Properties

Label 880.2.b.h.529.3
Level $880$
Weight $2$
Character 880.529
Analytic conductor $7.027$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [880,2,Mod(529,880)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(880, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("880.529"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 880.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,-3,0,0,0,-2,0,4,0,0,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.02683537787\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-11})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 529.3
Root \(1.68614 - 0.396143i\) of defining polynomial
Character \(\chi\) \(=\) 880.529
Dual form 880.2.b.h.529.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.792287i q^{3} +(0.686141 + 2.12819i) q^{5} +3.46410i q^{7} +2.37228 q^{9} +1.00000 q^{11} +(-1.68614 + 0.543620i) q^{15} -1.58457i q^{17} +4.00000 q^{19} -2.74456 q^{21} -0.792287i q^{23} +(-4.05842 + 2.92048i) q^{25} +4.25639i q^{27} -8.74456 q^{29} -3.37228 q^{31} +0.792287i q^{33} +(-7.37228 + 2.37686i) q^{35} +1.08724i q^{37} +8.74456 q^{41} -3.46410i q^{43} +(1.62772 + 5.04868i) q^{45} -6.63325i q^{47} -5.00000 q^{49} +1.25544 q^{51} +10.0974i q^{53} +(0.686141 + 2.12819i) q^{55} +3.16915i q^{57} -7.37228 q^{59} -0.744563 q^{61} +8.21782i q^{63} +9.30506i q^{67} +0.627719 q^{69} +10.1168 q^{71} -6.92820i q^{73} +(-2.31386 - 3.21543i) q^{75} +3.46410i q^{77} +1.25544 q^{79} +3.74456 q^{81} -6.63325i q^{83} +(3.37228 - 1.08724i) q^{85} -6.92820i q^{87} -1.37228 q^{89} -2.67181i q^{93} +(2.74456 + 8.51278i) q^{95} -5.84096i q^{97} +2.37228 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 3 q^{5} - 2 q^{9} + 4 q^{11} - q^{15} + 16 q^{19} + 12 q^{21} + q^{25} - 12 q^{29} - 2 q^{31} - 18 q^{35} + 12 q^{41} + 18 q^{45} - 20 q^{49} + 28 q^{51} - 3 q^{55} - 18 q^{59} + 20 q^{61} + 14 q^{69}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.792287i 0.457427i 0.973494 + 0.228714i \(0.0734519\pi\)
−0.973494 + 0.228714i \(0.926548\pi\)
\(4\) 0 0
\(5\) 0.686141 + 2.12819i 0.306851 + 0.951757i
\(6\) 0 0
\(7\) 3.46410i 1.30931i 0.755929 + 0.654654i \(0.227186\pi\)
−0.755929 + 0.654654i \(0.772814\pi\)
\(8\) 0 0
\(9\) 2.37228 0.790760
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) −1.68614 + 0.543620i −0.435360 + 0.140362i
\(16\) 0 0
\(17\) 1.58457i 0.384316i −0.981364 0.192158i \(-0.938451\pi\)
0.981364 0.192158i \(-0.0615486\pi\)
\(18\) 0 0
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) −2.74456 −0.598913
\(22\) 0 0
\(23\) 0.792287i 0.165203i −0.996583 0.0826016i \(-0.973677\pi\)
0.996583 0.0826016i \(-0.0263229\pi\)
\(24\) 0 0
\(25\) −4.05842 + 2.92048i −0.811684 + 0.584096i
\(26\) 0 0
\(27\) 4.25639i 0.819142i
\(28\) 0 0
\(29\) −8.74456 −1.62382 −0.811912 0.583779i \(-0.801573\pi\)
−0.811912 + 0.583779i \(0.801573\pi\)
\(30\) 0 0
\(31\) −3.37228 −0.605680 −0.302840 0.953041i \(-0.597935\pi\)
−0.302840 + 0.953041i \(0.597935\pi\)
\(32\) 0 0
\(33\) 0.792287i 0.137919i
\(34\) 0 0
\(35\) −7.37228 + 2.37686i −1.24614 + 0.401763i
\(36\) 0 0
\(37\) 1.08724i 0.178741i 0.995998 + 0.0893706i \(0.0284856\pi\)
−0.995998 + 0.0893706i \(0.971514\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 8.74456 1.36567 0.682836 0.730572i \(-0.260747\pi\)
0.682836 + 0.730572i \(0.260747\pi\)
\(42\) 0 0
\(43\) 3.46410i 0.528271i −0.964486 0.264135i \(-0.914913\pi\)
0.964486 0.264135i \(-0.0850865\pi\)
\(44\) 0 0
\(45\) 1.62772 + 5.04868i 0.242646 + 0.752612i
\(46\) 0 0
\(47\) 6.63325i 0.967559i −0.875190 0.483779i \(-0.839264\pi\)
0.875190 0.483779i \(-0.160736\pi\)
\(48\) 0 0
\(49\) −5.00000 −0.714286
\(50\) 0 0
\(51\) 1.25544 0.175796
\(52\) 0 0
\(53\) 10.0974i 1.38698i 0.720467 + 0.693489i \(0.243927\pi\)
−0.720467 + 0.693489i \(0.756073\pi\)
\(54\) 0 0
\(55\) 0.686141 + 2.12819i 0.0925192 + 0.286966i
\(56\) 0 0
\(57\) 3.16915i 0.419764i
\(58\) 0 0
\(59\) −7.37228 −0.959789 −0.479895 0.877326i \(-0.659325\pi\)
−0.479895 + 0.877326i \(0.659325\pi\)
\(60\) 0 0
\(61\) −0.744563 −0.0953315 −0.0476657 0.998863i \(-0.515178\pi\)
−0.0476657 + 0.998863i \(0.515178\pi\)
\(62\) 0 0
\(63\) 8.21782i 1.03535i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 9.30506i 1.13679i 0.822754 + 0.568397i \(0.192436\pi\)
−0.822754 + 0.568397i \(0.807564\pi\)
\(68\) 0 0
\(69\) 0.627719 0.0755684
\(70\) 0 0
\(71\) 10.1168 1.20065 0.600324 0.799757i \(-0.295038\pi\)
0.600324 + 0.799757i \(0.295038\pi\)
\(72\) 0 0
\(73\) 6.92820i 0.810885i −0.914121 0.405442i \(-0.867117\pi\)
0.914121 0.405442i \(-0.132883\pi\)
\(74\) 0 0
\(75\) −2.31386 3.21543i −0.267181 0.371286i
