Properties

Label 880.2.b.h.529.4
Level $880$
Weight $2$
Character 880.529
Analytic conductor $7.027$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [880,2,Mod(529,880)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(880, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("880.529");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 880.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.02683537787\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-11})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 529.4
Root \(-1.18614 - 1.26217i\) of defining polynomial
Character \(\chi\) \(=\) 880.529
Dual form 880.2.b.h.529.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.52434i q^{3} +(-2.18614 - 0.469882i) q^{5} -3.46410i q^{7} -3.37228 q^{9} +1.00000 q^{11} +(1.18614 - 5.51856i) q^{15} -5.04868i q^{17} +4.00000 q^{19} +8.74456 q^{21} -2.52434i q^{23} +(4.55842 + 2.05446i) q^{25} -0.939764i q^{27} +2.74456 q^{29} +2.37228 q^{31} +2.52434i q^{33} +(-1.62772 + 7.57301i) q^{35} -11.0371i q^{37} -2.74456 q^{41} +3.46410i q^{43} +(7.37228 + 1.58457i) q^{45} -6.63325i q^{47} -5.00000 q^{49} +12.7446 q^{51} +3.16915i q^{53} +(-2.18614 - 0.469882i) q^{55} +10.0974i q^{57} -1.62772 q^{59} +10.7446 q^{61} +11.6819i q^{63} +0.644810i q^{67} +6.37228 q^{69} -7.11684 q^{71} +6.92820i q^{73} +(-5.18614 + 11.5070i) q^{75} -3.46410i q^{77} +12.7446 q^{79} -7.74456 q^{81} -6.63325i q^{83} +(-2.37228 + 11.0371i) q^{85} +6.92820i q^{87} +4.37228 q^{89} +5.98844i q^{93} +(-8.74456 - 1.87953i) q^{95} -4.10891i q^{97} -3.37228 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 3 q^{5} - 2 q^{9} + 4 q^{11} - q^{15} + 16 q^{19} + 12 q^{21} + q^{25} - 12 q^{29} - 2 q^{31} - 18 q^{35} + 12 q^{41} + 18 q^{45} - 20 q^{49} + 28 q^{51} - 3 q^{55} - 18 q^{59} + 20 q^{61} + 14 q^{69}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.52434i 1.45743i 0.684819 + 0.728714i \(0.259881\pi\)
−0.684819 + 0.728714i \(0.740119\pi\)
\(4\) 0 0
\(5\) −2.18614 0.469882i −0.977672 0.210138i
\(6\) 0 0
\(7\) 3.46410i 1.30931i −0.755929 0.654654i \(-0.772814\pi\)
0.755929 0.654654i \(-0.227186\pi\)
\(8\) 0 0
\(9\) −3.37228 −1.12409
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 1.18614 5.51856i 0.306260 1.42489i
\(16\) 0 0
\(17\) 5.04868i 1.22448i −0.790671 0.612242i \(-0.790268\pi\)
0.790671 0.612242i \(-0.209732\pi\)
\(18\) 0 0
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) 8.74456 1.90822
\(22\) 0 0
\(23\) 2.52434i 0.526361i −0.964747 0.263180i \(-0.915229\pi\)
0.964747 0.263180i \(-0.0847714\pi\)
\(24\) 0 0
\(25\) 4.55842 + 2.05446i 0.911684 + 0.410891i
\(26\) 0 0
\(27\) 0.939764i 0.180858i
\(28\) 0 0
\(29\) 2.74456 0.509652 0.254826 0.966987i \(-0.417982\pi\)
0.254826 + 0.966987i \(0.417982\pi\)
\(30\) 0 0
\(31\) 2.37228 0.426074 0.213037 0.977044i \(-0.431664\pi\)
0.213037 + 0.977044i \(0.431664\pi\)
\(32\) 0 0
\(33\) 2.52434i 0.439431i
\(34\) 0 0
\(35\) −1.62772 + 7.57301i −0.275135 + 1.28007i
\(36\) 0 0
\(37\) 11.0371i 1.81449i −0.420602 0.907245i \(-0.638181\pi\)
0.420602 0.907245i \(-0.361819\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.74456 −0.428629 −0.214314 0.976765i \(-0.568752\pi\)
−0.214314 + 0.976765i \(0.568752\pi\)
\(42\) 0 0
\(43\) 3.46410i 0.528271i 0.964486 + 0.264135i \(0.0850865\pi\)
−0.964486 + 0.264135i \(0.914913\pi\)
\(44\) 0 0
\(45\) 7.37228 + 1.58457i 1.09899 + 0.236214i
\(46\) 0 0
\(47\) 6.63325i 0.967559i −0.875190 0.483779i \(-0.839264\pi\)
0.875190 0.483779i \(-0.160736\pi\)
\(48\) 0 0
\(49\) −5.00000 −0.714286
\(50\) 0 0
\(51\) 12.7446 1.78460
\(52\) 0 0
\(53\) 3.16915i 0.435316i 0.976025 + 0.217658i \(0.0698417\pi\)
−0.976025 + 0.217658i \(0.930158\pi\)
\(54\) 0 0
\(55\) −2.18614 0.469882i −0.294779 0.0633589i
\(56\) 0 0
\(57\) 10.0974i 1.33743i
\(58\) 0 0
\(59\) −1.62772 −0.211911 −0.105955 0.994371i \(-0.533790\pi\)
−0.105955 + 0.994371i \(0.533790\pi\)
\(60\) 0 0
\(61\) 10.7446 1.37570 0.687850 0.725853i \(-0.258555\pi\)
0.687850 + 0.725853i \(0.258555\pi\)
\(62\) 0 0
\(63\) 11.6819i 1.47178i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0.644810i 0.0787761i 0.999224 + 0.0393880i \(0.0125408\pi\)
−0.999224 + 0.0393880i \(0.987459\pi\)
\(68\) 0 0
\(69\) 6.37228 0.767133
\(70\) 0 0
\(71\) −7.11684 −0.844614 −0.422307 0.906453i \(-0.638780\pi\)
−0.422307 + 0.906453i \(0.638780\pi\)
\(72\) 0 0
\(73\) 6.92820i 0.810885i 0.914121 + 0.405442i \(0.132883\pi\)
−0.914121 + 0.405442i \(0.867117\pi\)
\(74\) 0 0
\(75\) −5.18614 + 11.5070i −0.598844 + 1.32871i
\(76\) 0 0
\(77\) 3.46410i 0.394771i
\(78\) 0 0
\(79\) 12.7446 1.43388 0.716938 0.697137i \(-0.245543\pi\)
