\) 13.8394 0.643172 0.321586 0.946880i \(-0.395784\pi\)
0.321586 + 0.946880i \(0.395784\pi\)
\(464\) 0 0
\(465\) −0.467235 1.43800i −0.0216675 0.0666857i
\(466\) 0 0
\(467\) 20.1359 + 14.6296i 0.931778 + 0.676976i 0.946428 0.322916i \(-0.104663\pi\)
−0.0146495 + 0.999893i \(0.504663\pi\)
\(468\) 0 0
\(469\) 10.5814 32.5661i 0.488602 1.50376i
\(470\) 0 0
\(471\) −1.05624 + 0.767405i −0.0486691 + 0.0353602i
\(472\) 0 0
\(473\) 11.9144 0.683288i 0.547823 0.0314176i
\(474\) 0 0
\(475\) 6.22418 4.52213i 0.285585 0.207490i
\(476\) 0 0
\(477\) 8.63757 26.5837i 0.395487 1.21718i
\(478\) 0 0
\(479\) −23.1303 16.8051i −1.05685 0.767846i −0.0833469 0.996521i \(-0.526561\pi\)
−0.973503 + 0.228674i \(0.926561\pi\)
\(480\) 0 0
\(481\) −0.340838 1.04899i −0.0155409 0.0478299i
\(482\) 0 0
\(483\) −1.17156 −0.0533079
\(484\) 0 0
\(485\) 7.09963 0.322377
\(486\) 0 0
\(487\) −1.43808 4.42594i −0.0651654 0.200559i 0.913172 0.407574i \(-0.133625\pi\)
−0.978338 + 0.207015i \(0.933625\pi\)
\(488\) 0 0
\(489\) 1.76220 + 1.28031i 0.0796893 + 0.0578977i
\(490\) 0 0
\(491\) −7.70564 + 23.7155i −0.347751 + 1.07027i 0.612344 + 0.790592i \(0.290227\pi\)
−0.960095 + 0.279675i \(0.909773\pi\)
\(492\) 0 0
\(493\) −6.39440 + 4.64581i −0.287989 + 0.209237i
\(494\) 0 0
\(495\) 9.64547 0.553168i 0.433532 0.0248630i
\(496\) 0 0
\(497\) −24.7586 + 17.9882i −1.11057 + 0.806879i
\(498\) 0 0
\(499\) −4.75417 + 14.6318i −0.212826 + 0.655010i 0.786475 + 0.617622i \(0.211904\pi\)
−0.999301 + 0.0373883i \(0.988096\pi\)
\(500\) 0 0
\(501\) 4.65031 + 3.37865i 0.207761 + 0.150947i
\(502\) 0 0
\(503\) 10.1206 + 31.1481i 0.451257 + 1.38883i 0.875474 + 0.483265i \(0.160549\pi\)
−0.424217 + 0.905560i \(0.639451\pi\)
\(504\) 0 0
\(505\) −16.2851 −0.724677
\(506\) 0 0
\(507\) −6.65292 −0.295467
\(508\) 0 0
\(509\) 4.85208 + 14.9332i 0.215065 + 0.661901i 0.999149 + 0.0412466i \(0.0131329\pi\)
−0.784084 + 0.620654i \(0.786867\pi\)
\(510\) 0 0
\(511\) −45.2998 32.9122i −2.00394 1.45595i
\(512\) 0 0
\(513\) −4.14650 + 12.7616i −0.183073 + 0.563439i
\(514\) 0 0
\(515\) 2.58124 1.87538i 0.113743 0.0826391i
\(516\) 0 0
\(517\) −0.934376 2.39874i −0.0410938 0.105496i
\(518\) 0 0
\(519\) 2.26891 1.64846i 0.0995939 0.0723592i
\(520\) 0 0
\(521\) −10.3905 + 31.9786i −0.455215 + 1.40101i 0.415668 + 0.909516i \(0.363548\pi\)
−0.870883 + 0.491490i \(0.836452\pi\)
\(522\) 0 0
\(523\) −18.5729 13.4940i −0.812136 0.590051i 0.102313 0.994752i \(-0.467376\pi\)
−0.914449 + 0.404701i \(0.867376\pi\)
\(524\) 0 0
\(525\) −0.400166 1.23158i −0.0174647 0.0537507i
\(526\) 0 0
\(527\) −8.54952 −0.372423
\(528\) 0 0
\(529\) −22.1815 −0.964413
\(530\) 0 0
\(531\) −10.1303 31.1779i −0.439617 1.35300i
\(532\) 0 0