\(76\) 0 0
\(77\) 3.46410i 0.394771i
\(78\) 0 0
\(79\) 1.25544 0.141248 0.0706239 0.997503i \(-0.477501\pi\)
0.0706239 + 0.997503i \(0.477501\pi\)
\(80\) 0 0
\(81\) 3.74456 0.416063
\(82\) 0 0
\(83\) 6.63325i 0.728094i −0.931381 0.364047i \(-0.881395\pi\)
0.931381 0.364047i \(-0.118605\pi\)
\(84\) 0 0
\(85\) 3.37228 1.08724i 0.365775 0.117928i
\(86\) 0 0
\(87\) 6.92820i 0.742781i
\(88\) 0 0
\(89\) −1.37228 −0.145462 −0.0727308 0.997352i \(-0.523171\pi\)
−0.0727308 + 0.997352i \(0.523171\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 2.67181i 0.277054i
\(94\) 0 0
\(95\) 2.74456 + 8.51278i 0.281586 + 0.873393i
\(96\) 0 0
\(97\) 5.84096i 0.593060i −0.955024 0.296530i \(-0.904171\pi\)
0.955024 0.296530i \(-0.0958295\pi\)
\(98\) 0 0
\(99\) 2.37228 0.238423
\(100\) 0 0
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 0 0
\(103\) 10.3923i 1.02398i 0.858990 + 0.511992i \(0.171092\pi\)
−0.858990 + 0.511992i \(0.828908\pi\)
\(104\) 0 0
\(105\) −1.88316 5.84096i −0.183777 0.570020i
\(106\) 0 0
\(107\) 6.63325i 0.641260i −0.947204 0.320630i \(-0.896105\pi\)
0.947204 0.320630i \(-0.103895\pi\)
\(108\) 0 0
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) 0 0
\(111\) −0.861407 −0.0817611
\(112\) 0 0
\(113\) 0.497333i 0.0467852i −0.999726 0.0233926i \(-0.992553\pi\)
0.999726 0.0233926i \(-0.00744677\pi\)
\(114\) 0 0
\(115\) 1.68614 0.543620i 0.157233 0.0506929i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 5.48913 0.503187
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 6.92820i 0.624695i
\(124\) 0 0
\(125\) −9.00000 6.63325i −0.804984 0.593296i
\(126\) 0 0
\(127\) 8.21782i 0.729214i −0.931162 0.364607i \(-0.881203\pi\)
0.931162 0.364607i \(-0.118797\pi\)
\(128\) 0 0
\(129\) 2.74456 0.241645
\(130\) 0 0
\(131\) 2.74456 0.239794 0.119897 0.992786i \(-0.461744\pi\)
0.119897 + 0.992786i \(0.461744\pi\)
\(132\) 0 0
\(133\) 13.8564i 1.20150i
\(134\) 0 0
\(135\) −9.05842 + 2.92048i −0.779625 + 0.251355i
\(136\) 0 0
\(137\) 14.3537i 1.22632i −0.789958 0.613161i \(-0.789898\pi\)
0.789958 0.613161i \(-0.210102\pi\)
\(138\) 0 0
\(139\) −16.2337 −1.37692 −0.688462 0.725273i \(-0.741714\pi\)
−0.688462 + 0.725273i \(0.741714\pi\)
\(140\) 0 0
\(141\) 5.25544 0.442588
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −6.00000 18.6101i −0.498273 1.54549i
\(146\) 0 0
\(147\) 3.96143i 0.326734i
\(148\) 0 0
\(149\) 11.4891 0.941226 0.470613 0.882340i \(-0.344033\pi\)
0.470613 + 0.882340i \(0.344033\pi\)
\(150\) 0 0
\(151\) 12.2337 0.995563 0.497782 0.867302i \(-0.334148\pi\)
0.497782 + 0.867302i \(0.334148\pi\)
\(152\) 0 0
\(153\) 3.75906i 0.303902i
\(154\) 0 0
\(155\) −2.31386 7.17687i −0.185854 0.576460i
\(156\) 0 0
\(157\) 24.4511i 1.95141i 0.219090 + 0.975705i \(0.429691\pi\)
−0.219090 + 0.975705i \(0.570309\pi\)
\(158\) 0 0
\(159\) −8.00000 −0.634441
\(160\) 0 0
\(161\) 2.74456 0.216302
\(162\) 0 0
\(163\) 3.46410i 0.271329i 0.990755 + 0.135665i \(0.0433170\pi\)
−0.990755 + 0.135665i \(0.956683\pi\)
\(164\) 0 0
\(165\) −1.68614 + 0.543620i −0.131266 + 0.0423208i
\(166\) 0 0
\(167\) 15.7359i 1.21768i −0.793292 0.608842i \(-0.791635\pi\)
0.793292 0.608842i \(-0.208365\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) 9.48913 0.725652
\(172\) 0 0
\(173\) 8.51278i 0.647214i −0.946192 0.323607i \(-0.895104\pi\)
0.946192 0.323607i \(-0.104896\pi\)
\(174\) 0 0
\(175\) −10.1168 14.0588i −0.764762 1.06274i
\(176\) 0 0
\(177\) 5.84096i 0.439034i
\(178\) 0 0
\(179\) 12.8614 0.961307 0.480653 0.876911i \(-0.340400\pi\)
0.480653 + 0.876911i \(0.340400\pi\)
\(180\) 0 0
\(181\) 24.1168 1.79259 0.896295 0.443457i \(-0.146248\pi\)
0.896295 + 0.443457i \(0.146248\pi\)
\(182\) 0 0
\(183\) 0.589907i 0.0436072i
\(184\) 0 0
\(185\) −2.31386 + 0.746000i −0.170118 + 0.0548470i
\(186\) 0 0
\(187\) 1.58457i 0.115876i
\(188\) 0 0
\(189\) −14.7446 −1.07251
\(190\) 0 0
\(191\) 19.3723 1.40173 0.700865 0.713294i \(-0.252798\pi\)
0.700865 + 0.713294i \(0.252798\pi\)
\(192\) 0 0
\(193\) 16.4356i 1.18306i −0.806282 0.591532i \(-0.798523\pi\)
0.806282 0.591532i \(-0.201477\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 8.51278i 0.606510i −0.952909 0.303255i \(-0.901927\pi\)
0.952909 0.303255i \(-0.0980734\pi\)
\(198\) 0 0
\(199\) −8.00000 −0.567105 −0.283552 0.958957i \(-0.591513\pi\)
−0.283552 + 0.958957i \(0.591513\pi\)
\(200\) 0 0
\(201\) −7.37228 −0.520001
\(202\) 0 0
\(203\) 30.2921i 2.12609i
\(204\) 0 0
\(205\) 6.00000 + 18.6101i 0.419058 + 1.29979i
\(206\) 0 0
\(207\) 1.87953i 0.130636i
\(208\) 0 0
\(209\) 4.00000 0.276686
\(210\) 0 0
\(211\) −1.48913 −0.102516 −0.0512578 0.998685i \(-0.516323\pi\)