0.716938 + 0.697137i \(0.245543\pi\)
\(80\) 0 0
\(81\) −7.74456 −0.860507
\(82\) 0 0
\(83\) 6.63325i 0.728094i −0.931381 0.364047i \(-0.881395\pi\)
0.931381 0.364047i \(-0.118605\pi\)
\(84\) 0 0
\(85\) −2.37228 + 11.0371i −0.257310 + 1.19714i
\(86\) 0 0
\(87\) 6.92820i 0.742781i
\(88\) 0 0
\(89\) 4.37228 0.463461 0.231730 0.972780i \(-0.425561\pi\)
0.231730 + 0.972780i \(0.425561\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 5.98844i 0.620972i
\(94\) 0 0
\(95\) −8.74456 1.87953i −0.897173 0.192835i
\(96\) 0 0
\(97\) 4.10891i 0.417197i −0.978001 0.208598i \(-0.933110\pi\)
0.978001 0.208598i \(-0.0668902\pi\)
\(98\) 0 0
\(99\) −3.37228 −0.338927
\(100\) 0 0
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 0 0
\(103\) 10.3923i 1.02398i −0.858990 0.511992i \(-0.828908\pi\)
0.858990 0.511992i \(-0.171092\pi\)
\(104\) 0 0
\(105\) −19.1168 4.10891i −1.86561 0.400989i
\(106\) 0 0
\(107\) 6.63325i 0.641260i −0.947204 0.320630i \(-0.896105\pi\)
0.947204 0.320630i \(-0.103895\pi\)
\(108\) 0 0
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) 0 0
\(111\) 27.8614 2.64449
\(112\) 0 0
\(113\) 16.0858i 1.51322i −0.653864 0.756612i \(-0.726853\pi\)
0.653864 0.756612i \(-0.273147\pi\)
\(114\) 0 0
\(115\) −1.18614 + 5.51856i −0.110608 + 0.514608i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −17.4891 −1.60323
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 6.92820i 0.624695i
\(124\) 0 0
\(125\) −9.00000 6.63325i −0.804984 0.593296i
\(126\) 0 0
\(127\) 11.6819i 1.03660i −0.855198 0.518302i \(-0.826564\pi\)
0.855198 0.518302i \(-0.173436\pi\)
\(128\) 0 0
\(129\) −8.74456 −0.769916
\(130\) 0 0
\(131\) −8.74456 −0.764016 −0.382008 0.924159i \(-0.624767\pi\)
−0.382008 + 0.924159i \(0.624767\pi\)
\(132\) 0 0
\(133\) 13.8564i 1.20150i
\(134\) 0 0
\(135\) −0.441578 + 2.05446i −0.0380050 + 0.176819i
\(136\) 0 0
\(137\) 2.22938i 0.190469i −0.995455 0.0952346i \(-0.969640\pi\)
0.995455 0.0952346i \(-0.0303601\pi\)
\(138\) 0 0
\(139\) 18.2337 1.54656 0.773281 0.634064i \(-0.218614\pi\)
0.773281 + 0.634064i \(0.218614\pi\)
\(140\) 0 0
\(141\) 16.7446 1.41015
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −6.00000 1.28962i −0.498273 0.107097i
\(146\) 0 0
\(147\) 12.6217i 1.04102i
\(148\) 0 0
\(149\) −11.4891 −0.941226 −0.470613 0.882340i \(-0.655967\pi\)
−0.470613 + 0.882340i \(0.655967\pi\)
\(150\) 0 0
\(151\) −22.2337 −1.80935 −0.904676 0.426100i \(-0.859887\pi\)
−0.904676 + 0.426100i \(0.859887\pi\)
\(152\) 0 0
\(153\) 17.0256i 1.37643i
\(154\) 0 0
\(155\) −5.18614 1.11469i −0.416561 0.0895342i
\(156\) 0 0
\(157\) 5.39853i 0.430850i 0.976520 + 0.215425i \(0.0691136\pi\)
−0.976520 + 0.215425i \(0.930886\pi\)
\(158\) 0 0
\(159\) −8.00000 −0.634441
\(160\) 0 0
\(161\) −8.74456 −0.689168
\(162\) 0 0
\(163\) 3.46410i 0.271329i −0.990755 0.135665i \(-0.956683\pi\)
0.990755 0.135665i \(-0.0433170\pi\)
\(164\) 0 0
\(165\) 1.18614 5.51856i 0.0923409 0.429619i
\(166\) 0 0
\(167\) 22.3692i 1.73098i 0.500927 + 0.865490i \(0.332993\pi\)
−0.500927 + 0.865490i \(0.667007\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) −13.4891 −1.03154
\(172\) 0 0
\(173\) 1.87953i 0.142898i 0.997444 + 0.0714489i \(0.0227623\pi\)
−0.997444 + 0.0714489i \(0.977238\pi\)
\(174\) 0 0
\(175\) 7.11684 15.7908i 0.537983 1.19368i
\(176\) 0 0
\(177\) 4.10891i 0.308845i
\(178\) 0 0
\(179\) −15.8614 −1.18554 −0.592769 0.805373i \(-0.701965\pi\)
−0.592769 + 0.805373i \(0.701965\pi\)
\(180\) 0 0
\(181\) 6.88316 0.511621 0.255810 0.966727i \(-0.417658\pi\)
0.255810 + 0.966727i \(0.417658\pi\)
\(182\) 0 0
\(183\) 27.1229i 2.00498i
\(184\) 0 0
\(185\) −5.18614 + 24.1287i −0.381293 + 1.77398i
\(186\) 0 0
\(187\) 5.04868i 0.369196i
\(188\) 0 0
\(189\) −3.25544 −0.236798
\(190\) 0 0
\(191\) 13.6277 0.986067 0.493034 0.870010i \(-0.335888\pi\)
0.493034 + 0.870010i \(0.335888\pi\)
\(192\) 0 0
\(193\) 23.3639i 1.68177i −0.541216 0.840883i \(-0.682036\pi\)
0.541216 0.840883i \(-0.317964\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.87953i 0.133911i 0.997756 + 0.0669554i \(0.0213285\pi\)
−0.997756 + 0.0669554i \(0.978671\pi\)
\(198\) 0 0
\(199\) −8.00000 −0.567105 −0.283552 0.958957i \(-0.591513\pi\)
−0.283552 + 0.958957i \(0.591513\pi\)
\(200\) 0 0
\(201\) −1.62772 −0.114810
\(202\) 0 0
\(203\) 9.50744i 0.667292i
\(204\) 0 0
\(205\) 6.00000 + 1.28962i 0.419058 + 0.0900710i
\(206\) 0 0
\(207\) 8.51278i 0.591679i
\(208\) 0 0
\(209\) 4.00000 0.276686
\(210\) 0 0
\(211\) 21.4891 1.47937 0.739686 0.672952i \(-0.234974\pi\)
0.739686 + 0.672952i \(0.234974\pi\)
\(212\) 0 0
\(213\) 17.9653i 1.23096i