\(533\) 12.6503 + 9.19101i 0.547947 + 0.398107i
\(534\) 0 0
\(535\) 4.06801 12.5201i 0.175876 0.541289i
\(536\) 0 0
\(537\) −1.72113 + 1.25047i −0.0742720 + 0.0539618i
\(538\) 0 0
\(539\) 34.2506 + 22.0034i 1.47528 + 0.947756i
\(540\) 0 0
\(541\) 15.1914 11.0372i 0.653131 0.474528i −0.211205 0.977442i \(-0.567739\pi\)
0.864336 + 0.502914i \(0.167739\pi\)
\(542\) 0 0
\(543\) 2.13192 6.56136i 0.0914893 0.281575i
\(544\) 0 0
\(545\) −1.08030 0.784881i −0.0462748 0.0336206i
\(546\) 0 0
\(547\) −5.95740 18.3350i −0.254720 0.783947i −0.993885 0.110423i \(-0.964780\pi\)
0.739165 0.673525i \(-0.235220\pi\)
\(548\) 0 0
\(549\) −38.4218 −1.63980
\(550\) 0 0
\(551\) 36.4595 1.55323
\(552\) 0 0
\(553\) 13.6091 + 41.8844i 0.578717 + 1.78111i
\(554\) 0 0
\(555\) −0.0441407 0.0320701i −0.00187367 0.00136130i
\(556\) 0 0
\(557\) −5.54314 + 17.0600i −0.234870 + 0.722857i 0.762268 + 0.647261i \(0.224086\pi\)
−0.997139 + 0.0755955i \(0.975914\pi\)
\(558\) 0 0
\(559\) 17.3579 12.6112i 0.734159 0.533398i
\(560\) 0 0
\(561\) −0.414525 + 1.57809i −0.0175012 + 0.0666270i
\(562\) 0 0
\(563\) −1.46665 + 1.06558i −0.0618120 + 0.0449090i −0.618262 0.785972i \(-0.712163\pi\)
0.556450 + 0.830881i \(0.312163\pi\)
\(564\) 0 0
\(565\) −0.517444 + 1.59253i −0.0217690 + 0.0669982i
\(566\) 0 0
\(567\) −29.2119 21.2237i −1.22678 0.891310i
\(568\) 0 0
\(569\) 2.63761 + 8.11773i 0.110574 + 0.340313i 0.990998 0.133874i \(-0.0427419\pi\)
−0.880424 + 0.474187i \(0.842742\pi\)
\(570\) 0 0
\(571\) 32.2491 1.34958 0.674792 0.738008i \(-0.264233\pi\)
0.674792 + 0.738008i \(0.264233\pi\)
\(572\) 0 0
\(573\) −1.22873 −0.0513310
\(574\) 0 0
\(575\) 0.279570 + 0.860427i 0.0116589 + 0.0358823i
\(576\) 0 0
\(577\) −24.2423 17.6131i −1.00922 0.733243i −0.0451763 0.998979i \(-0.514385\pi\)
−0.964046 + 0.265736i \(0.914385\pi\)
\(578\) 0 0
\(579\) 2.11155 6.49868i 0.0877530 0.270076i
\(580\) 0 0
\(581\) 14.5456 10.5680i 0.603455 0.438435i
\(582\) 0 0
\(583\) −24.6335 + 20.1496i −1.02022 + 0.834512i
\(584\) 0 0
\(585\) 14.0523 10.2096i 0.580993 0.422116i
\(586\) 0 0
\(587\) −3.02941 + 9.32357i −0.125037 + 0.384825i −0.993908 0.110214i \(-0.964846\pi\)
0.868871 + 0.495039i \(0.164846\pi\)
\(588\) 0 0
\(589\) 31.9057 + 23.1808i 1.31465 + 0.955149i
\(590\) 0 0
\(591\) −0.925223 2.84754i −0.0380586 0.117132i
\(592\) 0 0
\(593\) 15.4666 0.635136 0.317568 0.948235i \(-0.397134\pi\)
0.317568 + 0.948235i \(0.397134\pi\)
\(594\) 0 0
\(595\) −7.32228 −0.300184
\(596\) 0 0
\(597\) −1.55072 4.77263i −0.0634668 0.195331i
\(598\) 0 0
\(599\) −0.225061 0.163516i −0.00919574 0.00668110i 0.583178 0.812344i \(-0.301809\pi\)
−0.592374 + 0.805663i \(0.701809\pi\)
\(600\) 0 0
\(601\) 9.27220 28.5369i 0.378221 1.16404i −0.563059 0.826417i \(-0.690376\pi\)
