Properties

Label 880.2.bo.a
Level $880$
Weight $2$
Character orbit 880.bo
Analytic conductor $7.027$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [880,2,Mod(81,880)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("880.81"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(880, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 880.bo (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-4,0,1,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.02683537787\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 110)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{10}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 2 \zeta_{10}^{3} - 2 \zeta_{10}) q^{3} + \zeta_{10} q^{5} + (2 \zeta_{10}^{3} + \zeta_{10} - 1) q^{7} + (5 \zeta_{10}^{3} - \zeta_{10}^{2} + \cdots - 5) q^{9} + ( - \zeta_{10}^{3} + \cdots + 2 \zeta_{10}) q^{11}+ \cdots + (12 \zeta_{10}^{3} - 15 \zeta_{10}^{2} + \cdots - 18) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} + q^{5} - q^{7} - 13 q^{9} - q^{11} + 3 q^{13} + 4 q^{15} + 8 q^{17} + 14 q^{19} + 16 q^{21} - 14 q^{23} - q^{25} + 20 q^{27} - 6 q^{29} - 10 q^{31} + 16 q^{33} - 4 q^{35} - 10 q^{37}+ \cdots - 43 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(1\) \(1\) \(-\zeta_{10}^{3}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
81.1
0.809017 0.587785i
−0.309017 + 0.951057i
0.809017 + 0.587785i
−0.309017 0.951057i
0 −1.00000 + 3.07768i 0 0.809017 0.587785i 0 −0.809017 2.48990i 0 −6.04508 4.39201i 0
401.1 0 −1.00000 0.726543i 0 −0.309017 + 0.951057i 0 0.309017 0.224514i 0 −0.454915 1.40008i 0
641.1 0 −1.00000 3.07768i 0 0.809017 + 0.587785i 0 −0.809017 + 2.48990i 0 −6.04508 + 4.39201i 0
801.1 0 −1.00000 + 0.726543i 0 −0.309017 0.951057i 0 0.309017 + 0.224514i 0 −0.454915 + 1.40008i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.c even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 880.2.bo.a 4
4.b odd 2 1 110.2.g.a 4
11.c even 5 1 inner 880.2.bo.a 4
11.c even 5 1 9680.2.a.bh 2
11.d odd 10 1 9680.2.a.bi 2
12.b even 2 1 990.2.n.f 4
20.d odd 2 1 550.2.h.f 4
20.e even 4 2 550.2.ba.a 8
44.g even 10 1 1210.2.a.p 2
44.h odd 10 1 110.2.g.a 4
44.h odd 10 1 1210.2.a.t 2
132.o even 10 1 990.2.n.f 4
220.n odd 10 1 550.2.h.f 4
220.n odd 10 1 6050.2.a.bu 2
220.o even 10 1 6050.2.a.cm 2
220.v even 20 2 550.2.ba.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
110.2.g.a 4 4.b odd 2 1
110.2.g.a 4 44.h odd 10 1
550.2.h.f 4 20.d odd 2 1
550.2.h.f 4 220.n odd 10 1
550.2.ba.a 8 20.e even 4 2
550.2.ba.a 8 220.v even 20 2
880.2.bo.a 4 1.a even 1 1 trivial
880.2.bo.a 4 11.c even 5 1 inner
990.2.n.f 4 12.b even 2 1
990.2.n.f 4 132.o even 10 1
1210.2.a.p 2 44.g even 10 1
1210.2.a.t 2 44.h odd 10 1
6050.2.a.bu 2 220.n odd 10 1
6050.2.a.cm 2 220.o even 10 1
9680.2.a.bh 2 11.c even 5 1
9680.2.a.bi 2 11.d odd 10 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 4T_{3}^{3} + 16T_{3}^{2} + 24T_{3} + 16 \) acting on \(S_{2}^{\mathrm{new}}(880, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 4 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$5$ \( T^{4} - T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( T^{4} + T^{3} + 6 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{4} + T^{3} + \cdots + 121 \) Copy content Toggle raw display
$13$ \( T^{4} - 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$17$ \( T^{4} - 8 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$19$ \( T^{4} - 14 T^{3} + \cdots + 841 \) Copy content Toggle raw display
$23$ \( (T^{2} + 7 T + 1)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} + 6 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$31$ \( T^{4} + 10 T^{3} + \cdots + 400 \) Copy content Toggle raw display
$37$ \( T^{4} + 10 T^{3} + \cdots + 25 \) Copy content Toggle raw display
$41$ \( T^{4} + 9 T^{3} + \cdots + 81 \) Copy content Toggle raw display
$43$ \( (T^{2} - 14 T + 44)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 14 T^{3} + \cdots + 2401 \) Copy content Toggle raw display
$53$ \( T^{4} - 6 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$59$ \( T^{4} - 6 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$61$ \( T^{4} + 20 T^{3} + \cdots + 6400 \) Copy content Toggle raw display
$67$ \( (T^{2} + 6 T + 4)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} - 16 T^{3} + \cdots + 13456 \) Copy content Toggle raw display
$73$ \( T^{4} + 20 T^{3} + \cdots + 400 \) Copy content Toggle raw display
$79$ \( T^{4} - 4 T^{3} + \cdots + 256 \) Copy content Toggle raw display
$83$ \( T^{4} - 24 T^{3} + \cdots + 1296 \) Copy content Toggle raw display
$89$ \( (T^{2} - 5 T - 205)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} - 12 T^{3} + \cdots + 20736 \) Copy content Toggle raw display
show more
show less