\(214\) 0 0
\(215\) 1.62772 7.57301i 0.111009 0.516475i
\(216\) 0 0
\(217\) 8.21782i 0.557862i
\(218\) 0 0
\(219\) −17.4891 −1.18181
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 7.57301i 0.507126i 0.967319 + 0.253563i \(0.0816026\pi\)
−0.967319 + 0.253563i \(0.918397\pi\)
\(224\) 0 0
\(225\) −15.3723 6.92820i −1.02482 0.461880i
\(226\) 0 0
\(227\) 9.80240i 0.650608i 0.945609 + 0.325304i \(0.105467\pi\)
−0.945609 + 0.325304i \(0.894533\pi\)
\(228\) 0 0
\(229\) −20.3723 −1.34624 −0.673119 0.739534i \(-0.735046\pi\)
−0.673119 + 0.739534i \(0.735046\pi\)
\(230\) 0 0
\(231\) 8.74456 0.575350
\(232\) 0 0
\(233\) 17.0256i 1.11538i 0.830049 + 0.557691i \(0.188312\pi\)
−0.830049 + 0.557691i \(0.811688\pi\)
\(234\) 0 0
\(235\) −3.11684 + 14.5012i −0.203320 + 0.945955i
\(236\) 0 0
\(237\) 32.1716i 2.08977i
\(238\) 0 0
\(239\) −3.25544 −0.210577 −0.105288 0.994442i \(-0.533577\pi\)
−0.105288 + 0.994442i \(0.533577\pi\)
\(240\) 0 0
\(241\) 5.25544 0.338532 0.169266 0.985570i \(-0.445860\pi\)
0.169266 + 0.985570i \(0.445860\pi\)
\(242\) 0 0
\(243\) 22.3692i 1.43498i
\(244\) 0 0
\(245\) 10.9307 + 2.34941i 0.698337 + 0.150098i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 16.7446 1.06114
\(250\) 0 0
\(251\) 4.88316 0.308222 0.154111 0.988054i \(-0.450749\pi\)
0.154111 + 0.988054i \(0.450749\pi\)
\(252\) 0 0
\(253\) 2.52434i 0.158704i
\(254\) 0 0
\(255\) −27.8614 5.98844i −1.74475 0.375011i
\(256\) 0 0
\(257\) 23.9538i 1.49419i 0.664715 + 0.747097i \(0.268553\pi\)
−0.664715 + 0.747097i \(0.731447\pi\)
\(258\) 0 0
\(259\) −38.2337 −2.37573
\(260\) 0 0
\(261\) −9.25544 −0.572897
\(262\) 0 0
\(263\) 14.1514i 0.872610i 0.899799 + 0.436305i \(0.143713\pi\)
−0.899799 + 0.436305i \(0.856287\pi\)
\(264\) 0 0
\(265\) 1.48913 6.92820i 0.0914762 0.425596i
\(266\) 0 0
\(267\) 11.0371i 0.675460i
\(268\) 0 0
\(269\) −11.4891 −0.700504 −0.350252 0.936655i \(-0.613904\pi\)
−0.350252 + 0.936655i \(0.613904\pi\)
\(270\) 0 0
\(271\) 9.48913 0.576423 0.288212 0.957567i \(-0.406939\pi\)
0.288212 + 0.957567i \(0.406939\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.55842 + 2.05446i 0.274883 + 0.123888i
\(276\) 0 0
\(277\) 8.21782i 0.493761i 0.969046 + 0.246881i \(0.0794055\pi\)
−0.969046 + 0.246881i \(0.920594\pi\)
\(278\) 0 0
\(279\) −8.00000 −0.478947
\(280\) 0 0
\(281\) −23.4891 −1.40124 −0.700622 0.713533i \(-0.747094\pi\)
−0.700622 + 0.713533i \(0.747094\pi\)
\(282\) 0 0
\(283\) 4.75372i 0.282579i −0.989968 0.141290i \(-0.954875\pi\)
0.989968 0.141290i \(-0.0451249\pi\)
\(284\) 0 0
\(285\) 4.74456 22.0742i 0.281044 1.30756i
\(286\) 0 0
\(287\) 9.50744i 0.561207i
\(288\) 0 0
\(289\) −8.48913 −0.499360
\(290\) 0 0
\(291\) 10.3723 0.608034
\(292\) 0 0
\(293\) 10.0974i 0.589894i 0.955514 + 0.294947i \(0.0953019\pi\)
−0.955514 + 0.294947i \(0.904698\pi\)
\(294\) 0 0
\(295\) 3.55842 + 0.764836i 0.207179 + 0.0445304i
\(296\) 0 0
\(297\) 0.939764i 0.0545306i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 12.0000 0.691669
\(302\) 0 0
\(303\) 15.1460i 0.870117i
\(304\) 0 0
\(305\) −23.4891 5.04868i −1.34498 0.289086i
\(306\) 0 0
\(307\) 28.1176i 1.60475i 0.596817 + 0.802377i \(0.296432\pi\)
−0.596817 + 0.802377i \(0.703568\pi\)
\(308\) 0 0
\(309\) 26.2337 1.49238
\(310\) 0 0
\(311\) 17.4891 0.991717 0.495859 0.868403i \(-0.334853\pi\)
0.495859 + 0.868403i \(0.334853\pi\)
\(312\) 0 0
\(313\) 31.8217i 1.79867i 0.437260 + 0.899335i \(0.355949\pi\)
−0.437260 + 0.899335i \(0.644051\pi\)
\(314\) 0 0
\(315\) 5.48913 25.5383i 0.309277 1.43892i
\(316\) 0 0
\(317\) 3.51900i 0.197647i −0.995105 0.0988235i \(-0.968492\pi\)
0.995105 0.0988235i \(-0.0315079\pi\)
\(318\) 0 0
\(319\) 2.74456 0.153666
\(320\) 0 0
\(321\) 16.7446 0.934590
\(322\) 0 0
\(323\) 20.1947i 1.12366i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 25.2434i 1.39596i
\(328\) 0 0
\(329\) −22.9783 −1.26683
\(330\) 0 0
\(331\) −3.11684 −0.171317 −0.0856586 0.996325i \(-0.527299\pi\)
−0.0856586 + 0.996325i \(0.527299\pi\)
\(332\) 0 0
\(333\) 37.2203i 2.03966i
\(334\) 0 0
\(335\) 0.302985 1.40965i 0.0165538 0.0770172i
\(336\) 0 0
\(337\) 12.5668i 0.684556i −0.939599 0.342278i \(-0.888801\pi\)
0.939599 0.342278i \(-0.111199\pi\)
\(338\) 0 0
\(339\) 40.6060 2.20541
\(340\) 0 0
\(341\) 2.37228 0.128466
\(342\) 0 0
\(343\) 6.92820i 0.374088i
\(344\) 0 0
\(345\) −13.9307 2.99422i −0.750004 0.161203i
\(346\) 0 0
\(347\) 29.2974i 1.57277i 0.617739 + 0.786383i \(0.288049\pi\)
−0.617739 + 0.786383i \(0.711951\pi\)
\(348\) 0 0
\(349\) 7.48913 0.400884 0.200442 0.979706i \(-0.435762\pi\)