0.941280 0.337628i \(-0.109624\pi\)
\(602\) 0 0
\(603\) 18.3809 13.3545i 0.748528 0.543837i
\(604\) 0 0
\(605\) −9.58002 5.40586i −0.389483 0.219779i
\(606\) 0 0
\(607\) −18.0387 + 13.1059i −0.732169 + 0.531952i −0.890249 0.455474i \(-0.849470\pi\)
0.158080 + 0.987426i \(0.449470\pi\)
\(608\) 0 0
\(609\) 1.89638 5.83646i 0.0768452 0.236505i
\(610\) 0 0
\(611\) −3.74430 2.72040i −0.151478 0.110055i
\(612\) 0 0
\(613\) −8.76829 26.9860i −0.354148 1.08996i −0.956502 0.291726i \(-0.905770\pi\)
0.602354 0.798229i \(-0.294230\pi\)
\(614\) 0 0
\(615\) 0.773501 0.0311906
\(616\) 0 0
\(617\) −15.1603 −0.610332 −0.305166 0.952299i \(-0.598712\pi\)
−0.305166 + 0.952299i \(0.598712\pi\)
\(618\) 0 0
\(619\) 9.12336 + 28.0788i 0.366699 + 1.12858i 0.948910 + 0.315545i \(0.102187\pi\)
−0.582212 + 0.813037i \(0.697813\pi\)
\(620\) 0 0
\(621\) −1.27656 0.927473i −0.0512265 0.0372182i
\(622\) 0 0
\(623\) −0.632600 + 1.94694i −0.0253446 + 0.0780026i
\(624\) 0 0
\(625\) −0.809017 + 0.587785i −0.0323607 + 0.0235114i
\(626\) 0 0
\(627\) 5.82572 4.76529i 0.232657 0.190307i
\(628\) 0 0
\(629\) −0.249591 + 0.181338i −0.00995184 + 0.00723043i
\(630\) 0 0
\(631\) 14.1188 43.4532i 0.562061 1.72985i −0.114466 0.993427i \(-0.536516\pi\)
0.676527 0.736418i \(-0.263484\pi\)
\(632\) 0 0
\(633\) 1.43565 + 1.04306i 0.0570618 + 0.0414579i
\(634\) 0 0
\(635\) −0.278570 0.857349i −0.0110547 0.0340229i
\(636\) 0 0
\(637\) 73.1897 2.89988
\(638\) 0 0
\(639\) −20.3057 −0.803281
\(640\) 0 0
\(641\) 11.1602 + 34.3475i 0.440801 + 1.35665i 0.887024 + 0.461724i \(0.152769\pi\)
−0.446223 + 0.894922i \(0.647231\pi\)
\(642\) 0 0
\(643\) −27.0998 19.6892i −1.06871 0.776465i −0.0930318 0.995663i \(-0.529656\pi\)
−0.975680 + 0.219198i \(0.929656\pi\)
\(644\) 0 0
\(645\) 0.327972 1.00939i 0.0129139 0.0397449i
\(646\) 0 0
\(647\) 31.7188 23.0451i 1.24700 0.905996i 0.248953 0.968516i \(-0.419914\pi\)
0.998044 + 0.0625198i \(0.0199136\pi\)
\(648\) 0 0
\(649\) −9.48258 + 36.1000i −0.372224 + 1.41705i
\(650\) 0 0
\(651\) 5.37032 3.90177i 0.210480 0.152922i
\(652\) 0 0
\(653\) 7.65109 23.5476i 0.299410 0.921491i −0.682294 0.731078i \(-0.739017\pi\)
0.981704 0.190412i \(-0.0609825\pi\)
\(654\) 0 0
\(655\) −11.7734 8.55388i −0.460025 0.334228i
\(656\) 0 0
\(657\) −11.4808 35.3342i −0.447907 1.37852i
\(658\) 0 0
\(659\) −24.8813 −0.969238 −0.484619 0.874725i \(-0.661042\pi\)
−0.484619 + 0.874725i \(0.661042\pi\)
\(660\) 0 0
\(661\) −5.94396 −0.231193 −0.115597 0.993296i \(-0.536878\pi\)
−0.115597 + 0.993296i \(0.536878\pi\)
\(662\) 0 0
\(663\) 0.906478 + 2.78985i 0.0352047 + 0.108349i
\(664\) 0 0
\(665\) 27.3258 + 19.8533i 1.05965 + 0.769879i
\(666\) 0 0
