Defining parameters
Level: | \( N \) | \(=\) | \( 88 = 2^{3} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 88.g (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 88 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(24\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(88, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 14 | 14 | 0 |
Cusp forms | 10 | 10 | 0 |
Eisenstein series | 4 | 4 | 0 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(88, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
88.2.g.a | $2$ | $0.703$ | \(\Q(\sqrt{-2}) \) | \(\Q(\sqrt{-2}) \) | \(0\) | \(4\) | \(0\) | \(0\) | \(q+\beta q^{2}+2q^{3}-2q^{4}+2\beta q^{6}-2\beta q^{8}+\cdots\) |
88.2.g.b | $8$ | $0.703$ | 8.0.\(\cdots\).6 | None | \(0\) | \(-8\) | \(0\) | \(0\) | \(q+\beta _{5}q^{2}+(-1-\beta _{4})q^{3}+(-\beta _{2}-\beta _{4}+\cdots)q^{4}+\cdots\) |