0.200442 + 0.979706i \(0.435762\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 21.7244i 1.15627i −0.815941 0.578136i \(-0.803780\pi\)
0.815941 0.578136i \(-0.196220\pi\)
\(354\) 0 0
\(355\) 15.5584 + 3.34408i 0.825755 + 0.177485i
\(356\) 0 0
\(357\) 44.1485i 2.33658i
\(358\) 0 0
\(359\) 6.51087 0.343631 0.171815 0.985129i \(-0.445037\pi\)
0.171815 + 0.985129i \(0.445037\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 0 0
\(363\) 2.52434i 0.132493i
\(364\) 0 0
\(365\) 3.25544 15.1460i 0.170397 0.792779i
\(366\) 0 0
\(367\) 24.0087i 1.25324i 0.779324 + 0.626621i \(0.215563\pi\)
−0.779324 + 0.626621i \(0.784437\pi\)
\(368\) 0 0
\(369\) 9.25544 0.481819
\(370\) 0 0
\(371\) 10.9783 0.569962
\(372\) 0 0
\(373\) 8.21782i 0.425503i −0.977106 0.212751i \(-0.931758\pi\)
0.977106 0.212751i \(-0.0682424\pi\)
\(374\) 0 0
\(375\) 16.7446 22.7190i 0.864685 1.17321i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −6.37228 −0.327322 −0.163661 0.986517i \(-0.552330\pi\)
−0.163661 + 0.986517i \(0.552330\pi\)
\(380\) 0 0
\(381\) 29.4891 1.51077
\(382\) 0 0
\(383\) 5.69349i 0.290924i 0.989364 + 0.145462i \(0.0464668\pi\)
−0.989364 + 0.145462i \(0.953533\pi\)
\(384\) 0 0
\(385\) −1.62772 + 7.57301i −0.0829562 + 0.385957i
\(386\) 0 0
\(387\) 11.6819i 0.593826i
\(388\) 0 0
\(389\) 9.86141 0.499993 0.249997 0.968247i \(-0.419571\pi\)
0.249997 + 0.968247i \(0.419571\pi\)
\(390\) 0 0
\(391\) −12.7446 −0.644520
\(392\) 0 0
\(393\) 22.0742i 1.11350i
\(394\) 0 0
\(395\) −27.8614 5.98844i −1.40186 0.301311i
\(396\) 0 0
\(397\) 23.3639i 1.17260i 0.810095 + 0.586299i \(0.199416\pi\)
−0.810095 + 0.586299i \(0.800584\pi\)
\(398\) 0 0
\(399\) 34.9783 1.75110
\(400\) 0 0
\(401\) 11.4891 0.573740 0.286870 0.957970i \(-0.407385\pi\)
0.286870 + 0.957970i \(0.407385\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 16.9307 + 3.63903i 0.841293 + 0.180825i
\(406\) 0 0
\(407\) 11.0371i 0.547089i
\(408\) 0 0
\(409\) −4.51087 −0.223048 −0.111524 0.993762i \(-0.535573\pi\)
−0.111524 + 0.993762i \(0.535573\pi\)
\(410\) 0 0
\(411\) 5.62772 0.277595
\(412\) 0 0
\(413\) 5.63858i 0.277457i
\(414\) 0 0
\(415\) −3.11684 + 14.5012i −0.153000 + 0.711837i
\(416\) 0 0
\(417\) 46.0280i 2.25400i
\(418\) 0 0
\(419\) 22.9783 1.12256 0.561280 0.827626i \(-0.310309\pi\)
0.561280 + 0.827626i \(0.310309\pi\)
\(420\) 0 0
\(421\) 31.4891 1.53469 0.767343 0.641237i \(-0.221578\pi\)
0.767343 + 0.641237i \(0.221578\pi\)
\(422\) 0 0
\(423\) 22.3692i 1.08763i
\(424\) 0 0
\(425\) 10.3723 23.0140i 0.503130 1.11634i
\(426\) 0 0
\(427\) 37.2203i 1.80121i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −31.7228 −1.52803 −0.764017 0.645196i \(-0.776776\pi\)
−0.764017 + 0.645196i \(0.776776\pi\)
\(432\) 0 0
\(433\) 20.5446i 0.987308i 0.869658 + 0.493654i \(0.164339\pi\)
−0.869658 + 0.493654i \(0.835661\pi\)
\(434\) 0 0
\(435\) 3.25544 15.1460i 0.156086 0.726196i
\(436\) 0 0
\(437\) 10.0974i 0.483022i
\(438\) 0 0
\(439\) −1.48913 −0.0710721 −0.0355360 0.999368i \(-0.511314\pi\)
−0.0355360 + 0.999368i \(0.511314\pi\)
\(440\) 0 0
\(441\) 16.8614 0.802924
\(442\) 0 0
\(443\) 15.0911i 0.717001i −0.933530 0.358500i \(-0.883288\pi\)
0.933530 0.358500i \(-0.116712\pi\)
\(444\) 0 0
\(445\) −9.55842 2.05446i −0.453113 0.0973905i
\(446\) 0 0
\(447\) 29.0024i 1.37177i
\(448\) 0 0
\(449\) 21.8614 1.03170 0.515852 0.856678i \(-0.327476\pi\)
0.515852 + 0.856678i \(0.327476\pi\)
\(450\) 0 0
\(451\) −2.74456 −0.129236
\(452\) 0 0
\(453\) 56.1253i 2.63700i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 20.7846i 0.972263i −0.873886 0.486132i \(-0.838408\pi\)
0.873886 0.486132i \(-0.161592\pi\)
\(458\) 0 0
\(459\) −4.74456 −0.221457
\(460\) 0 0
\(461\) −32.2337 −1.50127 −0.750636 0.660716i \(-0.770253\pi\)
−0.750636 + 0.660716i \(0.770253\pi\)
\(462\) 0 0
\(463\) 20.1398i 0.935976i −0.883735 0.467988i \(-0.844979\pi\)
0.883735 0.467988i \(-0.155021\pi\)
\(464\) 0 0
\(465\) 2.81386 13.0916i 0.130490 0.607107i
\(466\) 0 0
\(467\) 4.40387i 0.203787i 0.994795 + 0.101893i \(0.0324900\pi\)
−0.994795 + 0.101893i \(0.967510\pi\)
\(468\) 0 0
\(469\) 2.23369 0.103142
\(470\) 0 0
\(471\) −13.6277 −0.627932
\(472\) 0 0
\(473\) 3.46410i 0.159280i
\(474\) 0 0
\(475\) 18.2337 + 8.21782i 0.836619 + 0.377060i
\(476\) 0 0
\(477\) 10.6873i 0.489336i
\(478\) 0 0
\(479\) 17.4891 0.799099 0.399549 0.916712i \(-0.369167\pi\)
0.399549 + 0.916712i \(0.369167\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 22.0742i 1.00441i
\(484\) 0 0
\(485\) −1.93070 + 8.98266i −0.0876687 + 0.407882i
\(486\) 0 0
\(487\) 22.7190i 1.02950i −0.857341 0.514749i \(-0.827885\pi\)
0.857341 0.514749i \(-0.172115\pi\)
\(488\) 0 0
\(489\) 8.74456 0.395443
\(490\) 0 0
