Defining parameters
Level: | \( N \) | \(=\) | \( 88 = 2^{3} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 88.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(24\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(88))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 16 | 3 | 13 |
Cusp forms | 9 | 3 | 6 |
Eisenstein series | 7 | 0 | 7 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(11\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(1\) |
\(-\) | \(+\) | \(-\) | \(2\) |
Plus space | \(+\) | \(1\) | |
Minus space | \(-\) | \(2\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(88))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 11 | |||||||
88.2.a.a | $1$ | $0.703$ | \(\Q\) | None | \(0\) | \(-3\) | \(-3\) | \(-2\) | $+$ | $+$ | \(q-3q^{3}-3q^{5}-2q^{7}+6q^{9}-q^{11}+\cdots\) | |
88.2.a.b | $2$ | $0.703$ | \(\Q(\sqrt{17}) \) | None | \(0\) | \(1\) | \(3\) | \(-2\) | $-$ | $+$ | \(q+\beta q^{3}+(2-\beta )q^{5}-2\beta q^{7}+(1+\beta )q^{9}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(88))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(88)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 2}\)