−0.0512578 + 0.998685i \(0.516323\pi\)
\(212\) 0 0
\(213\) 8.01544i 0.549209i
\(214\) 0 0
\(215\) 7.37228 2.37686i 0.502785 0.162101i
\(216\) 0 0
\(217\) 11.6819i 0.793021i
\(218\) 0 0
\(219\) 5.48913 0.370921
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 2.37686i 0.159166i 0.996828 + 0.0795832i \(0.0253589\pi\)
−0.996828 + 0.0795832i \(0.974641\pi\)
\(224\) 0 0
\(225\) −9.62772 + 6.92820i −0.641848 + 0.461880i
\(226\) 0 0
\(227\) 16.7306i 1.11045i 0.831701 + 0.555224i \(0.187368\pi\)
−0.831701 + 0.555224i \(0.812632\pi\)
\(228\) 0 0
\(229\) −14.6277 −0.966627 −0.483313 0.875447i \(-0.660567\pi\)
−0.483313 + 0.875447i \(0.660567\pi\)
\(230\) 0 0
\(231\) −2.74456 −0.180579
\(232\) 0 0
\(233\) 3.75906i 0.246264i −0.992390 0.123132i \(-0.960706\pi\)
0.992390 0.123132i \(-0.0392938\pi\)
\(234\) 0 0
\(235\) 14.1168 4.55134i 0.920881 0.296897i
\(236\) 0 0
\(237\) 0.994667i 0.0646105i
\(238\) 0 0
\(239\) −14.7446 −0.953746 −0.476873 0.878972i \(-0.658230\pi\)
−0.476873 + 0.878972i \(0.658230\pi\)
\(240\) 0 0
\(241\) 16.7446 1.07861 0.539306 0.842110i \(-0.318687\pi\)
0.539306 + 0.842110i \(0.318687\pi\)
\(242\) 0 0
\(243\) 15.7359i 1.00946i
\(244\) 0 0
\(245\) −3.43070 10.6410i −0.219180 0.679827i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 5.25544 0.333050
\(250\) 0 0
\(251\) 22.1168 1.39600 0.698001 0.716096i \(-0.254073\pi\)
0.698001 + 0.716096i \(0.254073\pi\)
\(252\) 0 0
\(253\) 0.792287i 0.0498107i
\(254\) 0 0
\(255\) 0.861407 + 2.67181i 0.0539434 + 0.167316i
\(256\) 0 0
\(257\) 10.6873i 0.666653i −0.942811 0.333326i \(-0.891829\pi\)
0.942811 0.333326i \(-0.108171\pi\)
\(258\) 0 0
\(259\) −3.76631 −0.234027
\(260\) 0 0
\(261\) −20.7446 −1.28406
\(262\) 0 0
\(263\) 27.4179i 1.69066i −0.534246 0.845329i \(-0.679405\pi\)
0.534246 0.845329i \(-0.320595\pi\)
\(264\) 0 0
\(265\) −21.4891 + 6.92820i −1.32007 + 0.425596i
\(266\) 0 0
\(267\) 1.08724i 0.0665380i
\(268\) 0 0
\(269\) 11.4891 0.700504 0.350252 0.936655i \(-0.386096\pi\)
0.350252 + 0.936655i \(0.386096\pi\)
\(270\) 0 0
\(271\) −13.4891 −0.819406 −0.409703 0.912219i \(-0.634368\pi\)
−0.409703 + 0.912219i \(0.634368\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −4.05842 + 2.92048i −0.244732 + 0.176112i
\(276\) 0 0
\(277\) 11.6819i 0.701899i 0.936394 + 0.350949i \(0.114141\pi\)
−0.936394 + 0.350949i \(0.885859\pi\)
\(278\) 0 0
\(279\) −8.00000 −0.478947
\(280\) 0 0
\(281\) −0.510875 −0.0304762 −0.0152381 0.999884i \(-0.504851\pi\)
−0.0152381 + 0.999884i \(0.504851\pi\)
\(282\) 0 0
\(283\) 15.1460i 0.900338i −0.892943 0.450169i \(-0.851364\pi\)
0.892943 0.450169i \(-0.148636\pi\)
\(284\) 0 0
\(285\) −6.74456 + 2.17448i −0.399513 + 0.128805i
\(286\) 0 0
\(287\) 30.2921i 1.78808i
\(288\) 0 0
\(289\) 14.4891 0.852301
\(290\) 0 0
\(291\) 4.62772 0.271282
\(292\) 0 0
\(293\) 3.16915i 0.185144i 0.995706 + 0.0925718i \(0.0295088\pi\)
−0.995706 + 0.0925718i \(0.970491\pi\)
\(294\) 0 0
\(295\) −5.05842 15.6896i −0.294513 0.913487i
\(296\) 0 0
\(297\) 4.25639i 0.246981i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 12.0000 0.691669
\(302\) 0 0
\(303\) 4.75372i 0.273094i
\(304\) 0 0
\(305\) −0.510875 1.58457i −0.0292526 0.0907324i
\(306\) 0 0
\(307\) 31.5817i 1.80246i 0.433340 + 0.901231i \(0.357335\pi\)
−0.433340 + 0.901231i \(0.642665\pi\)
\(308\) 0 0
\(309\) −8.23369 −0.468398
\(310\) 0 0
\(311\) −5.48913 −0.311260 −0.155630 0.987815i \(-0.549741\pi\)
−0.155630 + 0.987815i \(0.549741\pi\)
\(312\) 0 0
\(313\) 21.8719i 1.23627i −0.786072 0.618135i \(-0.787888\pi\)
0.786072 0.618135i \(-0.212112\pi\)
\(314\) 0 0
\(315\) −17.4891 + 5.63858i −0.985401 + 0.317698i
\(316\) 0 0
\(317\) 32.9639i 1.85144i −0.378215 0.925718i \(-0.623462\pi\)
0.378215 0.925718i \(-0.376538\pi\)
\(318\) 0 0
\(319\) −8.74456 −0.489602
\(320\) 0 0
\(321\) 5.25544 0.293330
\(322\) 0 0
\(323\) 6.33830i 0.352672i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 7.92287i 0.438136i
\(328\) 0 0
\(329\) 22.9783 1.26683
\(330\) 0 0
\(331\) 14.1168 0.775932 0.387966 0.921674i \(-0.373178\pi\)
0.387966 + 0.921674i \(0.373178\pi\)
\(332\) 0 0
\(333\) 2.57924i 0.141342i
\(334\) 0 0
\(335\) −19.8030 + 6.38458i −1.08195 + 0.348827i
\(336\) 0 0
\(337\) 32.4665i 1.76856i 0.466952 + 0.884282i \(0.345352\pi\)
−0.466952 + 0.884282i \(0.654648\pi\)
\(338\) 0 0
\(339\) 0.394031 0.0214008
\(340\) 0 0
\(341\) −3.37228 −0.182619
\(342\) 0 0
\(343\) 6.92820i 0.374088i
\(344\) 0 0
\(345\) 0.430703 + 1.33591i 0.0231883 + 0.0719228i
\(346\) 0 0
\(347\) 22.6641i 1.21667i −0.793679 0.608337i \(-0.791837\pi\)
0.793679 0.608337i \(-0.208163\pi\)
\(348\) 0 0
\(349\) −15.4891 −0.829114 −0.414557 0.910023i \(-0.636063\pi\)