\(491\) −29.4891 −1.33083 −0.665413 0.746476i \(-0.731744\pi\)
−0.665413 + 0.746476i \(0.731744\pi\)
\(492\) 0 0
\(493\) 13.8564i 0.624061i
\(494\) 0 0
\(495\) 7.37228 + 1.58457i 0.331359 + 0.0712213i
\(496\) 0 0
\(497\) 24.6535i 1.10586i
\(498\) 0 0
\(499\) −20.0000 −0.895323 −0.447661 0.894203i \(-0.647743\pi\)
−0.447661 + 0.894203i \(0.647743\pi\)
\(500\) 0 0
\(501\) −56.4674 −2.52278
\(502\) 0 0
\(503\) 0.294954i 0.0131513i 0.999978 + 0.00657567i \(0.00209311\pi\)
−0.999978 + 0.00657567i \(0.997907\pi\)
\(504\) 0 0
\(505\) −13.1168 2.81929i −0.583692 0.125457i
\(506\) 0 0
\(507\) 32.8164i 1.45743i
\(508\) 0 0
\(509\) −28.3723 −1.25758 −0.628790 0.777575i \(-0.716449\pi\)
−0.628790 + 0.777575i \(0.716449\pi\)
\(510\) 0 0
\(511\) 24.0000 1.06170
\(512\) 0 0
\(513\) 3.75906i 0.165966i
\(514\) 0 0
\(515\) −4.88316 + 22.7190i −0.215178 + 1.00112i
\(516\) 0 0
\(517\) 6.63325i 0.291730i
\(518\) 0 0
\(519\) −4.74456 −0.208263
\(520\) 0 0
\(521\) 18.6060 0.815142 0.407571 0.913173i \(-0.366376\pi\)
0.407571 + 0.913173i \(0.366376\pi\)
\(522\) 0 0
\(523\) 9.10268i 0.398033i 0.979996 + 0.199016i \(0.0637747\pi\)
−0.979996 + 0.199016i \(0.936225\pi\)
\(524\) 0 0
\(525\) 39.8614 + 17.9653i 1.73969 + 0.784071i
\(526\) 0 0
\(527\) 11.9769i 0.521721i
\(528\) 0 0
\(529\) 16.6277 0.722944
\(530\) 0 0
\(531\) 5.48913 0.238208
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −3.11684 + 14.5012i −0.134753 + 0.626942i
\(536\) 0 0
\(537\) 40.0395i 1.72783i
\(538\) 0 0
\(539\) −5.00000 −0.215365
\(540\) 0 0
\(541\) −0.233688 −0.0100470 −0.00502351 0.999987i \(-0.501599\pi\)
−0.00502351 + 0.999987i \(0.501599\pi\)
\(542\) 0 0
\(543\) 17.3754i 0.745650i
\(544\) 0 0
\(545\) 21.8614 + 4.69882i 0.936440 + 0.201275i
\(546\) 0 0
\(547\) 9.10268i 0.389203i 0.980882 + 0.194601i \(0.0623413\pi\)
−0.980882 + 0.194601i \(0.937659\pi\)
\(548\) 0 0
\(549\) −36.2337 −1.54642
\(550\) 0 0
\(551\) 10.9783 0.467689
\(552\) 0 0
\(553\) 44.1485i 1.87738i
\(554\) 0 0
\(555\) −60.9090 13.0916i −2.58544 0.555706i
\(556\) 0 0
\(557\) 32.1716i 1.36315i 0.731747 + 0.681577i \(0.238705\pi\)
−0.731747 + 0.681577i \(0.761295\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 12.7446 0.538076
\(562\) 0 0
\(563\) 12.2718i 0.517196i −0.965985 0.258598i \(-0.916739\pi\)
0.965985 0.258598i \(-0.0832605\pi\)
\(564\) 0 0
\(565\) −7.55842 + 35.1658i −0.317985 + 1.47944i
\(566\) 0 0
\(567\) 26.8280i 1.12667i
\(568\) 0 0
\(569\) 38.7446 1.62426 0.812128 0.583479i \(-0.198309\pi\)
0.812128 + 0.583479i \(0.198309\pi\)
\(570\) 0 0
\(571\) 21.4891 0.899292 0.449646 0.893207i \(-0.351550\pi\)
0.449646 + 0.893207i \(0.351550\pi\)
\(572\) 0 0
\(573\) 34.4010i 1.43712i
\(574\) 0 0
\(575\) 5.18614 11.5070i 0.216277 0.479875i
\(576\) 0 0
\(577\) 31.8217i 1.32476i 0.749170 + 0.662378i \(0.230453\pi\)
−0.749170 + 0.662378i \(0.769547\pi\)
\(578\) 0 0
\(579\) 58.9783 2.45105
\(580\) 0 0
\(581\) −22.9783 −0.953298
\(582\) 0 0
\(583\) 3.16915i 0.131253i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 28.0078i 1.15600i 0.816035 + 0.578002i \(0.196167\pi\)
−0.816035 + 0.578002i \(0.803833\pi\)
\(588\) 0 0
\(589\) 9.48913 0.390993
\(590\) 0 0
\(591\) −4.74456 −0.195165
\(592\) 0 0
\(593\) 43.5586i 1.78874i −0.447333 0.894368i \(-0.647626\pi\)
0.447333 0.894368i \(-0.352374\pi\)
\(594\) 0 0
\(595\) 38.2337 + 8.21782i 1.56743 + 0.336898i
\(596\) 0 0
\(597\) 20.1947i 0.826514i
\(598\) 0 0
\(599\) −34.9783 −1.42917 −0.714586 0.699547i \(-0.753385\pi\)
−0.714586 + 0.699547i \(0.753385\pi\)
\(600\) 0 0
\(601\) 30.4674 1.24279 0.621395 0.783497i \(-0.286566\pi\)
0.621395 + 0.783497i \(0.286566\pi\)
\(602\) 0 0
\(603\) 2.17448i 0.0885517i
\(604\) 0 0
\(605\) −2.18614 0.469882i −0.0888793 0.0191034i
\(606\) 0 0
\(607\) 3.46410i 0.140604i −0.997526 0.0703018i \(-0.977604\pi\)
0.997526 0.0703018i \(-0.0223962\pi\)
\(608\) 0 0
\(609\) 24.0000 0.972529
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 44.1485i 1.78314i 0.452883 + 0.891570i \(0.350395\pi\)
−0.452883 + 0.891570i \(0.649605\pi\)
\(614\) 0 0
\(615\) −3.25544 + 15.1460i −0.131272 + 0.610747i
\(616\) 0 0
\(617\) 3.75906i 0.151334i −0.997133 0.0756669i \(-0.975891\pi\)
0.997133 0.0756669i \(-0.0241086\pi\)
\(618\) 0 0
\(619\) −3.11684 −0.125277 −0.0626383 0.998036i \(-0.519951\pi\)
−0.0626383 + 0.998036i \(0.519951\pi\)
\(620\) 0 0
\(621\) −2.37228 −0.0951964
\(622\) 0 0
\(623\) 15.1460i 0.606813i
\(624\) 0 0
\(625\) 16.5584 + 18.7302i 0.662337 + 0.749206i
\(626\) 0 0
\(627\) 10.0974i 0.403249i
\(628\) 0 0
\(629\) −55.7228 −2.22181
\(630\) 0 0
\(631\) 16.6060 0.661073 0.330537 0.943793i \(-0.392770\pi\)