\(667\) −1.32488 + 4.07755i −0.0512995 + 0.157883i
\(668\) 0 0
\(669\) −0.595161 + 0.432410i −0.0230103 + 0.0167179i
\(670\) 0 0
\(671\) 36.8051 + 23.6445i 1.42085 + 0.912786i
\(672\) 0 0
\(673\) −30.6213 + 22.2477i −1.18036 + 0.857585i −0.992213 0.124555i \(-0.960250\pi\)
−0.188152 + 0.982140i \(0.560250\pi\)
\(674\) 0 0
\(675\) 0.538961 1.65875i 0.0207446 0.0638454i
\(676\) 0 0
\(677\) −0.153794 0.111738i −0.00591078 0.00429443i 0.584826 0.811159i \(-0.301163\pi\)
−0.590737 + 0.806864i \(0.701163\pi\)
\(678\) 0 0
\(679\) 9.63181 + 29.6437i 0.369635 + 1.13762i
\(680\) 0 0
\(681\) −7.37267 −0.282521
\(682\) 0 0
\(683\) −23.0773 −0.883030 −0.441515 0.897254i \(-0.645559\pi\)
−0.441515 + 0.897254i \(0.645559\pi\)
\(684\) 0 0
\(685\) −6.36251 19.5818i −0.243099 0.748182i
\(686\) 0 0
\(687\) −0.661201 0.480391i −0.0252264 0.0183281i
\(688\) 0 0
\(689\) −17.6808 + 54.4160i −0.673586 + 2.07308i
\(690\) 0 0
\(691\) 37.7877 27.4544i 1.43751 1.04441i 0.448958 0.893553i \(-0.351795\pi\)
0.988555 0.150862i \(-0.0482049\pi\)
\(692\) 0 0
\(693\) 15.3953 + 39.5231i 0.584821 + 1.50136i
\(694\) 0 0
\(695\) −12.1224 + 8.80746i −0.459830 + 0.334086i
\(696\) 0 0
\(697\) 1.35155 4.15965i 0.0511936 0.157558i
\(698\) 0 0
\(699\) −2.29091 1.66444i −0.0866501 0.0629550i
\(700\) 0 0
\(701\) 1.28934 + 3.96818i 0.0486977 + 0.149876i 0.972448 0.233118i \(-0.0748929\pi\)
−0.923751 + 0.382994i \(0.874893\pi\)
\(702\) 0 0
\(703\) 1.42311 0.0536737
\(704\) 0 0
\(705\) −0.228944 −0.00862254
\(706\) 0 0
\(707\) −22.0934 67.9965i −0.830908 2.55727i
\(708\) 0 0
\(709\) 7.07305 + 5.13887i 0.265634 + 0.192994i 0.712627 0.701543i \(-0.247505\pi\)
−0.446993 + 0.894537i \(0.647505\pi\)
\(710\) 0 0
\(711\) −9.02981 + 27.7909i −0.338644 + 1.04224i
\(712\) 0 0
\(713\) −3.75189 + 2.72591i −0.140510 + 0.102086i
\(714\) 0 0
\(715\) −19.7440 + 1.13232i −0.738382 + 0.0423462i
\(716\) 0 0
\(717\) −3.52438 + 2.56061i −0.131620 + 0.0956278i
\(718\) 0 0
\(719\) 2.28722 7.03934i 0.0852990 0.262523i −0.899305 0.437321i \(-0.855927\pi\)
0.984604 + 0.174798i \(0.0559273\pi\)
\(720\) 0 0
\(721\) 11.3323 + 8.23340i 0.422037 + 0.306628i
\(722\) 0 0
\(723\) 0.951024 + 2.92695i 0.0353690 + 0.108854i
\(724\) 0 0
\(725\) −4.73899 −0.176002
\(726\) 0 0
\(727\) −18.0187 −0.668275 −0.334137 0.942524i \(-0.608445\pi\)
−0.334137 + 0.942524i \(0.608445\pi\)
\(728\) 0 0
\(729\) −6.92653 21.3177i −0.256538 0.789543i
\(730\) 0 0
\(731\) −4.85514 3.52746i −0.179574 0.130468i
\(732\) 0 0
\(733\) −11.2463 + 34.6127i −0.415393 + 1.27845i 0.496506 + 0.868033i \(0.334616\pi\)
−0.911899 + 0.410415i \(0.865384\pi\)
\(734\) 0 0
\(735\) 2.92903 2.12806i 0.108039 0.0784948i
\(736\) 0 0
\(737\) −25.8257 + 1.48110i −0.951302 + 0.0545572i
\(738\) 0 0
