Defining parameters
Level: | \( N \) | \(=\) | \( 88 = 2^{3} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 88.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(48\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(88))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 40 | 7 | 33 |
Cusp forms | 32 | 7 | 25 |
Eisenstein series | 8 | 0 | 8 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(11\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(1\) |
\(+\) | \(-\) | \(-\) | \(2\) |
\(-\) | \(+\) | \(-\) | \(1\) |
\(-\) | \(-\) | \(+\) | \(3\) |
Plus space | \(+\) | \(4\) | |
Minus space | \(-\) | \(3\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(88))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 11 | |||||||
88.4.a.a | $1$ | $5.192$ | \(\Q\) | None | \(0\) | \(-1\) | \(-7\) | \(-6\) | $-$ | $+$ | \(q-q^{3}-7q^{5}-6q^{7}-26q^{9}-11q^{11}+\cdots\) | |
88.4.a.b | $1$ | $5.192$ | \(\Q\) | None | \(0\) | \(7\) | \(9\) | \(2\) | $+$ | $+$ | \(q+7q^{3}+9q^{5}+2q^{7}+22q^{9}-11q^{11}+\cdots\) | |
88.4.a.c | $2$ | $5.192$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(-2\) | \(-6\) | \(-56\) | $+$ | $-$ | \(q+(-1-\beta )q^{3}+(-3+4\beta )q^{5}+(-28+\cdots)q^{7}+\cdots\) | |
88.4.a.d | $3$ | $5.192$ | 3.3.11109.1 | None | \(0\) | \(2\) | \(8\) | \(24\) | $-$ | $-$ | \(q+(1-\beta _{1})q^{3}+(3+\beta _{2})q^{5}+(8-\beta _{1}+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(88))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(88)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(22))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 2}\)