−0.414557 + 0.910023i \(0.636063\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 25.0410i 1.33280i 0.745595 + 0.666399i \(0.232165\pi\)
−0.745595 + 0.666399i \(0.767835\pi\)
\(354\) 0 0
\(355\) 6.94158 + 21.5306i 0.368421 + 1.14273i
\(356\) 0 0
\(357\) 4.34896i 0.230172i
\(358\) 0 0
\(359\) 29.4891 1.55638 0.778188 0.628031i \(-0.216139\pi\)
0.778188 + 0.628031i \(0.216139\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 0 0
\(363\) 0.792287i 0.0415843i
\(364\) 0 0
\(365\) 14.7446 4.75372i 0.771766 0.248821i
\(366\) 0 0
\(367\) 25.7407i 1.34365i 0.740708 + 0.671827i \(0.234490\pi\)
−0.740708 + 0.671827i \(0.765510\pi\)
\(368\) 0 0
\(369\) 20.7446 1.07992
\(370\) 0 0
\(371\) −34.9783 −1.81598
\(372\) 0 0
\(373\) 11.6819i 0.604867i −0.953170 0.302434i \(-0.902201\pi\)
0.953170 0.302434i \(-0.0977990\pi\)
\(374\) 0 0
\(375\) 5.25544 7.13058i 0.271390 0.368222i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −0.627719 −0.0322437 −0.0161219 0.999870i \(-0.505132\pi\)
−0.0161219 + 0.999870i \(0.505132\pi\)
\(380\) 0 0
\(381\) 6.51087 0.333562
\(382\) 0 0
\(383\) 10.8896i 0.556435i 0.960518 + 0.278217i \(0.0897435\pi\)
−0.960518 + 0.278217i \(0.910256\pi\)
\(384\) 0 0
\(385\) −7.37228 + 2.37686i −0.375726 + 0.121136i
\(386\) 0 0
\(387\) 8.21782i 0.417735i
\(388\) 0 0
\(389\) −18.8614 −0.956311 −0.478156 0.878275i \(-0.658695\pi\)
−0.478156 + 0.878275i \(0.658695\pi\)
\(390\) 0 0
\(391\) −1.25544 −0.0634902
\(392\) 0 0
\(393\) 2.17448i 0.109688i
\(394\) 0 0
\(395\) 0.861407 + 2.67181i 0.0433421 + 0.134434i
\(396\) 0 0
\(397\) 16.4356i 0.824881i 0.910984 + 0.412441i \(0.135324\pi\)
−0.910984 + 0.412441i \(0.864676\pi\)
\(398\) 0 0
\(399\) −10.9783 −0.549600
\(400\) 0 0
\(401\) −11.4891 −0.573740 −0.286870 0.957970i \(-0.592615\pi\)
−0.286870 + 0.957970i \(0.592615\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 2.56930 + 7.96916i 0.127669 + 0.395991i
\(406\) 0 0
\(407\) 1.08724i 0.0538925i
\(408\) 0 0
\(409\) −27.4891 −1.35925 −0.679625 0.733560i \(-0.737857\pi\)
−0.679625 + 0.733560i \(0.737857\pi\)
\(410\) 0 0
\(411\) 11.3723 0.560953
\(412\) 0 0
\(413\) 25.5383i 1.25666i
\(414\) 0 0
\(415\) 14.1168 4.55134i 0.692969 0.223417i
\(416\) 0 0
\(417\) 12.8617i 0.629842i
\(418\) 0 0
\(419\) −22.9783 −1.12256 −0.561280 0.827626i \(-0.689691\pi\)
−0.561280 + 0.827626i \(0.689691\pi\)
\(420\) 0 0
\(421\) 8.51087 0.414795 0.207397 0.978257i \(-0.433501\pi\)
0.207397 + 0.978257i \(0.433501\pi\)
\(422\) 0 0
\(423\) 15.7359i 0.765107i
\(424\) 0 0
\(425\) 4.62772 + 6.43087i 0.224477 + 0.311943i
\(426\) 0 0
\(427\) 2.57924i 0.124818i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 25.7228 1.23902 0.619512 0.784987i \(-0.287330\pi\)
0.619512 + 0.784987i \(0.287330\pi\)
\(432\) 0 0
\(433\) 29.2048i 1.40349i 0.712426 + 0.701747i \(0.247596\pi\)
−0.712426 + 0.701747i \(0.752404\pi\)
\(434\) 0 0
\(435\) 14.7446 4.75372i 0.706948 0.227924i
\(436\) 0 0
\(437\) 3.16915i 0.151601i
\(438\) 0 0
\(439\) 21.4891 1.02562 0.512810 0.858502i \(-0.328605\pi\)
0.512810 + 0.858502i \(0.328605\pi\)
\(440\) 0 0
\(441\) −11.8614 −0.564829
\(442\) 0 0
\(443\) 31.6742i 1.50489i 0.658656 + 0.752444i \(0.271125\pi\)
−0.658656 + 0.752444i \(0.728875\pi\)
\(444\) 0 0
\(445\) −0.941578 2.92048i −0.0446351 0.138444i
\(446\) 0 0
\(447\) 9.10268i 0.430542i
\(448\) 0 0
\(449\) −6.86141 −0.323810 −0.161905 0.986806i \(-0.551764\pi\)
−0.161905 + 0.986806i \(0.551764\pi\)
\(450\) 0 0
\(451\) 8.74456 0.411765
\(452\) 0 0
\(453\) 9.69259i 0.455398i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 20.7846i 0.972263i 0.873886 + 0.486132i \(0.161592\pi\)
−0.873886 + 0.486132i \(0.838408\pi\)
\(458\) 0 0
\(459\) 6.74456 0.314809
\(460\) 0 0
\(461\) 2.23369 0.104033 0.0520166 0.998646i \(-0.483435\pi\)
0.0520166 + 0.998646i \(0.483435\pi\)
\(462\) 0 0
\(463\) 30.0897i 1.39839i 0.714933 + 0.699193i \(0.246457\pi\)
−0.714933 + 0.699193i \(0.753543\pi\)
\(464\) 0 0
\(465\) 5.68614 1.83324i 0.263688 0.0850145i
\(466\) 0 0
\(467\) 7.72049i 0.357262i −0.983916 0.178631i \(-0.942833\pi\)
0.983916 0.178631i \(-0.0571668\pi\)
\(468\) 0 0
\(469\) −32.2337 −1.48841
\(470\) 0 0
\(471\) −19.3723 −0.892628
\(472\) 0 0
\(473\) 3.46410i 0.159280i
\(474\) 0 0
\(475\) −16.2337 + 11.6819i −0.744853 + 0.536003i
\(476\) 0 0
\(477\) 23.9538i 1.09677i
\(478\) 0 0
\(479\) −5.48913 −0.250805 −0.125402 0.992106i \(-0.540022\pi\)
−0.125402 + 0.992106i \(0.540022\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 2.17448i 0.0989423i
\(484\) 0 0
\(485\) 12.4307 4.00772i 0.564449 0.181981i
\(486\) 0 0
\(487\) 7.13058i 0.323118i −0.986863 0.161559i \(-0.948348\pi\)