0.330537 + 0.943793i \(0.392770\pi\)
\(632\) 0 0
\(633\) 54.2458i 2.15608i
\(634\) 0 0
\(635\) −5.48913 + 25.5383i −0.217829 + 1.01346i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 24.0000 0.949425
\(640\) 0 0
\(641\) −19.6277 −0.775248 −0.387624 0.921818i \(-0.626704\pi\)
−0.387624 + 0.921818i \(0.626704\pi\)
\(642\) 0 0
\(643\) 39.1547i 1.54411i 0.635556 + 0.772055i \(0.280771\pi\)
−0.635556 + 0.772055i \(0.719229\pi\)
\(644\) 0 0
\(645\) 19.1168 + 4.10891i 0.752725 + 0.161788i
\(646\) 0 0
\(647\) 41.0342i 1.61322i −0.591083 0.806611i \(-0.701299\pi\)
0.591083 0.806611i \(-0.298701\pi\)
\(648\) 0 0
\(649\) −1.62772 −0.0638935
\(650\) 0 0
\(651\) 20.7446 0.813044
\(652\) 0 0
\(653\) 25.5932i 1.00154i −0.865580 0.500770i \(-0.833050\pi\)
0.865580 0.500770i \(-0.166950\pi\)
\(654\) 0 0
\(655\) 19.1168 + 4.10891i 0.746957 + 0.160548i
\(656\) 0 0
\(657\) 23.3639i 0.911511i
\(658\) 0 0
\(659\) 32.7446 1.27555 0.637774 0.770224i \(-0.279856\pi\)
0.637774 + 0.770224i \(0.279856\pi\)
\(660\) 0 0
\(661\) 35.3505 1.37498 0.687488 0.726196i \(-0.258713\pi\)
0.687488 + 0.726196i \(0.258713\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −6.51087 + 30.2921i −0.252481 + 1.17468i
\(666\) 0 0
\(667\) 6.92820i 0.268261i
\(668\) 0 0
\(669\) −19.1168 −0.739100
\(670\) 0 0
\(671\) 10.7446 0.414789
\(672\) 0 0
\(673\) 1.28962i 0.0497112i 0.999691 + 0.0248556i \(0.00791260\pi\)
−0.999691 + 0.0248556i \(0.992087\pi\)
\(674\) 0 0
\(675\) 1.93070 4.28384i 0.0743128 0.164885i
\(676\) 0 0
\(677\) 43.4487i 1.66987i 0.550348 + 0.834935i \(0.314495\pi\)
−0.550348 + 0.834935i \(0.685505\pi\)
\(678\) 0 0
\(679\) −14.2337 −0.546239
\(680\) 0 0
\(681\) −24.7446 −0.948214
\(682\) 0 0
\(683\) 44.4434i 1.70058i 0.526314 + 0.850290i \(0.323573\pi\)
−0.526314 + 0.850290i \(0.676427\pi\)
\(684\) 0 0
\(685\) −1.04755 + 4.87375i −0.0400247 + 0.186216i
\(686\) 0 0
\(687\) 51.4265i 1.96204i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −16.1386 −0.613941 −0.306971 0.951719i \(-0.599315\pi\)
−0.306971 + 0.951719i \(0.599315\pi\)
\(692\) 0 0
\(693\) 11.6819i 0.443760i
\(694\) 0 0
\(695\) −39.8614 8.56768i −1.51203 0.324991i
\(696\) 0 0
\(697\) 13.8564i 0.524849i
\(698\) 0 0
\(699\) −42.9783 −1.62559
\(700\) 0 0
\(701\) −35.4891 −1.34041 −0.670203 0.742178i \(-0.733793\pi\)
−0.670203 + 0.742178i \(0.733793\pi\)
\(702\) 0 0
\(703\) 44.1485i 1.66509i
\(704\) 0 0
\(705\) −36.6060 7.86797i −1.37866 0.296325i
\(706\) 0 0
\(707\) 20.7846i 0.781686i
\(708\) 0 0
\(709\) −41.1168 −1.54418 −0.772088 0.635516i \(-0.780787\pi\)
−0.772088 + 0.635516i \(0.780787\pi\)
\(710\) 0 0
\(711\) −42.9783 −1.61181
\(712\) 0 0
\(713\) 5.98844i 0.224269i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 8.21782i 0.306900i
\(718\) 0 0
\(719\) 21.3505 0.796240 0.398120 0.917333i \(-0.369663\pi\)
0.398120 + 0.917333i \(0.369663\pi\)
\(720\) 0 0
\(721\) −36.0000 −1.34071
\(722\) 0 0
\(723\) 13.2665i 0.493386i
\(724\) 0 0
\(725\) 12.5109 + 5.63858i 0.464642 + 0.209412i
\(726\) 0 0
\(727\) 15.7908i 0.585650i 0.956166 + 0.292825i \(0.0945953\pi\)
−0.956166 + 0.292825i \(0.905405\pi\)
\(728\) 0 0
\(729\) 33.2337 1.23088
\(730\) 0 0
\(731\) 17.4891 0.646859
\(732\) 0 0
\(733\) 30.2921i 1.11886i −0.828877 0.559431i \(-0.811020\pi\)
0.828877 0.559431i \(-0.188980\pi\)
\(734\) 0 0
\(735\) −5.93070 + 27.5928i −0.218757 + 1.01778i
\(736\) 0 0
\(737\) 0.644810i 0.0237519i
\(738\) 0 0
\(739\) 0.744563 0.0273892 0.0136946 0.999906i \(-0.495641\pi\)
0.0136946 + 0.999906i \(0.495641\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 21.7793i 0.799004i −0.916732 0.399502i \(-0.869183\pi\)
0.916732 0.399502i \(-0.130817\pi\)
\(744\) 0 0
\(745\) 25.1168 + 5.39853i 0.920210 + 0.197787i
\(746\) 0 0
\(747\) 22.3692i 0.818446i
\(748\) 0 0
\(749\) −22.9783 −0.839607
\(750\) 0 0
\(751\) −21.6277 −0.789207 −0.394603 0.918852i \(-0.629118\pi\)
−0.394603 + 0.918852i \(0.629118\pi\)
\(752\) 0 0
\(753\) 12.3267i 0.449211i
\(754\) 0 0
\(755\) 48.6060 + 10.4472i 1.76895 + 0.380213i
\(756\) 0 0
\(757\) 39.7995i 1.44654i −0.690567 0.723269i \(-0.742639\pi\)
0.690567 0.723269i \(-0.257361\pi\)
\(758\) 0 0
\(759\) 6.37228 0.231299
\(760\) 0 0
\(761\) 21.2554 0.770509 0.385255 0.922810i \(-0.374114\pi\)
0.385255 + 0.922810i \(0.374114\pi\)
\(762\) 0 0
\(763\) 34.6410i 1.25409i
\(764\) 0 0
\(765\) 8.00000 37.2203i 0.289241 1.34570i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 51.2119 1.84675 0.923375 0.383900i \(-0.125419\pi\)
0.923375 + 0.383900i \(0.125419\pi\)
\(770\) 0 0
\(771\) −60.4674 −2.17768
\(772\) 0 0
\(773\) 30.8820i 1.11075i 0.831601 + 0.555373i \(0.187425\pi\)
