Properties

Label 88.2.g
Level $88$
Weight $2$
Character orbit 88.g
Rep. character $\chi_{88}(43,\cdot)$
Character field $\Q$
Dimension $10$
Newform subspaces $2$
Sturm bound $24$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 88 = 2^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 88.g (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 88 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(24\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(88, [\chi])\).

Total New Old
Modular forms 14 14 0
Cusp forms 10 10 0
Eisenstein series 4 4 0

Trace form

\( 10 q - 4 q^{3} - 4 q^{4} + 2 q^{9} + 2 q^{11} - 8 q^{14} - 16 q^{16} + 12 q^{22} - 6 q^{25} + 24 q^{26} - 16 q^{27} - 4 q^{33} + 8 q^{34} - 20 q^{36} + 16 q^{38} - 24 q^{42} + 20 q^{44} + 40 q^{48} - 6 q^{49}+ \cdots - 38 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(88, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
88.2.g.a 88.g 88.g $2$ $0.703$ \(\Q(\sqrt{-2}) \) \(\Q(\sqrt{-2}) \) 88.2.g.a \(0\) \(4\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+\beta q^{2}+2q^{3}-2q^{4}+2\beta q^{6}-2\beta q^{8}+\cdots\)
88.2.g.b 88.g 88.g $8$ $0.703$ 8.0.\(\cdots\).6 None 88.2.g.b \(0\) \(-8\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{5}q^{2}+(-1-\beta _{4})q^{3}+(-\beta _{2}-\beta _{4}+\cdots)q^{4}+\cdots\)