\(739\) −10.0576 + 7.30726i −0.369974 + 0.268802i −0.757200 0.653183i \(-0.773433\pi\)
0.387226 + 0.921985i \(0.373433\pi\)
\(740\) 0 0
\(741\) 4.18144 12.8691i 0.153609 0.472759i
\(742\) 0 0
\(743\) 30.2327 + 21.9653i 1.10913 + 0.805829i 0.982526 0.186125i \(-0.0595928\pi\)
0.126602 + 0.991954i \(0.459593\pi\)
\(744\) 0 0
\(745\) 3.38762 + 10.4260i 0.124113 + 0.381980i
\(746\) 0 0
\(747\) 11.9296 0.436480
\(748\) 0 0
\(749\) 57.7950 2.11178
\(750\) 0 0
\(751\) 2.44111 + 7.51295i 0.0890772 + 0.274151i 0.985665 0.168715i \(-0.0539617\pi\)
−0.896588 + 0.442866i \(0.853962\pi\)
\(752\) 0 0
\(753\) 1.60692 + 1.16749i 0.0585594 + 0.0425459i
\(754\) 0 0
\(755\) 1.82682 5.62238i 0.0664848 0.204619i
\(756\) 0 0
\(757\) 2.56487 1.86349i 0.0932219 0.0677297i −0.540198 0.841538i \(-0.681651\pi\)
0.633420 + 0.773808i \(0.281651\pi\)
\(758\) 0 0
\(759\) 0.321244 + 0.824699i 0.0116604 + 0.0299347i
\(760\) 0 0
\(761\) −37.8368 + 27.4901i −1.37158 + 0.996514i −0.373972 + 0.927440i \(0.622004\pi\)
−0.997612 + 0.0690739i \(0.977996\pi\)
\(762\) 0 0
\(763\) 1.81158 5.57547i 0.0655836 0.201845i
\(764\) 0 0
\(765\) −3.93056 2.85572i −0.142110 0.103249i
\(766\) 0 0
\(767\) 20.7364 + 63.8201i 0.748748 + 2.30441i
\(768\) 0 0
\(769\) −1.95610 −0.0705388 −0.0352694 0.999378i \(-0.511229\pi\)
−0.0352694 + 0.999378i \(0.511229\pi\)
\(770\) 0 0
\(771\) −2.28358 −0.0822411
\(772\) 0 0
\(773\) −6.31718 19.4423i −0.227213 0.699290i −0.998059 0.0622690i \(-0.980166\pi\)
0.770846 0.637021i \(-0.219834\pi\)
\(774\) 0 0
\(775\) −4.14709 3.01303i −0.148968 0.108231i
\(776\) 0 0
\(777\) 0.0740209 0.227813i 0.00265548 0.00817274i
\(778\) 0 0
\(779\) −16.3221 + 11.8587i −0.584800 + 0.424882i
\(780\) 0 0
\(781\) 19.4513 + 12.4960i 0.696021 + 0.447141i
\(782\) 0 0
\(783\) 6.68680 4.85825i 0.238967 0.173620i
\(784\) 0 0
\(785\) −1.36780 + 4.20964i −0.0488187 + 0.150249i
\(786\) 0 0
\(787\) −2.09694 1.52351i −0.0747478 0.0543074i 0.549784 0.835307i \(-0.314710\pi\)
−0.624532 + 0.781000i \(0.714710\pi\)
\(788\) 0 0
\(789\) 1.65542 + 5.09486i 0.0589346 + 0.181382i
\(790\) 0 0
\(791\) −7.35141 −0.261386
\(792\) 0 0
\(793\) 78.6483 2.79288
\(794\) 0 0
\(795\) 0.874619 + 2.69180i 0.0310196 + 0.0954684i
\(796\) 0 0
\(797\) −18.1112 13.1586i −0.641532 0.466100i 0.218844 0.975760i \(-0.429771\pi\)
−0.860376 + 0.509660i \(0.829771\pi\)
\(798\) 0 0
\(799\) −0.400038 + 1.23119i −0.0141523 + 0.0435564i
\(800\) 0 0
\(801\) −1.09889 + 0.798390i −0.0388274 + 0.0282097i
\(802\) 0 0
\(803\) −10.7467 + 40.9125i −0.379243 + 1.44377i
\(804\) 0 0
\(805\) −3.21333 + 2.33462i −0.113255 + 0.0822845i
\(806\) 0 0
\(807\) 0.977727 3.00913i 0.0344176 0.105927i
\(808\) 0 0