0.986863 0.161559i \(-0.0516521\pi\)
\(488\) 0 0
\(489\) −2.74456 −0.124113
\(490\) 0 0
\(491\) −6.51087 −0.293832 −0.146916 0.989149i \(-0.546935\pi\)
−0.146916 + 0.989149i \(0.546935\pi\)
\(492\) 0 0
\(493\) 13.8564i 0.624061i
\(494\) 0 0
\(495\) 1.62772 + 5.04868i 0.0731605 + 0.226921i
\(496\) 0 0
\(497\) 35.0458i 1.57202i
\(498\) 0 0
\(499\) −20.0000 −0.895323 −0.447661 0.894203i \(-0.647743\pi\)
−0.447661 + 0.894203i \(0.647743\pi\)
\(500\) 0 0
\(501\) 12.4674 0.557001
\(502\) 0 0
\(503\) 13.5615i 0.604675i −0.953201 0.302338i \(-0.902233\pi\)
0.953201 0.302338i \(-0.0977670\pi\)
\(504\) 0 0
\(505\) 4.11684 + 12.7692i 0.183197 + 0.568220i
\(506\) 0 0
\(507\) 10.2997i 0.457427i
\(508\) 0 0
\(509\) −22.6277 −1.00296 −0.501478 0.865170i \(-0.667210\pi\)
−0.501478 + 0.865170i \(0.667210\pi\)
\(510\) 0 0
\(511\) 24.0000 1.06170
\(512\) 0 0
\(513\) 17.0256i 0.751697i
\(514\) 0 0
\(515\) −22.1168 + 7.13058i −0.974585 + 0.314211i
\(516\) 0 0
\(517\) 6.63325i 0.291730i
\(518\) 0 0
\(519\) 6.74456 0.296053
\(520\) 0 0
\(521\) −21.6060 −0.946575 −0.473287 0.880908i \(-0.656933\pi\)
−0.473287 + 0.880908i \(0.656933\pi\)
\(522\) 0 0
\(523\) 29.0024i 1.26819i −0.773256 0.634094i \(-0.781373\pi\)
0.773256 0.634094i \(-0.218627\pi\)
\(524\) 0 0
\(525\) 11.1386 8.01544i 0.486128 0.349823i
\(526\) 0 0
\(527\) 5.34363i 0.232772i
\(528\) 0 0
\(529\) 22.3723 0.972708
\(530\) 0 0
\(531\) −17.4891 −0.758963
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 14.1168 4.55134i 0.610324 0.196772i
\(536\) 0 0
\(537\) 10.1899i 0.439728i
\(538\) 0 0
\(539\) −5.00000 −0.215365
\(540\) 0 0
\(541\) 34.2337 1.47182 0.735911 0.677079i \(-0.236754\pi\)
0.735911 + 0.677079i \(0.236754\pi\)
\(542\) 0 0
\(543\) 19.1075i 0.819980i
\(544\) 0 0
\(545\) −6.86141 21.2819i −0.293910 0.911618i
\(546\) 0 0
\(547\) 29.0024i 1.24005i −0.784580 0.620027i \(-0.787122\pi\)
0.784580 0.620027i \(-0.212878\pi\)
\(548\) 0 0
\(549\) −1.76631 −0.0753844
\(550\) 0 0
\(551\) −34.9783 −1.49012
\(552\) 0 0
\(553\) 4.34896i 0.184937i
\(554\) 0 0
\(555\) −0.591046 1.83324i −0.0250885 0.0778167i
\(556\) 0 0
\(557\) 0.994667i 0.0421454i 0.999778 + 0.0210727i \(0.00670814\pi\)
−0.999778 + 0.0210727i \(0.993292\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 1.25544 0.0530046
\(562\) 0 0
\(563\) 18.9051i 0.796754i 0.917222 + 0.398377i \(0.130426\pi\)
−0.917222 + 0.398377i \(0.869574\pi\)
\(564\) 0 0
\(565\) 1.05842 0.341241i 0.0445281 0.0143561i
\(566\) 0 0
\(567\) 12.9715i 0.544754i
\(568\) 0 0
\(569\) 27.2554 1.14261 0.571304 0.820739i \(-0.306438\pi\)
0.571304 + 0.820739i \(0.306438\pi\)
\(570\) 0 0
\(571\) −1.48913 −0.0623180 −0.0311590 0.999514i \(-0.509920\pi\)
−0.0311590 + 0.999514i \(0.509920\pi\)
\(572\) 0 0
\(573\) 15.3484i 0.641189i
\(574\) 0 0
\(575\) 2.31386 + 3.21543i 0.0964946 + 0.134093i
\(576\) 0 0
\(577\) 21.8719i 0.910537i −0.890354 0.455269i \(-0.849543\pi\)
0.890354 0.455269i \(-0.150457\pi\)
\(578\) 0 0
\(579\) 13.0217 0.541165
\(580\) 0 0
\(581\) 22.9783 0.953298
\(582\) 0 0
\(583\) 10.0974i 0.418190i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 41.2743i 1.70357i −0.523890 0.851786i \(-0.675520\pi\)
0.523890 0.851786i \(-0.324480\pi\)
\(588\) 0 0
\(589\) −13.4891 −0.555810
\(590\) 0 0
\(591\) 6.74456 0.277434
\(592\) 0 0
\(593\) 22.7739i 0.935214i −0.883937 0.467607i \(-0.845116\pi\)
0.883937 0.467607i \(-0.154884\pi\)
\(594\) 0 0
\(595\) 3.76631 + 11.6819i 0.154404 + 0.478912i
\(596\) 0 0
\(597\) 6.33830i 0.259409i
\(598\) 0 0
\(599\) 10.9783 0.448559 0.224280 0.974525i \(-0.427997\pi\)
0.224280 + 0.974525i \(0.427997\pi\)
\(600\) 0 0
\(601\) −38.4674 −1.56912 −0.784558 0.620055i \(-0.787110\pi\)
−0.784558 + 0.620055i \(0.787110\pi\)
\(602\) 0 0
\(603\) 22.0742i 0.898932i
\(604\) 0 0
\(605\) 0.686141 + 2.12819i 0.0278956 + 0.0865234i
\(606\) 0 0
\(607\) 3.46410i 0.140604i 0.997526 + 0.0703018i \(0.0223962\pi\)
−0.997526 + 0.0703018i \(0.977604\pi\)
\(608\) 0 0
\(609\) 24.0000 0.972529
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 4.34896i 0.175653i −0.996136 0.0878265i \(-0.972008\pi\)
0.996136 0.0878265i \(-0.0279921\pi\)
\(614\) 0 0
\(615\) −14.7446 + 4.75372i −0.594558 + 0.191689i
\(616\) 0 0
\(617\) 17.0256i 0.685423i 0.939441 + 0.342712i \(0.111345\pi\)
−0.939441 + 0.342712i \(0.888655\pi\)
\(618\) 0 0
\(619\) 14.1168 0.567404 0.283702 0.958913i \(-0.408437\pi\)
0.283702 + 0.958913i \(0.408437\pi\)
\(620\) 0 0
\(621\) 3.37228 0.135325
\(622\) 0 0
\(623\) 4.75372i 0.190454i
\(624\) 0 0
\(625\) 7.94158 23.7051i 0.317663 0.948204i
\(626\) 0 0
\(627\) 3.16915i 0.126564i
\(628\) 0 0
\(629\) 1.72281 0.0686931