−0.831601 + 0.555373i \(0.812575\pi\)
\(774\) 0 0
\(775\) 10.8139 + 4.87375i 0.388445 + 0.175070i
\(776\) 0 0
\(777\) 96.5147i 3.46245i
\(778\) 0 0
\(779\) −10.9783 −0.393337
\(780\) 0 0
\(781\) −7.11684 −0.254661
\(782\) 0 0
\(783\) 2.57924i 0.0921745i
\(784\) 0 0
\(785\) 2.53667 11.8020i 0.0905377 0.421230i
\(786\) 0 0
\(787\) 4.75372i 0.169452i −0.996404 0.0847259i \(-0.972999\pi\)
0.996404 0.0847259i \(-0.0270015\pi\)
\(788\) 0 0
\(789\) −35.7228 −1.27177
\(790\) 0 0
\(791\) −55.7228 −1.98128
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 17.4891 + 3.75906i 0.620275 + 0.133320i
\(796\) 0 0
\(797\) 31.2318i 1.10629i −0.833086 0.553144i \(-0.813428\pi\)
0.833086 0.553144i \(-0.186572\pi\)
\(798\) 0 0
\(799\) −33.4891 −1.18476
\(800\) 0 0
\(801\) −14.7446 −0.520974
\(802\) 0 0
\(803\) 6.92820i 0.244491i
\(804\) 0 0
\(805\) 19.1168 + 4.10891i 0.673780 + 0.144820i
\(806\) 0 0
\(807\) 29.0024i 1.02093i
\(808\) 0 0
\(809\) 21.2554 0.747301 0.373651 0.927569i \(-0.378106\pi\)
0.373651 + 0.927569i \(0.378106\pi\)
\(810\) 0 0
\(811\) −34.2337 −1.20211 −0.601054 0.799209i \(-0.705252\pi\)
−0.601054 + 0.799209i \(0.705252\pi\)
\(812\) 0 0
\(813\) 23.9538i 0.840095i
\(814\) 0 0
\(815\) −1.62772 + 7.57301i −0.0570165 + 0.265271i
\(816\) 0 0
\(817\) 13.8564i 0.484774i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −18.0000 −0.628204 −0.314102 0.949389i \(-0.601703\pi\)
−0.314102 + 0.949389i \(0.601703\pi\)
\(822\) 0 0
\(823\) 33.5161i 1.16830i −0.811646 0.584149i \(-0.801428\pi\)
0.811646 0.584149i \(-0.198572\pi\)
\(824\) 0 0
\(825\) −5.18614 + 11.5070i −0.180558 + 0.400622i
\(826\) 0 0
\(827\) 18.0202i 0.626624i 0.949650 + 0.313312i \(0.101439\pi\)
−0.949650 + 0.313312i \(0.898561\pi\)
\(828\) 0 0
\(829\) −31.3505 −1.08885 −0.544424 0.838810i \(-0.683252\pi\)
−0.544424 + 0.838810i \(0.683252\pi\)
\(830\) 0 0
\(831\) −20.7446 −0.719621
\(832\) 0 0
\(833\) 25.2434i 0.874631i
\(834\) 0 0
\(835\) 10.5109 48.9022i 0.363744 1.69233i
\(836\) 0 0
\(837\) 2.22938i 0.0770588i
\(838\) 0 0
\(839\) 7.11684 0.245701 0.122850 0.992425i \(-0.460796\pi\)
0.122850 + 0.992425i \(0.460796\pi\)
\(840\) 0 0
\(841\) −21.4674 −0.740254
\(842\) 0 0
\(843\) 59.2945i 2.04221i
\(844\) 0 0
\(845\) −28.4198 6.10846i −0.977672 0.210138i
\(846\) 0 0
\(847\) 3.46410i 0.119028i
\(848\) 0 0
\(849\) 12.0000 0.411839
\(850\) 0 0
\(851\) −27.8614 −0.955077
\(852\) 0 0
\(853\) 24.6535i 0.844119i 0.906568 + 0.422059i \(0.138693\pi\)
−0.906568 + 0.422059i \(0.861307\pi\)
\(854\) 0 0
\(855\) 29.4891 + 6.33830i 1.00851 + 0.216765i
\(856\) 0 0
\(857\) 10.6873i 0.365070i −0.983199 0.182535i \(-0.941570\pi\)
0.983199 0.182535i \(-0.0584303\pi\)
\(858\) 0 0
\(859\) 11.1168 0.379302 0.189651 0.981852i \(-0.439264\pi\)
0.189651 + 0.981852i \(0.439264\pi\)
\(860\) 0 0
\(861\) −24.0000 −0.817918
\(862\) 0 0
\(863\) 23.6588i 0.805355i 0.915342 + 0.402678i \(0.131920\pi\)
−0.915342 + 0.402678i \(0.868080\pi\)
\(864\) 0 0
\(865\) 0.883156 4.10891i 0.0300282 0.139707i
\(866\) 0 0
\(867\) 21.4294i 0.727781i
\(868\) 0 0
\(869\) 12.7446 0.432330
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 13.8564i 0.468968i
\(874\) 0 0
\(875\) −22.9783 + 31.1769i −0.776807 + 1.05397i
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) −25.4891 −0.859727
\(880\) 0 0
\(881\) 21.8614 0.736530 0.368265 0.929721i \(-0.379952\pi\)
0.368265 + 0.929721i \(0.379952\pi\)
\(882\) 0 0
\(883\) 24.2487i 0.816034i 0.912974 + 0.408017i \(0.133780\pi\)
−0.912974 + 0.408017i \(0.866220\pi\)
\(884\) 0 0
\(885\) −1.93070 + 8.98266i −0.0648999 + 0.301949i
\(886\) 0 0
\(887\) 14.1514i 0.475156i 0.971368 + 0.237578i \(0.0763536\pi\)
−0.971368 + 0.237578i \(0.923646\pi\)
\(888\) 0 0
\(889\) −40.4674 −1.35723
\(890\) 0 0
\(891\) −7.74456 −0.259453
\(892\) 0 0
\(893\) 26.5330i 0.887893i
\(894\) 0 0
\(895\) 34.6753 + 7.45299i 1.15907 + 0.249126i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 6.51087 0.217150
\(900\) 0 0
\(901\) 16.0000 0.533037
\(902\) 0 0
\(903\) 30.2921i 1.00806i
\(904\) 0 0
\(905\) −15.0475 3.23427i −0.500197 0.107511i
\(906\) 0 0
\(907\) 19.8997i 0.660760i −0.943848 0.330380i \(-0.892823\pi\)
0.943848 0.330380i \(-0.107177\pi\)
\(908\) 0 0
\(909\) −20.2337 −0.671109
\(910\) 0 0
\(911\) 30.5109 1.01087 0.505435 0.862865i \(-0.331332\pi\)
0.505435 + 0.862865i \(0.331332\pi\)
\(912\) 0 0
\(913\) 6.63325i 0.219529i
\(914\) 0 0
\(915\) 12.7446 59.2945i 0.421322 1.96022i
\(916\) 0 0
\(917\) 30.2921i 1.00033i
\(918\) 0 0
\(919\) 6.23369 0.205630 0.102815 0.994700i \(-0.467215\pi\)
0.102815 + 0.994700i \(0.467215\pi\)