\(809\) −9.67269 7.02762i −0.340074 0.247078i 0.404619 0.914485i \(-0.367404\pi\)
−0.744693 + 0.667407i \(0.767404\pi\)
\(810\) 0 0
\(811\) −5.70741 17.5656i −0.200414 0.616812i −0.999871 0.0160875i \(-0.994879\pi\)
0.799456 0.600724i \(-0.205121\pi\)
\(812\) 0 0
\(813\) −5.54162 −0.194353
\(814\) 0 0
\(815\) 7.38464 0.258673
\(816\) 0 0
\(817\) 8.55449 + 26.3280i 0.299284 + 0.921101i
\(818\) 0 0
\(819\) 61.6934 + 44.8229i 2.15574 + 1.56624i
\(820\) 0 0
\(821\) 17.1422 52.7584i 0.598268 1.84128i 0.0605325 0.998166i \(-0.480720\pi\)
0.537736 0.843114i \(-0.319280\pi\)
\(822\) 0 0
\(823\) 35.3648 25.6940i 1.23274 0.895637i 0.235646 0.971839i \(-0.424279\pi\)
0.997092 + 0.0762021i \(0.0242794\pi\)
\(824\) 0 0
\(825\) −0.757225 + 0.619391i −0.0263632 + 0.0215644i
\(826\) 0 0
\(827\) 25.6778 18.6560i 0.892906 0.648734i −0.0437281 0.999043i \(-0.513924\pi\)
0.936634 + 0.350309i \(0.113924\pi\)
\(828\) 0 0
\(829\) −10.8249 + 33.3157i −0.375966 + 1.15710i 0.566859 + 0.823815i \(0.308158\pi\)
−0.942825 + 0.333289i \(0.891842\pi\)
\(830\) 0 0
\(831\) 6.88368 + 5.00129i 0.238792 + 0.173493i
\(832\) 0 0
\(833\) −6.32612 19.4698i −0.219187 0.674589i
\(834\) 0 0
\(835\) 19.4876 0.674394
\(836\) 0 0
\(837\) 8.94047 0.309028
\(838\) 0 0
\(839\) 4.89922 + 15.0783i 0.169140 + 0.520559i 0.999317 0.0369398i \(-0.0117610\pi\)
−0.830177 + 0.557499i \(0.811761\pi\)
\(840\) 0 0
\(841\) 5.29256 + 3.84527i 0.182502 + 0.132596i
\(842\) 0 0
\(843\) −2.46595 + 7.58941i −0.0849318 + 0.261393i
\(844\) 0 0
\(845\) −18.2475 + 13.2576i −0.627732 + 0.456074i
\(846\) 0 0
\(847\) 9.57465 47.3342i 0.328989 1.62642i
\(848\) 0 0
\(849\) −3.07191 + 2.23188i −0.105428 + 0.0765978i
\(850\) 0 0
\(851\) −0.0517136 + 0.159158i −0.00177272 + 0.00545586i
\(852\) 0 0
\(853\) 18.2728 + 13.2760i 0.625650 + 0.454561i 0.854890 0.518809i \(-0.173624\pi\)
−0.229241 + 0.973370i \(0.573624\pi\)
\(854\) 0 0
\(855\) 6.92543 + 21.3143i 0.236845 + 0.728933i
\(856\) 0 0
\(857\) 40.9108 1.39749 0.698744 0.715372i \(-0.253743\pi\)
0.698744 + 0.715372i \(0.253743\pi\)
\(858\) 0 0
\(859\) −15.9523 −0.544284 −0.272142 0.962257i \(-0.587732\pi\)
−0.272142 + 0.962257i \(0.587732\pi\)
\(860\) 0 0
\(861\) 1.04938 + 3.22966i 0.0357628 + 0.110067i
\(862\) 0 0
\(863\) 5.89687 + 4.28433i 0.200732 + 0.145840i 0.683610 0.729847i \(-0.260409\pi\)
−0.482879 + 0.875687i \(0.660409\pi\)
\(864\) 0 0
\(865\) 2.93815 9.04269i 0.0999000 0.307461i
\(866\) 0 0
\(867\) −3.39291 + 2.46509i −0.115229 + 0.0837189i
\(868\) 0 0
\(869\) 25.7521 21.0646i 0.873582 0.714568i
\(870\) 0 0
\(871\) −37.6251 + 27.3362i −1.27488 + 0.926253i
\(872\) 0 0
\(873\) −6.39084 + 19.6690i −0.216297 + 0.665694i
\(874\) 0 0
\(875\) −3.55179 2.58053i −0.120072 0.0872378i
\(876\) 0 0