\(630\) 0 0
\(631\) −23.6060 −0.939739 −0.469869 0.882736i \(-0.655699\pi\)
−0.469869 + 0.882736i \(0.655699\pi\)
\(632\) 0 0
\(633\) 1.17981i 0.0468934i
\(634\) 0 0
\(635\) 17.4891 5.63858i 0.694035 0.223760i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 24.0000 0.949425
\(640\) 0 0
\(641\) −25.3723 −1.00214 −0.501072 0.865405i \(-0.667061\pi\)
−0.501072 + 0.865405i \(0.667061\pi\)
\(642\) 0 0
\(643\) 30.4944i 1.20258i 0.799030 + 0.601292i \(0.205347\pi\)
−0.799030 + 0.601292i \(0.794653\pi\)
\(644\) 0 0
\(645\) 1.88316 + 5.84096i 0.0741492 + 0.229988i
\(646\) 0 0
\(647\) 21.9817i 0.864188i −0.901829 0.432094i \(-0.857775\pi\)
0.901829 0.432094i \(-0.142225\pi\)
\(648\) 0 0
\(649\) −7.37228 −0.289387
\(650\) 0 0
\(651\) 9.25544 0.362749
\(652\) 0 0
\(653\) 30.7894i 1.20488i −0.798163 0.602441i \(-0.794195\pi\)
0.798163 0.602441i \(-0.205805\pi\)
\(654\) 0 0
\(655\) 1.88316 + 5.84096i 0.0735810 + 0.228225i
\(656\) 0 0
\(657\) 16.4356i 0.641216i
\(658\) 0 0
\(659\) 21.2554 0.827994 0.413997 0.910278i \(-0.364132\pi\)
0.413997 + 0.910278i \(0.364132\pi\)
\(660\) 0 0
\(661\) −16.3505 −0.635962 −0.317981 0.948097i \(-0.603005\pi\)
−0.317981 + 0.948097i \(0.603005\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −29.4891 + 9.50744i −1.14354 + 0.368683i
\(666\) 0 0
\(667\) 6.92820i 0.268261i
\(668\) 0 0
\(669\) −1.88316 −0.0728070
\(670\) 0 0
\(671\) −0.744563 −0.0287435
\(672\) 0 0
\(673\) 18.6101i 0.717368i 0.933459 + 0.358684i \(0.116774\pi\)
−0.933459 + 0.358684i \(0.883226\pi\)
\(674\) 0 0
\(675\) −12.4307 17.2742i −0.478458 0.664885i
\(676\) 0 0
\(677\) 50.0820i 1.92481i −0.271623 0.962404i \(-0.587560\pi\)
0.271623 0.962404i \(-0.412440\pi\)
\(678\) 0 0
\(679\) 20.2337 0.776498
\(680\) 0 0
\(681\) −13.2554 −0.507949
\(682\) 0 0
\(683\) 17.9104i 0.685323i −0.939459 0.342661i \(-0.888672\pi\)
0.939459 0.342661i \(-0.111328\pi\)
\(684\) 0 0
\(685\) 30.5475 9.84868i 1.16716 0.376299i
\(686\) 0 0
\(687\) 11.5894i 0.442161i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −44.8614 −1.70661 −0.853304 0.521413i \(-0.825405\pi\)
−0.853304 + 0.521413i \(0.825405\pi\)
\(692\) 0 0
\(693\) 8.21782i 0.312169i
\(694\) 0 0
\(695\) −11.1386 34.5484i −0.422511 1.31050i
\(696\) 0 0
\(697\) 13.8564i 0.524849i
\(698\) 0 0
\(699\) 2.97825 0.112648
\(700\) 0 0
\(701\) −12.5109 −0.472529 −0.236265 0.971689i \(-0.575923\pi\)
−0.236265 + 0.971689i \(0.575923\pi\)
\(702\) 0 0
\(703\) 4.34896i 0.164024i
\(704\) 0 0
\(705\) 3.60597 + 11.1846i 0.135809 + 0.421236i
\(706\) 0 0
\(707\) 20.7846i 0.781686i
\(708\) 0 0
\(709\) −23.8832 −0.896951 −0.448475 0.893795i \(-0.648033\pi\)
−0.448475 + 0.893795i \(0.648033\pi\)
\(710\) 0 0
\(711\) 2.97825 0.111693
\(712\) 0 0
\(713\) 2.67181i 0.100060i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 11.6819i 0.436269i
\(718\) 0 0
\(719\) −30.3505 −1.13188 −0.565942 0.824445i \(-0.691487\pi\)
−0.565942 + 0.824445i \(0.691487\pi\)
\(720\) 0 0
\(721\) −36.0000 −1.34071
\(722\) 0 0
\(723\) 13.2665i 0.493386i
\(724\) 0 0
\(725\) 35.4891 25.5383i 1.31803 0.948470i
\(726\) 0 0
\(727\) 14.0588i 0.521412i 0.965418 + 0.260706i \(0.0839552\pi\)
−0.965418 + 0.260706i \(0.916045\pi\)
\(728\) 0 0
\(729\) −1.23369 −0.0456921
\(730\) 0 0
\(731\) −5.48913 −0.203023
\(732\) 0 0
\(733\) 9.50744i 0.351165i −0.984465 0.175583i \(-0.943819\pi\)
0.984465 0.175583i \(-0.0561809\pi\)
\(734\) 0 0
\(735\) 8.43070 2.71810i 0.310971 0.100259i
\(736\) 0 0
\(737\) 9.30506i 0.342756i
\(738\) 0 0
\(739\) −10.7446 −0.395245 −0.197623 0.980278i \(-0.563322\pi\)
−0.197623 + 0.980278i \(0.563322\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 11.3870i 0.417747i −0.977943 0.208874i \(-0.933020\pi\)
0.977943 0.208874i \(-0.0669798\pi\)
\(744\) 0 0
\(745\) 7.88316 + 24.4511i 0.288816 + 0.895819i
\(746\) 0 0
\(747\) 15.7359i 0.575748i
\(748\) 0 0
\(749\) 22.9783 0.839607
\(750\) 0 0
\(751\) −27.3723 −0.998829 −0.499414 0.866363i \(-0.666451\pi\)
−0.499414 + 0.866363i \(0.666451\pi\)
\(752\) 0 0
\(753\) 17.5229i 0.638570i
\(754\) 0 0
\(755\) 8.39403 + 26.0357i 0.305490 + 0.947535i
\(756\) 0 0
\(757\) 39.7995i 1.44654i −0.690567 0.723269i \(-0.742639\pi\)
0.690567 0.723269i \(-0.257361\pi\)
\(758\) 0 0
\(759\) 0.627719 0.0227847
\(760\) 0 0
\(761\) 32.7446 1.18699 0.593495 0.804838i \(-0.297748\pi\)
0.593495 + 0.804838i \(0.297748\pi\)
\(762\) 0 0
\(763\) 34.6410i 1.25409i
\(764\) 0 0
\(765\) 8.00000 2.57924i 0.289241 0.0932526i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −29.2119 −1.05341 −0.526705 0.850048i \(-0.676573\pi\)
−0.526705 + 0.850048i \(0.676573\pi\)
\(770\) 0 0
\(771\) 8.46738 0.304945