\(920\) 0 0
\(921\) −70.9783 −2.33881
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 22.6753 50.3118i 0.745558 1.65424i
\(926\) 0 0
\(927\) 35.0458i 1.15105i
\(928\) 0 0
\(929\) 52.9783 1.73816 0.869080 0.494672i \(-0.164712\pi\)
0.869080 + 0.494672i \(0.164712\pi\)
\(930\) 0 0
\(931\) −20.0000 −0.655474
\(932\) 0 0
\(933\) 44.1485i 1.44536i
\(934\) 0 0
\(935\) −2.37228 + 11.0371i −0.0775819 + 0.360952i
\(936\) 0 0
\(937\) 25.9431i 0.847524i −0.905774 0.423762i \(-0.860709\pi\)
0.905774 0.423762i \(-0.139291\pi\)
\(938\) 0 0
\(939\) −80.3288 −2.62143
\(940\) 0 0
\(941\) 10.4674 0.341227 0.170613 0.985338i \(-0.445425\pi\)
0.170613 + 0.985338i \(0.445425\pi\)
\(942\) 0 0
\(943\) 6.92820i 0.225613i
\(944\) 0 0
\(945\) 7.11684 + 1.52967i 0.231511 + 0.0497602i
\(946\) 0 0
\(947\) 56.1802i 1.82561i −0.408393 0.912806i \(-0.633911\pi\)
0.408393 0.912806i \(-0.366089\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 8.88316 0.288056
\(952\) 0 0
\(953\) 41.6790i 1.35012i 0.737765 + 0.675058i \(0.235881\pi\)
−0.737765 + 0.675058i \(0.764119\pi\)
\(954\) 0 0
\(955\) −29.7921 6.40342i −0.964050 0.207210i
\(956\) 0 0
\(957\) 6.92820i 0.223957i
\(958\) 0 0
\(959\) −7.72281 −0.249383
\(960\) 0 0
\(961\) −25.3723 −0.818461
\(962\) 0 0
\(963\) 22.3692i 0.720837i
\(964\) 0 0
\(965\) −10.9783 + 51.0767i −0.353402 + 1.64422i
\(966\) 0 0
\(967\) 46.3229i 1.48965i 0.667262 + 0.744823i \(0.267466\pi\)
−0.667262 + 0.744823i \(0.732534\pi\)
\(968\) 0 0
\(969\) 50.9783 1.63766
\(970\) 0 0
\(971\) −54.0951 −1.73599 −0.867997 0.496569i \(-0.834593\pi\)
−0.867997 + 0.496569i \(0.834593\pi\)
\(972\) 0 0
\(973\) 63.1633i 2.02492i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 27.3630i 0.875419i −0.899117 0.437709i \(-0.855790\pi\)
0.899117 0.437709i \(-0.144210\pi\)
\(978\) 0 0
\(979\) 4.37228 0.139739
\(980\) 0 0
\(981\) 33.7228 1.07669
\(982\) 0 0
\(983\) 8.16292i 0.260357i −0.991491 0.130178i \(-0.958445\pi\)
0.991491 0.130178i \(-0.0415550\pi\)
\(984\) 0 0
\(985\) 0.883156 4.10891i 0.0281397 0.130921i
\(986\) 0 0
\(987\) 58.0049i 1.84632i
\(988\) 0 0
\(989\) 8.74456 0.278061
\(990\) 0 0
\(991\) 26.9783 0.856992 0.428496 0.903544i \(-0.359044\pi\)
0.428496 + 0.903544i \(0.359044\pi\)
\(992\) 0 0
\(993\) 7.86797i 0.249682i
\(994\) 0 0
\(995\) 17.4891 + 3.75906i 0.554443 + 0.119170i
\(996\) 0 0
\(997\) 22.0742i 0.699098i 0.936918 + 0.349549i \(0.113665\pi\)
−0.936918 + 0.349549i \(0.886335\pi\)
\(998\) 0 0
\(999\) −10.3723 −0.328164
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 880.2.b.h.529.4 4
4.3 odd 2 55.2.b.a.34.3 yes 4
5.2 odd 4 4400.2.a.cc.1.4 4
5.3 odd 4 4400.2.a.cc.1.1 4
5.4 even 2 inner 880.2.b.h.529.1 4
12.11 even 2 495.2.c.a.199.2 4
20.3 even 4 275.2.a.h.1.3 4
20.7 even 4 275.2.a.h.1.2 4
20.19 odd 2 55.2.b.a.34.2 4
44.3 odd 10 605.2.j.i.9.3 16
44.7 even 10 605.2.j.j.269.3 16
44.15 odd 10 605.2.j.i.269.2 16
44.19 even 10 605.2.j.j.9.2 16
44.27 odd 10 605.2.j.i.124.2 16
44.31 odd 10 605.2.j.i.444.3 16
44.35 even 10 605.2.j.j.444.2 16
44.39 even 10 605.2.j.j.124.3 16
44.43 even 2 605.2.b.c.364.2 4
60.23 odd 4 2475.2.a.bi.1.2 4
60.47 odd 4 2475.2.a.bi.1.3 4
60.59 even 2 495.2.c.a.199.3 4
220.19 even 10 605.2.j.j.9.3 16
220.39 even 10 605.2.j.j.124.2 16
220.43 odd 4 3025.2.a.ba.1.2 4
220.59 odd 10 605.2.j.i.269.3 16
220.79 even 10 605.2.j.j.444.3 16
220.87 odd 4 3025.2.a.ba.1.3 4
220.119 odd 10 605.2.j.i.444.2 16
220.139 even 10 605.2.j.j.269.2 16
220.159 odd 10 605.2.j.i.124.3 16
220.179 odd 10 605.2.j.i.9.2 16
220.219 even 2 605.2.b.c.364.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.b.a.34.2 4 20.19 odd 2
55.2.b.a.34.3 yes 4 4.3 odd 2
275.2.a.h.1.2 4 20.7 even 4
275.2.a.h.1.3 4 20.3 even 4
495.2.c.a.199.2 4 12.11 even 2
495.2.c.a.199.3 4 60.59 even 2
605.2.b.c.364.2 4 44.43 even 2
605.2.b.c.364.3 4 220.219 even 2
605.2.j.i.9.2 16 220.179 odd 10
605.2.j.i.9.3 16 44.3 odd 10
605.2.j.i.124.2 16 44.27 odd 10
605.2.j.i.124.3 16 220.159 odd 10
605.2.j.i.269.2 16 44.15 odd 10
605.2.j.i.269.3 16 220.59 odd 10
605.2.j.i.444.2 16 220.119 odd 10
605.2.j.i.444.3 16 44.31 odd 10
605.2.j.j.9.2 16 44.19 even 10
605.2.j.j.9.3 16 220.19 even 10
605.2.j.j.124.2 16 220.39 even 10
605.2.j.j.124.3 16 44.39 even 10
605.2.j.j.269.2 16 220.139 even 10
605.2.j.j.269.3 16 44.7 even 10
605.2.j.j.444.2 16 44.35 even 10
605.2.j.j.444.3 16 220.79 even 10
880.2.b.h.529.1 4 5.4 even 2 inner
880.2.b.h.529.4 4 1.1 even 1 trivial
2475.2.a.bi.1.2 4 60.23 odd 4
2475.2.a.bi.1.3 4 60.47 odd 4
3025.2.a.ba.1.2 4 220.43 odd 4
3025.2.a.ba.1.3 4 220.87 odd 4
4400.2.a.cc.1.1 4 5.3 odd 4
4400.2.a.cc.1.4 4 5.2 odd 4