\(877\) 2.20860 + 6.79737i 0.0745791 + 0.229531i 0.981396 0.191993i \(-0.0614952\pi\)
−0.906817 + 0.421524i \(0.861495\pi\)
\(878\) 0 0
\(879\) −1.73696 −0.0585861
\(880\) 0 0
\(881\) −17.5763 −0.592160 −0.296080 0.955163i \(-0.595680\pi\)
−0.296080 + 0.955163i \(0.595680\pi\)
\(882\) 0 0
\(883\) 1.93709 + 5.96175i 0.0651882 + 0.200629i 0.978345 0.206979i \(-0.0663631\pi\)
−0.913157 + 0.407608i \(0.866363\pi\)
\(884\) 0 0
\(885\) 2.68550 + 1.95113i 0.0902720 + 0.0655865i
\(886\) 0 0
\(887\) 7.62945 23.4810i 0.256172 0.788416i −0.737425 0.675429i \(-0.763958\pi\)
0.993597 0.112986i \(-0.0360416\pi\)
\(888\) 0 0
\(889\) 3.20184 2.32627i 0.107386 0.0780206i
\(890\) 0 0
\(891\) −6.93008 + 26.3827i −0.232166 + 0.883854i
\(892\) 0 0
\(893\) 4.83108 3.50999i 0.161666 0.117457i
\(894\) 0 0
\(895\) −2.22879 + 6.85952i −0.0745003 + 0.229288i
\(896\) 0 0
\(897\) 1.28731 + 0.935286i 0.0429821 + 0.0312283i
\(898\) 0 0
\(899\) −7.50678 23.1035i −0.250365 0.770545i
\(900\) 0 0
\(901\) 16.0039 0.533167
\(902\) 0 0
\(903\) 4.65956 0.155060
\(904\) 0 0
\(905\) −7.22774 22.2447i −0.240258 0.739439i
\(906\) 0 0
\(907\) 20.5798 + 14.9521i 0.683340 + 0.496476i 0.874464 0.485090i \(-0.161213\pi\)
−0.191124 + 0.981566i \(0.561213\pi\)
\(908\) 0 0
\(909\) 14.6593 45.1166i 0.486218 1.49642i
\(910\) 0 0
\(911\) −19.8448 + 14.4181i −0.657489 + 0.477694i −0.865814 0.500366i \(-0.833199\pi\)
0.208325 + 0.978060i \(0.433199\pi\)
\(912\) 0 0
\(913\) −11.4276 7.34137i −0.378198 0.242964i
\(914\) 0 0
\(915\) 3.14748 2.28678i 0.104053 0.0755986i
\(916\) 0 0
\(917\) 19.7432 60.7632i 0.651977 2.00658i
\(918\) 0 0
\(919\) 17.1714 + 12.4757i 0.566432 + 0.411537i 0.833807 0.552056i \(-0.186156\pi\)
−0.267376 + 0.963592i \(0.586156\pi\)
\(920\) 0 0
\(921\) 0.625136 + 1.92397i 0.0205989 + 0.0633970i
\(922\) 0 0
\(923\) 41.5651 1.36813
\(924\) 0 0
\(925\) −0.184976 −0.00608196
\(926\) 0 0
\(927\) 2.87206 + 8.83928i 0.0943307 + 0.290320i
\(928\) 0 0
\(929\) −27.7116 20.1337i −0.909190 0.660565i 0.0316201 0.999500i \(-0.489933\pi\)
−0.940810 + 0.338935i \(0.889933\pi\)
\(930\) 0 0
\(931\) −29.1814 + 89.8110i −0.956381 + 2.94344i
\(932\) 0 0
\(933\) 3.40508 2.47394i 0.111477 0.0809931i
\(934\) 0 0
\(935\) 2.00778 + 5.15439i 0.0656614 + 0.168566i
\(936\) 0 0
\(937\) −28.2608 + 20.5326i −0.923239 + 0.670772i −0.944328 0.329005i \(-0.893287\pi\)
0.0210892 + 0.999778i \(0.493287\pi\)
\(938\) 0 0
\(939\) −0.145813 + 0.448766i −0.00475842 + 0.0146449i
\(940\) 0 0
\(941\) 15.1298 + 10.9924i 0.493216 + 0.358343i 0.806420 0.591343i \(-0.201402\pi\)
−0.313203 + 0.949686i \(0.601402\pi\)
\(942\) 0 0
\(943\) −0.733134 2.25636i −0.0238741 0.0734770i
\(944\) 0 0
\(945\) 7.65711 0.249086
\(946\) 0 0