\(772\) 0 0
\(773\) 17.6155i 0.633584i −0.948495 0.316792i \(-0.897394\pi\)
0.948495 0.316792i \(-0.102606\pi\)
\(774\) 0 0
\(775\) 13.6861 9.84868i 0.491621 0.353775i
\(776\) 0 0
\(777\) 2.98400i 0.107050i
\(778\) 0 0
\(779\) 34.9783 1.25323
\(780\) 0 0
\(781\) 10.1168 0.362009
\(782\) 0 0
\(783\) 37.2203i 1.33014i
\(784\) 0 0
\(785\) −52.0367 + 16.7769i −1.85727 + 0.598793i
\(786\) 0 0
\(787\) 15.1460i 0.539898i −0.962875 0.269949i \(-0.912993\pi\)
0.962875 0.269949i \(-0.0870068\pi\)
\(788\) 0 0
\(789\) 21.7228 0.773353
\(790\) 0 0
\(791\) 1.72281 0.0612562
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −5.48913 17.0256i −0.194679 0.603834i
\(796\) 0 0
\(797\) 5.25106i 0.186002i −0.995666 0.0930010i \(-0.970354\pi\)
0.995666 0.0930010i \(-0.0296460\pi\)
\(798\) 0 0
\(799\) −10.5109 −0.371848
\(800\) 0 0
\(801\) −3.25544 −0.115025
\(802\) 0 0
\(803\) 6.92820i 0.244491i
\(804\) 0 0
\(805\) 1.88316 + 5.84096i 0.0663725 + 0.205867i
\(806\) 0 0
\(807\) 9.10268i 0.320430i
\(808\) 0 0
\(809\) 32.7446 1.15124 0.575619 0.817718i \(-0.304761\pi\)
0.575619 + 0.817718i \(0.304761\pi\)
\(810\) 0 0
\(811\) 0.233688 0.00820589 0.00410295 0.999992i \(-0.498694\pi\)
0.00410295 + 0.999992i \(0.498694\pi\)
\(812\) 0 0
\(813\) 10.6873i 0.374819i
\(814\) 0 0
\(815\) −7.37228 + 2.37686i −0.258240 + 0.0832578i
\(816\) 0 0
\(817\) 13.8564i 0.484774i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −18.0000 −0.628204 −0.314102 0.949389i \(-0.601703\pi\)
−0.314102 + 0.949389i \(0.601703\pi\)
\(822\) 0 0
\(823\) 56.0328i 1.95318i −0.215111 0.976590i \(-0.569011\pi\)
0.215111 0.976590i \(-0.430989\pi\)
\(824\) 0 0
\(825\) −2.31386 3.21543i −0.0805582 0.111947i
\(826\) 0 0
\(827\) 28.4125i 0.988000i 0.869462 + 0.494000i \(0.164466\pi\)
−0.869462 + 0.494000i \(0.835534\pi\)
\(828\) 0 0
\(829\) 20.3505 0.706803 0.353402 0.935472i \(-0.385025\pi\)
0.353402 + 0.935472i \(0.385025\pi\)
\(830\) 0 0
\(831\) −9.25544 −0.321068
\(832\) 0 0
\(833\) 7.92287i 0.274511i
\(834\) 0 0
\(835\) 33.4891 10.7971i 1.15894 0.373648i
\(836\) 0 0
\(837\) 14.3537i 0.496138i
\(838\) 0 0
\(839\) −10.1168 −0.349272 −0.174636 0.984633i \(-0.555875\pi\)
−0.174636 + 0.984633i \(0.555875\pi\)
\(840\) 0 0
\(841\) 47.4674 1.63681
\(842\) 0 0
\(843\) 0.404759i 0.0139407i
\(844\) 0 0
\(845\) 8.91983 + 27.6665i 0.306851 + 0.951757i
\(846\) 0 0
\(847\) 3.46410i 0.119028i
\(848\) 0 0
\(849\) 12.0000 0.411839
\(850\) 0 0
\(851\) 0.861407 0.0295286
\(852\) 0 0
\(853\) 35.0458i 1.19994i 0.800021 + 0.599972i \(0.204822\pi\)
−0.800021 + 0.599972i \(0.795178\pi\)
\(854\) 0 0
\(855\) 6.51087 + 20.1947i 0.222667 + 0.690644i
\(856\) 0 0
\(857\) 23.9538i 0.818245i 0.912480 + 0.409122i \(0.134165\pi\)
−0.912480 + 0.409122i \(0.865835\pi\)
\(858\) 0 0
\(859\) −6.11684 −0.208704 −0.104352 0.994540i \(-0.533277\pi\)
−0.104352 + 0.994540i \(0.533277\pi\)
\(860\) 0 0
\(861\) −24.0000 −0.817918
\(862\) 0 0
\(863\) 2.87419i 0.0978387i 0.998803 + 0.0489194i \(0.0155777\pi\)
−0.998803 + 0.0489194i \(0.984422\pi\)
\(864\) 0 0
\(865\) 18.1168 5.84096i 0.615991 0.198599i
\(866\) 0 0
\(867\) 11.4795i 0.389866i
\(868\) 0 0
\(869\) 1.25544 0.0425878
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 13.8564i 0.468968i
\(874\) 0 0
\(875\) 22.9783 31.1769i 0.776807 1.05397i
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) −2.51087 −0.0846897
\(880\) 0 0
\(881\) −6.86141 −0.231167 −0.115583 0.993298i \(-0.536874\pi\)
−0.115583 + 0.993298i \(0.536874\pi\)
\(882\) 0 0
\(883\) 24.2487i 0.816034i −0.912974 0.408017i \(-0.866220\pi\)
0.912974 0.408017i \(-0.133780\pi\)
\(884\) 0 0
\(885\) 12.4307 4.00772i 0.417854 0.134718i
\(886\) 0 0
\(887\) 27.4179i 0.920602i −0.887763 0.460301i \(-0.847742\pi\)
0.887763 0.460301i \(-0.152258\pi\)
\(888\) 0 0
\(889\) 28.4674 0.954765
\(890\) 0 0
\(891\) 3.74456 0.125448
\(892\) 0 0
\(893\) 26.5330i 0.887893i
\(894\) 0 0
\(895\) 8.82473 + 27.3716i 0.294978 + 0.914931i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 29.4891 0.983517
\(900\) 0 0
\(901\) 16.0000 0.533037
\(902\) 0 0
\(903\) 9.50744i 0.316388i
\(904\) 0 0
\(905\) 16.5475 + 51.3253i 0.550059 + 1.70611i
\(906\) 0 0
\(907\) 19.8997i 0.660760i −0.943848 0.330380i \(-0.892823\pi\)
0.943848 0.330380i \(-0.107177\pi\)
\(908\) 0 0
\(909\) 14.2337 0.472102
\(910\) 0 0
\(911\) 53.4891 1.77217 0.886087 0.463519i \(-0.153413\pi\)
0.886087 + 0.463519i \(0.153413\pi\)
\(912\) 0 0
\(913\) 6.63325i 0.219529i
\(914\) 0 0
\(915\) 1.25544 0.404759i 0.0415035 0.0133809i
\(916\) 0 0
\(917\) 9.50744i 0.313963i
\(918\) 0 0
\(919\) −28.2337 −0.931343 −0.465672 0.884958i \(-0.654187\pi\)
