# Properties

 Label 88.2.a.a Level $88$ Weight $2$ Character orbit 88.a Self dual yes Analytic conductor $0.703$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [88,2,Mod(1,88)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(88, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("88.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$88 = 2^{3} \cdot 11$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 88.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$0.702683537787$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: yes Fricke sign: $$+1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q - 3 q^{3} - 3 q^{5} - 2 q^{7} + 6 q^{9}+O(q^{10})$$ q - 3 * q^3 - 3 * q^5 - 2 * q^7 + 6 * q^9 $$q - 3 q^{3} - 3 q^{5} - 2 q^{7} + 6 q^{9} - q^{11} + 9 q^{15} - 6 q^{17} + 4 q^{19} + 6 q^{21} + q^{23} + 4 q^{25} - 9 q^{27} - 8 q^{29} - 7 q^{31} + 3 q^{33} + 6 q^{35} - q^{37} + 4 q^{41} + 6 q^{43} - 18 q^{45} - 8 q^{47} - 3 q^{49} + 18 q^{51} + 2 q^{53} + 3 q^{55} - 12 q^{57} - q^{59} + 4 q^{61} - 12 q^{63} - 5 q^{67} - 3 q^{69} + 3 q^{71} + 16 q^{73} - 12 q^{75} + 2 q^{77} + 2 q^{79} + 9 q^{81} - 2 q^{83} + 18 q^{85} + 24 q^{87} + 15 q^{89} + 21 q^{93} - 12 q^{95} - 7 q^{97} - 6 q^{99}+O(q^{100})$$ q - 3 * q^3 - 3 * q^5 - 2 * q^7 + 6 * q^9 - q^11 + 9 * q^15 - 6 * q^17 + 4 * q^19 + 6 * q^21 + q^23 + 4 * q^25 - 9 * q^27 - 8 * q^29 - 7 * q^31 + 3 * q^33 + 6 * q^35 - q^37 + 4 * q^41 + 6 * q^43 - 18 * q^45 - 8 * q^47 - 3 * q^49 + 18 * q^51 + 2 * q^53 + 3 * q^55 - 12 * q^57 - q^59 + 4 * q^61 - 12 * q^63 - 5 * q^67 - 3 * q^69 + 3 * q^71 + 16 * q^73 - 12 * q^75 + 2 * q^77 + 2 * q^79 + 9 * q^81 - 2 * q^83 + 18 * q^85 + 24 * q^87 + 15 * q^89 + 21 * q^93 - 12 * q^95 - 7 * q^97 - 6 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 −3.00000 0 −3.00000 0 −2.00000 0 6.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$+1$$
$$11$$ $$+1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 88.2.a.a 1
3.b odd 2 1 792.2.a.g 1
4.b odd 2 1 176.2.a.c 1
5.b even 2 1 2200.2.a.k 1
5.c odd 4 2 2200.2.b.a 2
7.b odd 2 1 4312.2.a.l 1
8.b even 2 1 704.2.a.l 1
8.d odd 2 1 704.2.a.b 1
11.b odd 2 1 968.2.a.a 1
11.c even 5 4 968.2.i.j 4
11.d odd 10 4 968.2.i.i 4
12.b even 2 1 1584.2.a.q 1
16.e even 4 2 2816.2.c.i 2
16.f odd 4 2 2816.2.c.d 2
20.d odd 2 1 4400.2.a.a 1
20.e even 4 2 4400.2.b.b 2
24.f even 2 1 6336.2.a.k 1
24.h odd 2 1 6336.2.a.h 1
28.d even 2 1 8624.2.a.c 1
33.d even 2 1 8712.2.a.x 1
44.c even 2 1 1936.2.a.l 1
88.b odd 2 1 7744.2.a.bk 1
88.g even 2 1 7744.2.a.b 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
88.2.a.a 1 1.a even 1 1 trivial
176.2.a.c 1 4.b odd 2 1
704.2.a.b 1 8.d odd 2 1
704.2.a.l 1 8.b even 2 1
792.2.a.g 1 3.b odd 2 1
968.2.a.a 1 11.b odd 2 1
968.2.i.i 4 11.d odd 10 4
968.2.i.j 4 11.c even 5 4
1584.2.a.q 1 12.b even 2 1
1936.2.a.l 1 44.c even 2 1
2200.2.a.k 1 5.b even 2 1
2200.2.b.a 2 5.c odd 4 2
2816.2.c.d 2 16.f odd 4 2
2816.2.c.i 2 16.e even 4 2
4312.2.a.l 1 7.b odd 2 1
4400.2.a.a 1 20.d odd 2 1
4400.2.b.b 2 20.e even 4 2
6336.2.a.h 1 24.h odd 2 1
6336.2.a.k 1 24.f even 2 1
7744.2.a.b 1 88.g even 2 1
7744.2.a.bk 1 88.b odd 2 1
8624.2.a.c 1 28.d even 2 1
8712.2.a.x 1 33.d even 2 1

## Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{3} + 3$$ acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(88))$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T + 3$$
$5$ $$T + 3$$
$7$ $$T + 2$$
$11$ $$T + 1$$
$13$ $$T$$
$17$ $$T + 6$$
$19$ $$T - 4$$
$23$ $$T - 1$$
$29$ $$T + 8$$
$31$ $$T + 7$$
$37$ $$T + 1$$
$41$ $$T - 4$$
$43$ $$T - 6$$
$47$ $$T + 8$$
$53$ $$T - 2$$
$59$ $$T + 1$$
$61$ $$T - 4$$
$67$ $$T + 5$$
$71$ $$T - 3$$
$73$ $$T - 16$$
$79$ $$T - 2$$
$83$ $$T + 2$$
$89$ $$T - 15$$
$97$ $$T + 7$$