\(947\) −12.7418 −0.414052 −0.207026 0.978335i \(-0.566379\pi\)
−0.207026 + 0.978335i \(0.566379\pi\)
\(948\) 0 0
\(949\) 23.5008 + 72.3279i 0.762867 + 2.34786i
\(950\) 0 0
\(951\) −7.36307 5.34958i −0.238764 0.173472i
\(952\) 0 0
\(953\) 1.78515 5.49412i 0.0578266 0.177972i −0.917971 0.396647i \(-0.870174\pi\)
0.975798 + 0.218675i \(0.0701736\pi\)
\(954\) 0 0
\(955\) −3.37013 + 2.44855i −0.109055 + 0.0792331i
\(956\) 0 0
\(957\) −4.62846 + 0.265442i −0.149617 + 0.00858053i
\(958\) 0 0
\(959\) 73.1297 53.1318i 2.36148 1.71572i
\(960\) 0 0
\(961\) −1.45958 + 4.49212i −0.0470832 + 0.144907i
\(962\) 0 0
\(963\) 31.0240 + 22.5402i 0.999734 + 0.726349i
\(964\) 0 0
\(965\) −7.15870 22.0322i −0.230447 0.709242i
\(966\) 0 0
\(967\) 36.2900 1.16701 0.583504 0.812110i \(-0.301681\pi\)
0.583504 + 0.812110i \(0.301681\pi\)
\(968\) 0 0
\(969\) −3.78485 −0.121587
\(970\) 0 0
\(971\) 2.15967 + 6.64677i 0.0693070 + 0.213305i 0.979711 0.200415i \(-0.0642291\pi\)
−0.910404 + 0.413720i \(0.864229\pi\)
\(972\) 0 0
\(973\) −53.2206 38.6670i −1.70617 1.23961i
\(974\) 0 0
\(975\) −0.543502 + 1.67273i −0.0174060 + 0.0535701i
\(976\) 0 0
\(977\) −21.0340 + 15.2821i −0.672936 + 0.488917i −0.871007 0.491271i \(-0.836532\pi\)
0.198071 + 0.980188i \(0.436532\pi\)
\(978\) 0 0
\(979\) 1.54397 0.0885469i 0.0493456 0.00282997i
\(980\) 0 0
\(981\) 3.14690 2.28636i 0.100473 0.0729977i
\(982\) 0 0
\(983\) −8.85213 + 27.2441i −0.282339 + 0.868951i 0.704844 + 0.709362i \(0.251017\pi\)
−0.987184 + 0.159589i \(0.948983\pi\)
\(984\) 0 0
\(985\) −8.21211 5.96644i −0.261659 0.190107i
\(986\) 0 0
\(987\) −0.310600 0.955930i −0.00988652 0.0304276i
\(988\) 0 0
\(989\) −3.25533 −0.103513
\(990\) 0 0
\(991\) −27.9673 −0.888409 −0.444205 0.895925i \(-0.646514\pi\)
−0.444205 + 0.895925i \(0.646514\pi\)
\(992\) 0 0
\(993\) −0.106476 0.327700i −0.00337892 0.0103992i
\(994\) 0 0
\(995\) −13.7639 10.0001i −0.436345 0.317023i
\(996\) 0 0
\(997\) 4.03510 12.4188i 0.127793 0.393307i −0.866607 0.498992i \(-0.833704\pi\)
0.994400 + 0.105686i \(0.0337037\pi\)
\(998\) 0 0
\(999\) 0.261004 0.189631i 0.00825780 0.00599964i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 880.2.bo.d.641.1 8
4.3 odd 2 440.2.y.a.201.2 yes 8
11.2 odd 10 9680.2.a.ct.1.2 4
11.4 even 5 inner 880.2.bo.d.81.1 8
11.9 even 5 9680.2.a.cu.1.2 4
44.15 odd 10 440.2.y.a.81.2 8
44.31 odd 10 4840.2.a.y.1.3 4
44.35 even 10 4840.2.a.z.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
440.2.y.a.81.2 8 44.15 odd 10
440.2.y.a.201.2 yes 8 4.3 odd 2
880.2.bo.d.81.1 8 11.4 even 5 inner
880.2.bo.d.641.1 8 1.1 even 1 trivial
4840.2.a.y.1.3 4 44.31 odd 10
4840.2.a.z.1.3 4 44.35 even 10
9680.2.a.ct.1.2 4 11.2 odd 10
9680.2.a.cu.1.2 4 11.9 even 5