−0.465672 + 0.884958i \(0.654187\pi\)
\(920\) 0 0
\(921\) −25.0217 −0.824495
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −3.17527 4.41248i −0.104402 0.145081i
\(926\) 0 0
\(927\) 24.6535i 0.809726i
\(928\) 0 0
\(929\) 7.02175 0.230376 0.115188 0.993344i \(-0.463253\pi\)
0.115188 + 0.993344i \(0.463253\pi\)
\(930\) 0 0
\(931\) −20.0000 −0.655474
\(932\) 0 0
\(933\) 4.34896i 0.142379i
\(934\) 0 0
\(935\) 3.37228 1.08724i 0.110285 0.0355566i
\(936\) 0 0
\(937\) 53.6559i 1.75286i −0.481527 0.876431i \(-0.659918\pi\)
0.481527 0.876431i \(-0.340082\pi\)
\(938\) 0 0
\(939\) 17.3288 0.565503
\(940\) 0 0
\(941\) −58.4674 −1.90598 −0.952991 0.302999i \(-0.902012\pi\)
−0.952991 + 0.302999i \(0.902012\pi\)
\(942\) 0 0
\(943\) 6.92820i 0.225613i
\(944\) 0 0
\(945\) −10.1168 31.3793i −0.329101 1.02077i
\(946\) 0 0
\(947\) 26.7354i 0.868783i −0.900724 0.434392i \(-0.856963\pi\)
0.900724 0.434392i \(-0.143037\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 26.1168 0.846897
\(952\) 0 0
\(953\) 31.2867i 1.01348i 0.862100 + 0.506738i \(0.169149\pi\)
−0.862100 + 0.506738i \(0.830851\pi\)
\(954\) 0 0
\(955\) 13.2921 + 41.2280i 0.430123 + 1.33411i
\(956\) 0 0
\(957\) 6.92820i 0.223957i
\(958\) 0 0
\(959\) 49.7228 1.60563
\(960\) 0 0
\(961\) −19.6277 −0.633152
\(962\) 0 0
\(963\) 15.7359i 0.507083i
\(964\) 0 0
\(965\) 34.9783 11.2772i 1.12599 0.363025i
\(966\) 0 0
\(967\) 26.4232i 0.849713i −0.905261 0.424856i \(-0.860325\pi\)
0.905261 0.424856i \(-0.139675\pi\)
\(968\) 0 0
\(969\) 5.02175 0.161322
\(970\) 0 0
\(971\) 9.09509 0.291875 0.145938 0.989294i \(-0.453380\pi\)
0.145938 + 0.989294i \(0.453380\pi\)
\(972\) 0 0
\(973\) 56.2351i 1.80282i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 50.5793i 1.61818i 0.587687 + 0.809088i \(0.300038\pi\)
−0.587687 + 0.809088i \(0.699962\pi\)
\(978\) 0 0
\(979\) −1.37228 −0.0438583
\(980\) 0 0
\(981\) −23.7228 −0.757411
\(982\) 0 0
\(983\) 24.7460i 0.789276i 0.918837 + 0.394638i \(0.129130\pi\)
−0.918837 + 0.394638i \(0.870870\pi\)
\(984\) 0 0
\(985\) 18.1168 5.84096i 0.577251 0.186109i
\(986\) 0 0
\(987\) 18.2054i 0.579483i
\(988\) 0 0
\(989\) −2.74456 −0.0872720
\(990\) 0 0
\(991\) −18.9783 −0.602864 −0.301432 0.953488i \(-0.597465\pi\)
−0.301432 + 0.953488i \(0.597465\pi\)
\(992\) 0 0
\(993\) 11.1846i 0.354932i
\(994\) 0 0
\(995\) −5.48913 17.0256i −0.174017 0.539746i
\(996\) 0 0
\(997\) 2.17448i 0.0688665i −0.999407 0.0344333i \(-0.989037\pi\)
0.999407 0.0344333i \(-0.0109626\pi\)
\(998\) 0 0
\(999\) −4.62772 −0.146415
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 880.2.b.h.529.3 4
4.3 odd 2 55.2.b.a.34.4 yes 4
5.2 odd 4 4400.2.a.cc.1.3 4
5.3 odd 4 4400.2.a.cc.1.2 4
5.4 even 2 inner 880.2.b.h.529.2 4
12.11 even 2 495.2.c.a.199.1 4
20.3 even 4 275.2.a.h.1.4 4
20.7 even 4 275.2.a.h.1.1 4
20.19 odd 2 55.2.b.a.34.1 4
44.3 odd 10 605.2.j.i.9.4 16
44.7 even 10 605.2.j.j.269.4 16
44.15 odd 10 605.2.j.i.269.1 16
44.19 even 10 605.2.j.j.9.1 16
44.27 odd 10 605.2.j.i.124.1 16
44.31 odd 10 605.2.j.i.444.4 16
44.35 even 10 605.2.j.j.444.1 16
44.39 even 10 605.2.j.j.124.4 16
44.43 even 2 605.2.b.c.364.1 4
60.23 odd 4 2475.2.a.bi.1.1 4
60.47 odd 4 2475.2.a.bi.1.4 4
60.59 even 2 495.2.c.a.199.4 4
220.19 even 10 605.2.j.j.9.4 16
220.39 even 10 605.2.j.j.124.1 16
220.43 odd 4 3025.2.a.ba.1.1 4
220.59 odd 10 605.2.j.i.269.4 16
220.79 even 10 605.2.j.j.444.4 16
220.87 odd 4 3025.2.a.ba.1.4 4
220.119 odd 10 605.2.j.i.444.1 16
220.139 even 10 605.2.j.j.269.1 16
220.159 odd 10 605.2.j.i.124.4 16
220.179 odd 10 605.2.j.i.9.1 16
220.219 even 2 605.2.b.c.364.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.b.a.34.1 4 20.19 odd 2
55.2.b.a.34.4 yes 4 4.3 odd 2
275.2.a.h.1.1 4 20.7 even 4
275.2.a.h.1.4 4 20.3 even 4
495.2.c.a.199.1 4 12.11 even 2
495.2.c.a.199.4 4 60.59 even 2
605.2.b.c.364.1 4 44.43 even 2
605.2.b.c.364.4 4 220.219 even 2
605.2.j.i.9.1 16 220.179 odd 10
605.2.j.i.9.4 16 44.3 odd 10
605.2.j.i.124.1 16 44.27 odd 10
605.2.j.i.124.4 16 220.159 odd 10
605.2.j.i.269.1 16 44.15 odd 10
605.2.j.i.269.4 16 220.59 odd 10
605.2.j.i.444.1 16 220.119 odd 10
605.2.j.i.444.4 16 44.31 odd 10
605.2.j.j.9.1 16 44.19 even 10
605.2.j.j.9.4 16 220.19 even 10
605.2.j.j.124.1 16 220.39 even 10
605.2.j.j.124.4 16 44.39 even 10
605.2.j.j.269.1 16 220.139 even 10
605.2.j.j.269.4 16 44.7 even 10
605.2.j.j.444.1 16 44.35 even 10
605.2.j.j.444.4 16 220.79 even 10
880.2.b.h.529.2 4 5.4 even 2 inner
880.2.b.h.529.3 4 1.1 even 1 trivial
2475.2.a.bi.1.1 4 60.23 odd 4
2475.2.a.bi.1.4 4 60.47 odd 4
3025.2.a.ba.1.1 4 220.43 odd 4
3025.2.a.ba.1.4 4 220.87 odd 4
4400.2.a.cc.1.2 4 5.3 odd 4
4400.2.a.cc.1.3 4 5.2 odd 4