Properties

Label 880.2.b.d
Level $880$
Weight $2$
Character orbit 880.b
Analytic conductor $7.027$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [880,2,Mod(529,880)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(880, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("880.529");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 880.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.02683537787\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 440)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2i\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{3} + (\beta + 1) q^{5} - 2 \beta q^{7} - q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + \beta q^{3} + (\beta + 1) q^{5} - 2 \beta q^{7} - q^{9} - q^{11} + 3 \beta q^{13} + (\beta - 4) q^{15} + \beta q^{17} + 4 q^{19} + 8 q^{21} + 3 \beta q^{23} + (2 \beta - 3) q^{25} + 2 \beta q^{27} + 2 q^{29} - 8 q^{31} - \beta q^{33} + ( - 2 \beta + 8) q^{35} - 4 \beta q^{37} - 12 q^{39} + 6 q^{41} + 6 \beta q^{43} + ( - \beta - 1) q^{45} - 5 \beta q^{47} - 9 q^{49} - 4 q^{51} + ( - \beta - 1) q^{55} + 4 \beta q^{57} - 4 q^{59} - 10 q^{61} + 2 \beta q^{63} + (3 \beta - 12) q^{65} - \beta q^{67} - 12 q^{69} + 8 q^{71} - \beta q^{73} + ( - 3 \beta - 8) q^{75} + 2 \beta q^{77} + 4 q^{79} - 11 q^{81} - 2 \beta q^{83} + (\beta - 4) q^{85} + 2 \beta q^{87} + 14 q^{89} + 24 q^{91} - 8 \beta q^{93} + (4 \beta + 4) q^{95} - 2 \beta q^{97} + q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{5} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{5} - 2 q^{9} - 2 q^{11} - 8 q^{15} + 8 q^{19} + 16 q^{21} - 6 q^{25} + 4 q^{29} - 16 q^{31} + 16 q^{35} - 24 q^{39} + 12 q^{41} - 2 q^{45} - 18 q^{49} - 8 q^{51} - 2 q^{55} - 8 q^{59} - 20 q^{61} - 24 q^{65} - 24 q^{69} + 16 q^{71} - 16 q^{75} + 8 q^{79} - 22 q^{81} - 8 q^{85} + 28 q^{89} + 48 q^{91} + 8 q^{95} + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
529.1
1.00000i
1.00000i
0 2.00000i 0 1.00000 2.00000i 0 4.00000i 0 −1.00000 0
529.2 0 2.00000i 0 1.00000 + 2.00000i 0 4.00000i 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 880.2.b.d 2
4.b odd 2 1 440.2.b.b 2
5.b even 2 1 inner 880.2.b.d 2
5.c odd 4 1 4400.2.a.c 1
5.c odd 4 1 4400.2.a.bb 1
12.b even 2 1 3960.2.d.b 2
20.d odd 2 1 440.2.b.b 2
20.e even 4 1 2200.2.a.b 1
20.e even 4 1 2200.2.a.j 1
60.h even 2 1 3960.2.d.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
440.2.b.b 2 4.b odd 2 1
440.2.b.b 2 20.d odd 2 1
880.2.b.d 2 1.a even 1 1 trivial
880.2.b.d 2 5.b even 2 1 inner
2200.2.a.b 1 20.e even 4 1
2200.2.a.j 1 20.e even 4 1
3960.2.d.b 2 12.b even 2 1
3960.2.d.b 2 60.h even 2 1
4400.2.a.c 1 5.c odd 4 1
4400.2.a.bb 1 5.c odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(880, [\chi])\):

\( T_{3}^{2} + 4 \) Copy content Toggle raw display
\( T_{7}^{2} + 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 4 \) Copy content Toggle raw display
$5$ \( T^{2} - 2T + 5 \) Copy content Toggle raw display
$7$ \( T^{2} + 16 \) Copy content Toggle raw display
$11$ \( (T + 1)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 36 \) Copy content Toggle raw display
$17$ \( T^{2} + 4 \) Copy content Toggle raw display
$19$ \( (T - 4)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 36 \) Copy content Toggle raw display
$29$ \( (T - 2)^{2} \) Copy content Toggle raw display
$31$ \( (T + 8)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 64 \) Copy content Toggle raw display
$41$ \( (T - 6)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 144 \) Copy content Toggle raw display
$47$ \( T^{2} + 100 \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( (T + 4)^{2} \) Copy content Toggle raw display
$61$ \( (T + 10)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 4 \) Copy content Toggle raw display
$71$ \( (T - 8)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 4 \) Copy content Toggle raw display
$79$ \( (T - 4)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 16 \) Copy content Toggle raw display
$89$ \( (T - 14)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 16 \) Copy content Toggle raw display
show more
show less