Properties

Label 88.4.a.b
Level $88$
Weight $4$
Character orbit 88.a
Self dual yes
Analytic conductor $5.192$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [88,4,Mod(1,88)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("88.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(88, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 88 = 2^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 88.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.19216808051\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 7 q^{3} + 9 q^{5} + 2 q^{7} + 22 q^{9} - 11 q^{11} + 63 q^{15} - 38 q^{17} + 44 q^{19} + 14 q^{21} + 175 q^{23} - 44 q^{25} - 35 q^{27} - 264 q^{29} + 159 q^{31} - 77 q^{33} + 18 q^{35} - 173 q^{37}+ \cdots - 242 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 7.00000 0 9.00000 0 2.00000 0 22.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 88.4.a.b 1
3.b odd 2 1 792.4.a.b 1
4.b odd 2 1 176.4.a.a 1
5.b even 2 1 2200.4.a.a 1
8.b even 2 1 704.4.a.a 1
8.d odd 2 1 704.4.a.k 1
11.b odd 2 1 968.4.a.e 1
12.b even 2 1 1584.4.a.g 1
44.c even 2 1 1936.4.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
88.4.a.b 1 1.a even 1 1 trivial
176.4.a.a 1 4.b odd 2 1
704.4.a.a 1 8.b even 2 1
704.4.a.k 1 8.d odd 2 1
792.4.a.b 1 3.b odd 2 1
968.4.a.e 1 11.b odd 2 1
1584.4.a.g 1 12.b even 2 1
1936.4.a.b 1 44.c even 2 1
2200.4.a.a 1 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} - 7 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(88))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 7 \) Copy content Toggle raw display
$5$ \( T - 9 \) Copy content Toggle raw display
$7$ \( T - 2 \) Copy content Toggle raw display
$11$ \( T + 11 \) Copy content Toggle raw display
$13$ \( T \) Copy content Toggle raw display
$17$ \( T + 38 \) Copy content Toggle raw display
$19$ \( T - 44 \) Copy content Toggle raw display
$23$ \( T - 175 \) Copy content Toggle raw display
$29$ \( T + 264 \) Copy content Toggle raw display
$31$ \( T - 159 \) Copy content Toggle raw display
$37$ \( T + 173 \) Copy content Toggle raw display
$41$ \( T + 220 \) Copy content Toggle raw display
$43$ \( T + 542 \) Copy content Toggle raw display
$47$ \( T + 264 \) Copy content Toggle raw display
$53$ \( T - 682 \) Copy content Toggle raw display
$59$ \( T - 421 \) Copy content Toggle raw display
$61$ \( T - 308 \) Copy content Toggle raw display
$67$ \( T - 177 \) Copy content Toggle raw display
$71$ \( T - 365 \) Copy content Toggle raw display
$73$ \( T + 528 \) Copy content Toggle raw display
$79$ \( T - 686 \) Copy content Toggle raw display
$83$ \( T - 698 \) Copy content Toggle raw display
$89$ \( T - 967 \) Copy content Toggle raw display
$97$ \( T + 1127 \) Copy content Toggle raw display
show more
show less